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Abstract
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and scale the variables properly. Finally, these results are applied to the design of a pH-neutralization
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1 Introduction

In process control courses the issues of controller
design and stability analysis are often emphasized.
However, in practice the following three issues are
usually more important.

I. How well can the plant be controlled?

Before attempting to start any controller design one
should have some idea of how easy the plant actually
is to control. Is it a di�cult control problem? Indeed,
does there even exist a controller which meets the
required performance objectives?

II. What control strategy should be used?

Another important question is to decide on the con-
trol strategy: What to measure, what to manipulate,
how to pair? In textbooks one �nds qualitative rules
for this. For example in Seborg et al. (1989) one
�nds in a chapter called \The art of process control"
the rules:

1. Control outputs that are not self-regulating
2. Control outputs that have favorable dynamic

and static characteristics, i.e., there should ex-
ist an input with a signi�cant, direct and rapid
e�ect.

3. Select inputs that have large e�ects on the out-
puts.

4. Select inputs that rapidly e�ect the controlled
variables

These rules are reasonable, but what is \self-regu-
lating", \large", \rapid" and \direct". One objective
of this paper is to quantify these terms.

III. How should the process be changed to

improve control ? For example, one may want to
�nd the required size of a bu�er tank for damping
a disturbance, or one may want to know how fast a
measurement should be to get acceptable control.

Controllability analysis. All the above three
questions are related to the inherent control charac-
teristics of the process itself, that is, to what is de-
noted the input-output controllability of the process.
We shall use the following de�nition:

(Input-output) controllability is the ability to achieve
acceptable control performance, that is, to keep the
outputs (y) within speci�ed bounds or displacements
from their setpoints (r), in spite of unknown varia-
tions such as disturbances (d) and plant changes, us-
ing available inputs (u) and available measurements
(e.g.,ym or dm).

In summary, a plant is controllable if there exists
a controller (connecting measurements and inputs)
that yields acceptable performance for all expected
plant variations.

Thus, controllability is independent of the con-
troller, and is a property of the plant (process) only.
It can only be a�ected by changing the plant itself,
that is, by design modi�cations. These may include:

1. Change the apparatus itself, e.g., type, size,
etc.

2. Relocate sensors and actuators

3. Add new equipment to dampen disturbances,
e.g., bu�er tanks.

4. Add extra sensors for measurement (to be used
in feedforward and cascade control)

5. Add extra actuators (to be used for parallel
control)

6. Change the control objectives

7. Change the structure of the lower levels of con-
trol already in place

(It may be argued whether it is appropriate to la-
bel the last two items as design modi�cations, but
at least they address issues which come before the
actual controller design.)

The focus in this paper is to consider the use of
bu�er tanks to improve the controllability.

Surprisingly, in spite of the fact that mathemat-
ical methods are used extensively for control system
design, the methods available when it comes to con-
trollability analysis are largely qualitative. In most
cases the \simulation approach" is used. However,
this requires a speci�c controller design and speci�c
values of disturbances and setpoint changes. In the
end one never really knows if a result is a fundamen-
tal property of the plant or if it depends on these spe-
ci�c choices The objective of the paper is to present
a procedure for controllability analysis for scalar sys-
tems and to apply this procedure to a few examples.
Earlier work on input-output controllability analysis
includes that of Ziegler and Nichols (1943), Rosen-
brock (1970), and Morari (1983) who made use of the
concept of \perfect control".

One shortcoming with the controllability analysis
presented in this paper is that all the measures are
linear. This may seem very restrictive, but usually
it is not. In fact, one of the most important non-
linearities, namely that of input constraints, can be
handled well with a linear analysis. To deal with
slowly varying changes one may perform a control-
lability analysis at several selected operating points.
As a last step one may perform some nonlinear simu-
lations to con�rm the linear controllability analysis.
Experience from a large number of case studies con-
�rms that the agreement is generally very good.

Remarks on the de�nition of controllabil-

ity. The above de�nition is in tune with most engi-
neers' intuitive feeling about the term, and was also
how the term was used historically in the control lit-
erature. For example, Ziegler and Nichols (1943) de-
�ne controllability as \the ability of the process to
achieve and maintain the desired equilibrium value".
Unfortunately, in the 60's the term \controllability"
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Figure 1: Block diagram of feedback control system.

became synonymous with the rather narrow concept
of \state controllability" introduced by Kalman, and
the term is still used in this restrictive manner in
the system theory community. \State controllabil-
ity" is the ability to bring a system from a given
initial state to any �nal state (but with no regard to
the quality of the response between these two states).
This concept is of interest for realizations and nu-
merical calculations, but as long as we know that all
the unstable modes are both controllable and observ-
able, it has little practical signi�cance. For example,
Rosenbrock (1970, p. 177) notes that \most indus-
trial plants are controlled quite satisfactorily though
they are not [state] controllable". To avoid confusion
with Kalman's state controllability,Morari (1983) in-
troduced the term \dynamic resilience". However,
this term does not capture the fact that it is related
to control, and instead it is proposed to use the term
\input-output controllability" if one explicitly wants
to make the distinction with \state controllability".

The outline of the paper is as follows: In Section
2 we describe general tools for controllability anal-
ysis, and in Section 3 we present a simple example
to illustrate the use of these tools. The main new
results are in Section 4 where we consider the design
of bu�er tanks. Thus, Sections 2 and 3 are really
intended as an introduction to controllability analy-
sis, and the reader may skip these sections if he/she
is primarily interested in the design of bu�er tanks.
Finally, Section 5 describes an application to a pH
neutralization process where the use of several bu�er
tanks is needed to get acceptable controllability.

2 Controllability analysis

Consider a linear process model in terms of deviation
variables

y = g(s)u + gd(s)d (1)
Here y denotes the output, u the manipulated input
and d the disturbance (including disturbances enter-
ing at the input which are frequently referred to as
\load changes"). g(s) and gd(s) are transfer func-
tion models which describe the e�ect on the output
of the input and disturbance, and all controllability

results in this paper are based on this information.
The Laplace variable s is often omitted to simplify
notation. The control error e is de�ned as

e = y � r (2)

where r denotes the reference value (setpoint) for the
output. In this paper we mostly consider feedback
control as illustrated in Figure 1 where

u = c(s)(r � y) (3)

and c(s) is the controller. Eliminating u from equa-
tions (1) and (3) yields the closed-loop response

y = Tr + Sgdd; e = �Sr + Sgdd (4)

Here the sensitivity is S = (1+gc)�1 and the comple-
mentary sensitivity is T = gc(1+gc)�1 = 1�S. The
transfer function around the feedback loop is denoted
L. In this case L = gc.

In this paper bandwidth is de�ned as the frequency
!B where the loop gain is one in magnitude, i.e.
jL(j!B)j = 1 (or more precisely where the low-frequency
asymptote of jLj �rst crosses 1 from above). This fre-
quency is also called the \gain crossover frequency".
Other de�nitions of bandwidth are used, but the dif-
ference is small. At frequencies lower than the band-
width (! < !B) feedback is e�ective and will af-
fect the frequency response. However, for sinusoidal
input signals (for example, a disturbance) with fre-
quencies higher than !B the response will not be af-
fected much by the feedback.

The simplest interpretation of the frequency do-
main is that it represents the steady-state sinusoidal
response. For example, if we send an input u(t) =
u0 sin(!t) through a stable system with transfer func-
tion g(s), then the output as t!1 is y(t) = y0(sin!t+
�) where y0 = jg(j!)ju0 and � = 6 g(j!). Here g(j!)
represents at each frequency ! a complex number
obtained from g(s) by setting s = j!. A common
shorthand notation used in this paper to express the
sinusoidal response is (phasor notation)

y(j!) = g(j!)u(j!) (5)

where y(j!) and u(j!) are complex numbers (vec-
tors) representing at each frequency the size and phase
of a sinusoidal signal. For example, u(j!) = 5 means
that u(t) = 5 sin(!t). Thus u(j!) is not equal to u(s)
evaluated at s = j!, nor is it equal to u(t) evaluated
at t = j!.

A frequency domain analysis, in particular at fre-
quencies around the bandwidth, is very useful for sys-
tems under feedback control. This is the case even
when the disturbances and setpoints entering the sys-
tem are not sinusoids. One reason is that the e�ect
of disturbances is usually largest around the band-
width frequency; slower disturbances are attenuated
by the feedback control, and faster disturbances are
usually attenuated by the process itself.

Scaling. The interpretation of most measures
presented in this paper assumes that the transfer
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functions g and gd are in terms of scaled variables.
The �rst step in a controllability analysis is therefore
to scale (normalize) all variables (input, disturbance,
output) to be less than 1 in magnitude (i.e., within
the interval -1 to 1) by normalizing each variable by
its maximum value, for example, u = u0=u0max where
u0 denotes the unscaled and u the scaled variable,
and u0max is the largest allowed input change (in un-
scaled variables). For the other variables we have
d = d0=d0max, e = e0=e0max, y = y0=e0max, and r =
r0=e0max, where d0max is the largest expected distur-
bance and e0max the largest allowed control error. In
most cases the maximum values (u0max; e

0
max; d

0
max)

are assumed independent of frequency.
Thus, in the following we assume that the signals

are persistent sinusoids, and that g and gd have been
scaled, such that at each frequency the allowed input
ju(j!)j < 1, the expected disturbance jd(j!)j < 1, the
allowed control error je(j!)j < 1, and the expected
reference signal jr(j!)j < rmax(j!). Note that e
and r are measured in the same units so rmax =
r0max=e

0
max is the magnitude of the largest expected

setpoint change relative to the allowed control error.
Wewill assume that rmax(j!) is frequency dependent
such that jrmax(j!)j = Rmax up to the frequency !r
and is 0 above this frequency. In other words, for
a setpoint change r(t) = Rmax sin(!t), the tracking
error je(t)j should be less than 1 up to the frequency
wr, and above this frequency there are no speci�ca-
tions on tracking. Throughout the paper we assume
Rmax > 1.

Summary of controllability rules for feed-

back control

Let !B denote the bandwidth of the system, g(s)
the process, and gm(s) the measurement device (i.e.,
the measured output is gm(s)y). The following rules
apply

Rule 1 Speed of response to reject disturbances. Must
at least require !B > !d. Here !d is the fre-
quency at which jgd(j!d)j �rst crosses 1 from
above.

Justi�cation:. Without control y = gdd. Scal-
ing has been applied such that the largest dis-
turbance at a given frequency is d(t) = 1 �
sin(!t) (i.e., jd(j!)j = 1). Thus, at frequen-
cies ! < !d the output y will be unacceptable
(jyj > 1) for a disturbance jdj = 1, so control
is needed at these frequencies, and we must re-
quire !B � !d.

More speci�cally, we must with feedback control
require jLj = jgc(j!)j > jgd(j!)j at frequencies
where jgd(j!)j > 1. Justi�cation: With feed-
back control y = Sgdd where S � 1=L at fre-

quencies where jLj > 1. Thus to have jyj < 1
for jdj = 1 we must require jLj > jgdj.

Rule 2 Speed of response to follow setpoints. Must
at least require !B > !r where !r is the fre-
quency up to which tracking is required. More
speci�cally, we must require jL(j!)j > Rmax up
to frequency !r .

Unless Rmax is close to 1, the requirement !B >
!r is not tight, and a higher bandwidth is re-
quired in practice. The exact value depends
on how sharply jL(j!)j drops o� in the fre-
quency range from wr (where jLj > Rmax) to
!B (where jLj = 1). For example, with L(s) =
!B=s (�rst-order response) the required band-
width is !B > !rRmax, while for L(s) = !2

B=s
2

(not considering stability) the required band-
width is !B > !r

p
Rmax).

Justi�cation: With feedback control e = �Sr
where S � 1=L at frequencies where jLj > 1.
Thus to have jej < 1 for jrj = jRmaxj (up to
frequency !r) we must require jLj > jRmaxj.

Rule 3 Input constraints for disturbances. Must re-
quire jg(j!)j > jgd(j!)j at frequencies where
jgd(j!)j > 1. This is needed to avoid input
constraints when perfectly rejecting a distur-
bance d(t) = 1 � sin(!t) (i.e., d(j!) = 1).

Justi�cation. From y = gu + gdd = 0 we get
u = �(gd=g)d and with d = 1 we need juj =
jgdj=jgj < 1 to avoid input constraints.

Strictly speaking, perfect control is not required,
and the minimum input needed for \accept-
able" control (namely jyj < 1) is juj = (jgdj �
1)=jgj. The di�erence is clearly small at low
frequencies where jgdj is larger than 1. (How-
ever, for multivariable systems the di�erence
may be large for ill-conditioned plants even at
low frequencies).

Rule 4 Input constraints for setpoints. Must require
jg(j!)j > Rmax up to frequency !r where track-
ing is required. This is needed to avoid in-
put constraints for perfect tracking of jr(j!)j =
Rmax.

Justi�cation. From y = gu and y = r (perfect
control) we get u = r=g, and with r = Rmax

(up to frequency !r) we need juj = Rmax=jgj <
1 to avoid input constraints.

Rule 5 Time delay � in g(s)gm(s). Must require
!B < 1=� to have acceptable control perfor-
mance.

Justi�cation. It is impossible to remove the
e�ect of the delay and L(s) must contain a term
e��s. For example, the ideal controller which
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minimizes J =
R1
0 je(t) � r(t)j2dt when r(t) is

a step and there is no penalty on the inputs
has complementary sensitivity T = e��s. The
corresponding loop gain L = T=(1�T ) crosses
1 in magnitude at about the frequency 1=�. In
practice, the ideal controller cannot be realized
so this value provides an upper bound on the
bandwidth.

Rule 6 Real RHP-zero z in g(s)gm(s). Must require
!B < z=2 to have acceptable control perfor-
mance at low frequencies.

Justi�cation. Again, it is impossible to remove
the e�ect of a RHP zero. The ideal controller
which minimizes J =

R1
0 je(t) � r(t)j2dt when

r(t) is a step and there is no penalty on the in-
puts has complementary sensitivity T = �s+z

s+z .
The corresponding loop gain L = T=(1 � T )
crosses 1 in magnitude at about the frequency
z=2. In practice, the ideal controller cannot be
realized so this value provides an upper bound
on the bandwidth.

Remark. Strictly speaking, a RHP-zero only
makes it impossible to have tight control in
the frequency range close to the location of the
RHP-zero. If we do not need tight control at
low frequencies, then we may reverse the sign
of the controller gain, and instead achieve tight
control at frequencies higher than z. One spe-
cial example is for plants with a zero at the
origin (g(s) contains an isolated term s in the
numerator) where one can achieve good tran-
sient control, but where there the control has
no e�ect at steady-state.

Rule 7 Phase lag constraint. Must require in most
practical cases: !B < !u. Here the \ultimate"
frequency !u is where the phase of g(j!)gm(j!)
is �180o.
This rule is given by Balchen andMumme (1988),
but without any theoretical justi�cation. In
fact, the condition is not a fundamental limi-
tation, since for minimum phase plants (no de-
lays or RHP-zeros), any phase lag may in the-
ory be counteracted (disregarding input con-
straints) by placing zeros in the controller (use
of \derivative action"). However, in practice
this is not possible, because the controller struc-
ture may be limited and because of model un-
certainty.

Justi�cation for PID-controller. With a PID-
controller the maximumphase lead is 54.9o for
a controller with derivative action over one decade
(the maximum phase lead for the term �ds+1

0:1�ds+

is 54.9o at frequency
p
10=�d). Thus, if we re-

quire a phase margin larger than 54.9o we must

require jLj � 1 at frequency wu and the rule
follows.

Rule 8 Real open-loop unstable pole in g(s) at s =
p. We need high feedback gains to stabilize the
system and must approximately require !B >
p.

Justi�cation. For example, to stabilize a plant
g(s) = 1=(s � p) with a constant gain con-
troller c(s) = Kc we need Kc > p, and we
�nd that the asymptote of jLj crosses 1 at fre-
quency Kc, so we have !B > p. Another jus-
ti�cation follows from the fact that a strictly
proper plant with a single unstable real pole
(e.g., g(s) = s�z

(s�p)(�s+1)) can be stabilized by a

stable controller if and only if p < z (Youla et
al., 1974).

In addition, for unstable plants we need jgj >
jgdj up to the frequency !b > p (which may
be larger than wd). Otherwise, the input may
saturate when there are disturbances, and the
plant cannot be stabilized.

The above rules are necessary conditions (\min-
imum requirements") in order to achieve acceptable
control performance. One reason they are not su�-
cient is that they are based on considering only \one
e�ect at a time".

The rules quantify the qualitative rules from Se-
borg et al. (1989) given in the introduction. For
example, the rule \Control outputs that are not self-
regulating" may be quanti�ed as: \Control outputs
y for which jgd(j!)j > 1 at some frequency" (Rule 1).
The rule \Select inputs that have a large e�ect on the
outputs" may be quanti�ed as: \In terms of scaled
variables we must have jgj > jgdj at frequencies where
jgdj > 1 (Rule 3), and we must have jgj > Rmax at
frequencies where setpoint tracking is desired (Rule
4)".

Another important insight from the above rules is
that a larger disturbance or a smaller allowed control
error requires faster response (higher bandwidth).

In summary, Rules 1, 2 and 8 tell us that we need
high feedback gain (\fast control") in order to reject
disturbances, to track setpoints and to stabilize the
plant. On the other hand, Rules 5, 6 and 7 tell us
that we must use low feedback gains in the frequency
range where there are RHP-zeros or delays or where
the plant has a lot of phase lag. We have formulated
these requirements for high and low gain as band-
width requirements. If they somehow are in con
ict
then the plant is not controllable and the only rem-
edy is to introduce design modi�cations. Often the
problem is that the disturbances are too large such
that we hit input constraints, or such that the re-
quired bandwidth is not achievable. To avoid the lat-
ter problem, we must at least require that the e�ect
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of the disturbance is less than 1 (in terms of scaled
variables) at frequencies beyond the bandwidth, that
is, jgd(j!)j < 1; ! � !B (6)
where as found above we must require (approximately)
!B < 1=� and !B < z=2 and !B < !u. Condition
(6) may be used, as shown below, to determine the
size of bu�er tanks.

Feedforward control

Consider a feedforward controller u = cf (s)dm where
dm = gmd(s)d is the measured disturbance. The dis-
turbance response with the feedforward controller in
place is

y = g(s)u + gd(s)d = (g(s)cf (s)gmd(s) + gd(s))| {z }
ĝd

d

(7)
We want to consider controllability (achievable per-
formance) with feedforward control.

Rules 3 and 4 on input constraints apply directly
to feedforward control, while Rule 8 does not ap-
ply since unstable plants can only be stabilized by
feedback control. The remaining rules make use of
the term \bandwidth" which we above de�ned as the
frequency up to which the feedback loop gain jLj is
larger than one. However, if the term \bandwidth"
(!B) is interpreted as \the frequency up to which
control is e�ective" then the rules partly apply also to
feedforward control. Rules 5 and 6 on time delay and
RHP-zero must be modi�ed by replacing g(s)gm(s)
by gd(s)�1g(s)gmd(s). This follows by considering
the ideal feedforward controller which yields ĝd = 0
in (7). We get

cidealf (s) = �gd(s)g�1(s)g�1
md(s) (8)

which should be stable and causal (contain no pre-
diction) to be realizable. Note that a delay in gd(s)
is an advantage for feedforward control (it gives the
feedforward controller more time to make the right
action).

Model uncertainty is a more serious problem for
feedforward than for feedback control because there
is no output measurement. Let the actual plant mod-
els be denoted g0, g0d and g

0
md. Then the actual distur-

bance response with the ideal feedforward controller
in (8) is (assuming that this controller is realizable)

y = g0u+ g0dd = g0d

�
1� gd

g0d

g0

g

g0md

gmd

�
| {z }

ĝ0

d

d (9)

The e�ectiveness of feedforward control is determined
by the ratio jĝ0dj=jg0dj. Ideally it is zero, but this re-
quires accurate models of g and gd as well as an accu-
rate measurement. For example, a 10% error in each
of these three may yield jĝ0dj=jg0dj = j1�1:1�1:1�1:1j=
0:33, that is, because of uncertainty the ideal feedfor-
ward controller removes only 67% of the disturbance

e�ect. If the ratio is larger than 1 at some frequency
(which may easily happen) then feedforward control
makes control worse.

Because of the sensitivity to model uncertainty
and because of the presence of unmeasured distur-
bances, feedforward control is usually combined with
feedback control. Assume that the feedforward con-
troller has already been designed. Then the control-
lability of the remaining feedback problem can be
analyzed using the above rules if gd(s) is replaced
by ĝd(s), where the latter denotes the e�ect of the
disturbance with the feedforward controller in place.
One should also include the expected model uncer-
tainty when evaluating ĝd as illustrated in Eq.9.

3 Application: Room heating

The objective of this section is to give a simple illus-
tration of how controllability analysis may be applied
to a practical example.

Consider the problem of maintaining a constant
room temperature. A heat balance yields the follow-
ing di�erential equation for the temperature T in the
room d

dt
(CV T ) = Q+ k(To � T ) (10)

Here Q [W] is the heat input, To is the outdoor tem-
perature, and the term k(To � T ) [W] represents the
heat loss due to heat conduction through the walls
or due to in
ow of fresh air 1. Consider a case where
the heat input Q is 2000W and the di�erence be-
tween indoor and outdoor temperature T � To is
20K. Then the steady-state energy balance yields
k = 2000=20 = 100 W/K.

Let the heat capacity be CV = 100 kJ/K 2. On in-
troducing deviation variables and taking the Laplace
transform we get

�T (s) =
1

�s+ 1

�
1

k
�Q(s) + �To(s)

�
; � =

CV

k
(11)

The time constant for this example is � = 100 �
103=100 = 1000s = 17 min which seems reasonable
(for a step increase in heat input it will take about 17
min for the temperature to reach 63% of its steady-
state increase).

Problem statement. Feedback control should be
used to maintain approximately constant room tem-
perature. The measurement delay for T is � = 100s.

1The heat loss may be represented by qcP (To � T ) +
UA(To � T ) where the �rst term represents the convective
heat transfer (di�erence in energy of in
ow and out
ow of
air) and the second term represents the heat loss through the
walls and windows. Thus k = qcp + UA, where q [kg/s] is the

owrate, cp [J/ kg,K] is the heat capacity, U [W/m2,K] is the
heat transfer coe�cient, and A [m2] is the wall area.

2The value CV=100 kJ/K corresponds approximately to
the heat capacity of air in a room of about 100 m3. Thus we
neglect heat accumulation in the walls.
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Figure 2: Frequency responses for room heating ex-
ample
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Figure 3: Feedback control for room heating example
using PID controller. Step disturbance in outdoor
temperature.

Assume the acceptable variations in room tempera-
ture are �1K, i.e., Tmax = 1K. Furthermore, assume
that heat input can vary between 0 W and 4000 W,
i.e., the heat input is 2000� 2000W so Qmax = 2000
W. Finally, the expected variations in outdoor tem-
perature are �10 K, i.e, Tomax = 10 K.

� Is the process controllable with respect to dis-
turbances?

� Is the process controllable with respect to set-
point changes3 of magnitude �3 K when the
desired response time for setpoint changes is
�r = 1000 s (17min) ?

3The setpoint change may be due to a desired increase in
temperature when we come home from work or get up in the
morning.

Figure 4: Feedback control for room heating example
using PID controller. Setpoint change 3=(150s+1).

Solution. A critical part of the controllability
analysis is scaling, and we introduce the following
scaled variables

y = �T=1K; u = �Q=2000W; d = �T0=10K
(12)

The model in terms of scaled variables then becomes

y = g(s)u + gd(s)d (13)

g(s) =
20

1000s+ 1
; gd(s) =

10

1000s+ 1
(14)

The frequency responses of these transfer functions
are shown in Fig. 2.

1. Disturbances. From Rule 1 feedback control
is necessary up to the frequency !d = 10=1000 =
0:01 rad/s, where jgdj crosses 1 in magnitude (!B >
!d). This is exactly the same frequency as the upper
bound given by the delay, 1=� = 0:01 rad/s (!B <
1=�). We therefore conclude that the system is barely
controllable for this disturbance. From Rule 3 no
problems with input constraints are expected since
jgj > gdj at all frequencies. These conclusions are
supported by the closed-loop simulation in Fig. 3 for
a unit step disturbance (corresponding to a sudden
10 K increase in the outdoor temperature) using a
PID-controller

c(s) = Kc
1 + �Is

�s

�Ds + 1

0:1�Ds+ 1

with Kc = 0:4 (scaled variables), �I = 200s, �D =
60s. The output error exceeds its allowed value of
1 for a very short time after about 100 s, but then
returns quite quickly to zero. The input goes down
to about -0.8 and thus remains within its allowed
bound of �1.

2. Setpoints. The plant is also controllable with
respect to the desired setpoint changes. First, the
delay is 100s which is much smaller than the de-
sired response time of 1000s, and thus poses no prob-
lem. Second, jg(j!)j � Rmax = 3 up to about
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! = 0:007 [rad/s] which is signi�cantly higher than
the required wr = 1=�r = 0:001 [rad/s]. This means
that input constraints pose no problem. In fact, we
should be able to achieve response times of about
1=0:007 = 150s without reaching input constraints.
This is con�rmed by the simulation in Fig.4 for a
desired setpoint change 3=(150s+ 1) using the same
PID controller as above.

4 Design of bu�er tanks.

Bu�er tanks are frequently used in the process in-
dustry to dampen disturbances in temperature, con-
centration and 
ow. For \quality" (e.g., tempera-
ture and concentration) disturbances the idea is to
dampen high-frequency disturbances by use of a well-
mixed tank, and level control is not important. For

owrate disturbances the level control is used ac-
tively to dampen the disturbance and mixing is not
important. Of course, it is possible to use the same
tank for both kinds of disturbances - design of the
tank must then be based on the most di�cult distur-
bance from a control point of view.

Although bu�er tanks are often introduced for
control purposes, they are usually sized in a rather
ad hoc manner without explicitly considering the ex-
pected disturbances and desired control objectives.
Fortunately, the results on controllability with re-
spect to disturbances presented in this paper, provide
the basis for a quantitative approach.

To design the bu�er tank consider the control-
lability of the plant when the disturbance transfer
function gd(s) is replaced by

ĝd(s) = gd(s)h(s) (15)

where h(s) represents the transfer function for the
bu�er tank(s). Presumably, the controllability is not
acceptable without the bu�er tank (i.e., with h(s) =
1), that is, the e�ect of the disturbance is too large
such that, either the required speed of response is
not achievable (typically due to a process delay �),
or the required inputs to reject the disturbance are
too large.

The objective of the bu�er tank is then to dampen
the disturbance such that:

1. The required speed of response is achievable,
for example, for a process delay � we must re-
quire

jĝd(j!�)j � 1; !�
def
= 1=� (16)

More speci�cally, it must be possible to design
a control system such that jL(j!)j > jĝd(j!)j)
for all frequencies where jĝd(j!)j > 1. And
conversely, if we have a control system with a
given bandwidth !B , then we must have

jĝd(j!)j � 1; 8! > !B (17)

where condition (16) is a special case of condi-
tion (17) which follows since !B < !�.
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Figure 5: Frequency responses for n tanks in series
with total residence time �h, hn(s) = 1=( �hn s + 1)n.

2. Input constraints cause no problem, that is

jg(j!)j � jĝd(j!)j; 8! where jĝd(j!)j > 1
(18)

where !̂d is the frequency where jĝd(j!̂d)j = 1.

That is, h(s) should be selected such that require-
ments (17) and (18) are satis�ed. Although this is
rather straightforward, we consider it in some detail
because it yields some rather interesting results.

We shall �rst consider design of bu�er tanks for
\quality" disturbances (temperature and concentra-
tion) and then consider 
ow rate disturbances. The
main di�erence between these cases is that for qual-
ity disturbances h(s) has to be a series of �rst-order
lags, whereas for 
owrate disturbances one may use
the level controller to get a desired h(s).

4.1 Quality disturbances.

Consider a tank with constant volume V [m3] and
with an inlet and outlet 
owrate q [m3/s]. Let cin
denote the inlet concentration or temperature to the
tank, and c the corresponding value in the outlet
stream. A material or energy balance for a perfectly
mixed tank yields

V
dc

dt
= qcin � qc (19)

The transfer function for one tank then becomes

c(s) = h1(s)cin(s); h1(s) =
1

�hs+ 1
(20)

where �h = V=q [s] is the residence time in the tank
(the subscript h denotes holdup). For n equal tanks
in series with total residence time �h and total volume
V , h1(s) is replaced by

hn(s) = 1=(
�h
n
s + 1)n (21)

Typical frequency responses are presented in Fig-
ure 5. We have that jhn(j!)j � 1 at frequencies w <
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n=�h, that is, the bu�er tanks are only e�ective for re-
ducing the e�ect of disturbances at frequencies higher
than the residence time of the individual tanks. The
high-frequency asymptote is jh(j!)j � ( n�h )

n so for
rejecting high-frequency disturbances it is best to use
many tanks if the objective is to minimize the to-
tal volume (actually, at intermediate frequencies we
see from Fig.5 that there is a small frequency range
where fewer tanks is slightly better). However, in
practice we want to reduce the total cost and not the
total volume, and this favors using fewer tanks.

The design of the bu�er tank(s) now depends on
which of the two requirements (17) and (18) is most
di�cult to satisfy.

The speed of response is the problem.

In this case the disturbance e�ect, jgdj, is too large
such that it is not possible to make jLj > jgdj at all
frequencies where jgdj is larger than 1.

In most cases this means that jgdj is larger than
1 at frequencies beyond the (achievable) bandwidth,
!B. Thus, in this case the objective of the bu�er
tanks is to make the curve for jĝdj cross 1 in magni-
tude before the bandwidth frequency !B. Thus, we
need to select h(s) such that

jhn(j!B)j � jgd(j!B)j � 1 (22)

Introduce the factor by which the e�ect of the dis-
turbance must be reduced

f = jgd(j!B)j (23)

We must at least require jhn(j!B)j = 1=f . This may
be solved graphically using Fig.5. Alternatively, for
n equal tanks in series Eq.(21) yields the required
total residence time

�h = n
p
f2=n � 1=!B (24)

The optimal number of tanks can then be found by
taking into account cost for equipment, piping, con-
trol systems (each tank may require a level controller),
etc.

If the bandwidth is limited by a delay we have

�h = n�
p
f2=n � 1 (25)

where � is the total delay in the feedback loop. As
an example, for f = 10 we get

No: of tanks; n 1 2 3 4
Total residence time;�h 9:94� 6:00� 5:72� 5:88�

In this case the smallest total volume is obtained with
3 tanks, but with 2 tanks the required volume is only
4% larger and is clearly preferable. In practice one
would probably prefer to use only 1 tank which has
66% larger total volume, but which saves additional
equipment.

Remarks.

1. From (24) we �nd for large values of f (i.e.,
f2=n >> 1) the following limiting value for the total
residence time

�h � n�f1=n (26)
Thus, with one tank the residence time should be
approximately equal to �f .

2. For many bu�er tanks the resulting transfer
function ĝd(s) = g(s)h(s) may be of high order, and
it may be di�cult to have su�ciently high rollo�
in the loop transfer function L(s) to get jL(j!)j >
jgd(j!) at frequencies lower than the bandwidth (al-
though we are able to achieve this at the bandwidth,
i.e., at ! = !B). The problem is that a high roll-o�
in L(s) yields a large phase lag, and we get stabil-
ity problems. This implies that the above analysis,
which was based on considering the frequency !B
only, may be optimistic, in particular when there are
many tanks in series (n is large). For example, with
n = 2 a step disturbance may a�ect the output in a
parabolic fashion (increases proportionally to t2 ini-
tially), or possible even worse, and we understand
intuitively that it may be di�cult for the controller
to react su�ciently fast.

Constraints is the problem

In this case the disturbance e�ect, jgdj, is too large
such that we have jgj < jgdj at some frequencies
where jgdj is larger than 1.

First, the bu�er tanks do not a�ect the steady-
state, so we must require that jg(0)j > jgd(0)j. Now,
consider higher frequencies and let !e be the fre-
quency where jgj = jgdj > 1. The objective of the
bu�er tanks in this case is to make jĝdj smaller than
jgj in the frequency range from !e to !̂d.

The following procedure may be used to achieve
this: Let ne > 0 be the di�erence in the slope of
jgdj and jgj (on a log-log plot) at frequency !e. As-
sume that the di�erence in slopes remains constant
or decreases in the frequency range from !e to the
frequency where jgj = 1. Select the number of tanks
n equal to ne, and select the holdup of the individ-
ual tanks as 1=!e, that is, select the overall residence
time as �h = ne=!e.

Example. Let

g(s) =
200

(55900s+ 1)(89:4s+ 1)

gd(s) =
100(5000s+ 1)

(55900s+ 1)(89:4s+ 1)

We �nd in this case !e = 200
100�5000 = 0:0004 [rad/s]

(using asymptotic values) and ne = 0 � (�1) = 1,
and the di�erence in slopes remains constant at high
frequencies. To reduce the e�ect of the disturbance
to an acceptable level such that input constraints are
avoided, we then need ne = 1 bu�er tank with resi-
dence time 1=!e = 2500s = 0.7h.
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Figure 6: Use of slow level control to dampen

owrate disturbance.

Problems for the reader.

1. The e�ect of a concentration disturbance must be
reduced by a factor of 100 at the frequency 0.5
rad/min. The disturbances should be dampened
by use of bu�er tanks and the objective is to min-
imize the total volume. How many tanks in series
should one have? What is the total residence time?

2. The feed to a distillation column has large vari-
ations in concentration and the use of one bu�er
tank is suggest to dampen these. The e�ect of the
feed concentration d on the product composition y
is given by (scaled variables, time in minutes)

gd(s) = e�s=3s (27)

(that is, after a step in d the output y will, after an
initial delay of 1 min, increase in a ramplike fashion
and reach its maximum allowed value (which is 1)
after another 3 minutes). Feedback control should
be used and there is a additional measurement de-
lay of 5 min. What should the residence time in
the tank be?

3. Show that in terms of minimizing the total volume
it is optimal to have bu�er tanks of equal size.

4. Is there any reason to have bu�er tanks in parallel
(they must not be of equal size because then one
may simply combine them) ?

5. What about parallel pipes in series (pure delay). Is
this a good idea?

4.2 Flow rate disturbances

Flowrate disturbances may be dampened by use of a
slow level controller as illustrated in Fig. 6. Let V
[m3] denote the volume of the bu�er tank and let qin
and q [m3/s] be the inlet and outlet 
owrates. The
dynamic model for the tank and the level control
system is

V (s) =
1

s
(qin(s) � q(s)); q(s) = c(s)V (s) (28)

where c(s) is the transfer function of the level con-
troller (includingmeasurement and actuator devices).
We get

V (s) =
1

s + c(s)
qin(s) (29)

and the transfer function of interest becomes

q(s) = h(s)qin(s); h(s) =
c(s)

s + c(s)
(30)

For 
owrate disturbances we have more freedom
in selecting h(s) (as compared to quality disturbances)
because we can select the algorithm for the level con-
troller, c(s). On the other hand, the level will vary so
the size of the tanks must be such that the level does
not reach constraints. The design of a bu�er tank for

owrate disturbances then consists of two steps

1. Design the level controller c(s) such that h(s)
has the desired shape, that is, such that (17)
and (18) are satis�ed.

2. Design the size of the tank such that the level
remains within the allowed range for the ex-
pected disturbances.

First-order �ltering

In many cases the desired h(s) has the shape

h(s) = 1=(�s + 1) (31)

and we see from (30) that the required controller is
a P-controller with gain Kc = 1=� . The response for
the volume in the tank is given by (29), that is, we
get V (s) = �

�s+1qin(s). This transfer function has
its largest value equal to � at low frequencies, and
if the inlet 
owrate varies within its full range �qin
(�100%), we get that the volume will vary within
��qin. This is in terms of deviation variables, and
the total volume of the tank should be 2�qin. We
then �nd, as one probably may expect, that the nom-
inal residence time in the tank, �h, should be equal
to the desired �lter time constant � .

Remark. In some cases one may want to add
a slow integral action to the controller to reset the
volume (level) to its nominal value, but this is not
always desired. For example, if qin is at its maximum
value, then we may want V to stay at a large value
to anticipate a possible large reduction in qin.

Second-order �ltering

Let the desired h(s) have the shape h(s) = 1
(�2s+1)2 .

We get from (30) that the required controller is a lag

c(s) = 1=(2�2)(
�2
2
s+ 1) (32)

The response for the volume in the tank is given by
(29), and we get that the transfer function V (s)=qin(s)
has its largest value equal to 2�2 at low frequencies.
If the inlet 
owrate varies within its full range �qin
(�100%), we get that the volume will vary within
�2�2qin. This is in terms of deviation variables, and
the total volume of the tank should be 4�qin. We
then �nd that the nominal residence time in the tank,
�h, should be equal to 2�2.

An equivalent way of getting second-order �lter-
ing is to use two tanks, each with a nominal residence
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Figure 7: pH-neutralization process.

time of �2, and each with a P-controller with gain
1=�2. Clearly, this is not a good approach since we
need two tanks with two level control systems, rather
than one tank twice the size with one level control
system. The only disadvantage in the latter case is
that we need to use a slightly more complicated con-
troller, as given by (32).

First-order versus second-order �ltering

We have so far not discussed what shape h(s) should
have (�rst-order, second-order, etc.). The choice of
h(s) parallels the discussion we had in the subsection
on quality disturbances, except that now we can get
a high-order h(s) with only one tank. This will favor
the use of a high-order h(s), at least for large values
of f . However, as mentioned in Remark 2 in the
section on quality disturbances, we must also take
into account that if h(s) is high order then we may
have problems of achieving jLj > jĝdj at frequencies
below the bandwidth.

5 Neutralization process

The derived controllability results are next applied
to a neutralization process, and we �nd that more
or less heuristic design rules given in the literature
follow directly. The key point is to consider distur-
bances and scale the variables properly. The idea for
this example came from the thesis of Walsh (1993).

One mixing tank. Consider the process in Fig-
ure 7 where a strong acid (pH= �1) is neutralized
by a strong base (pH=15) in a tank with volume V=
10 m3 to make q=0.01 m3/s of \salt water". The pH
in the product stream is adjusted to be in the range
7� 1 (\salt water") by manipulating the amount of
base, qB. The delay for the measurement of pH is
� = 10s. Details about the dynamic model are given
in Appendix 2. Introduce the excess of acid c [mol/l]
de�ned as

c = cH � cOH (33)

pHI

pHC
ACID BASE

Figure 8: Control of neutralization process using two
tanks.

Somewhat surprisingly, we �nd that in terms of c
the dynamic model, which is usually believed to be
strongly nonliner, is given by that of a simple mixing
process d

dt
(V c) = qAcA + qBcB � qc (34)

Introduce the following scaled variables

y =
c

10�6
; u =

qB
q�B

; d =
qA

0:5q�A
(35)

where superscript � denotes the steady-state value.
The appropriately scaled linear model then becomes
(see Appendix 2)

y =
kd

1 + �s
(�2u+ d); kd = 2:5 � 106 (36)

where � = V=q = 1000s. The output is extremely
sensitive to both u and d and the large gain is eas-
ily explained: A change d = 1 corresponds to a 50%
increase in the amount of acid which has a concentra-
tion of 10 mol/l of H+ (pH=-1). This increases the
amount of H+ in the product from 0 to 2.5 mol/l,
while the largest allowed amount of H+ in the prod-
uct is 10�6 mol/l (pH=6), thus the gain in terms of
scaled variables is kd = 2:5=10�6.

Input constraints do not pose a problem since
jgj = 2jgdj at all frequencies (Rule 3). T he main
control problem is the high disturbance sensitivity,
and from Rule 1 we �nd the frequency up to which
feedback is needed

!d � kd=� = 2500 rad=s (37)

This requires a response time of 1=2500 = 0:4 mil-
lisecond. However, there is a delay � = 10s so the
bandwidth must be less than !B < 1=� = 0:1 rad=s.
From the controllability analysis we therefore con-
clude that acceptable control using a single tank is
impossible.

Design change: Several tanks. The only way
to improve the controllability is by design changes.
The most useful change in this case is to do the neu-
tralization in several steps. This can be considered
as a special case of the bu�er tank example consid-
ered above: The acid and base is mixed and is then
send to one or more bu�er tanks, and the measured
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pH of the �nal stream is used to adjust the addition
of base, as is illustrated with two tanks in Figure 8.
The mixing process itself is assumed immediate so in
the following

gd(s) = kd (38)
and the objective is to �nd an appropriate h(s) =
1=(�s + 1)n such that the \new" process ĝd(s) =
gd(s)h(s) has acceptable controllability in terms of
having acceptable self-regulation. Here � is the resi-
dence time in each tank.

As noted the main control problem is a delay of
�= 10s, so we must design bu�er tanks which re-
duces the e�ect of the disturbance by a factor f =
jgd(j!1=�)j = kd = 2:5 � 106 at frequency !� = 1=�=
0.1 [rad/s]. The required total residence time, �h =
n� , is given by Eq.(24), and the corresponding total
volume is

V = �hq (39)
where q = 0:01 m3/s. From this we �nd that the
following designs have the same controllability with
respect to disturbance rejection:

No: of Total Volume
tanks volume each tank
n V [m3] [m3]

1 250000 250000
2 316 158
3 40:7 13:6
4 15:9 3:98
5 9:51 1:90
6 6:96 1:16
7 5:70 0:81

18 3:66 0:20

30 3:89 0:13

With one tank we need a volume corresponding to
that of the worlds largest ship to get acceptable con-
trollability. The minimum total volume is obtained
with 18 tanks of about 203 l each - giving a total
volume of 3.662 m3. However, taking into the ac-
count the additional cost for extra equipment such
as piping, mixing and level control, we would prob-
ably select a design with 3 or 4 neutralization tanks
for this example.
Remarks.

1. Further remarks on some of the practical as-
pects and comparison with previous work are found
in Skogestad (1994).

2. The use of several mixing tanks in series can
be compared to playing golf: It is almost impossible
to hit the hole with one stroke, but with 5 strokes or
more almost anyone can do it.

3. Traditionally, a \feedforward" approach has
been taken when considering controllability of such
processes, and one key argument has been that con-
trol is di�cult because on needs to adjust the amount

of base extremely accurately to counteract the dis-
turbance in the acid. This is a valid argument for
feedforward control, but not for feedback control as
the feedback control action will be able to adjust the
input accurately. As demonstrated above the key
problem for feedback control is that the output is
extremely sensitive to disturbances (kd and !d are
large), which requires an extremely high bandwidth.

4. Of course, feedforward control based on mea-
suring qA and cA can be used in addition to feed-
back to improve performance. According to McMil-
lan (1984) one can typically save one bu�er tank us-
ing a well designed feedforward controller.

5. The results given above compare well with
results by other authors. A simple shortcut method
given by McMillan (1984) is to use about one mixing
tank for each 2 units change in pH. For example, with
a pH change of 8, as in our example (from pH 15 to
7), four tanks is recommended.

6. For many tanks in series it is di�cult with
the control system in Figure 8 (one pH-controller)
to achieve jLj > jĝdj at frequencies below the band-
width, because ĝd drops sharply with frequency. To
get away from this problem one may select to control
the pH in each tank as is often done in practice.

6 Conclusions

Although bu�er tanks are often introduced for con-
trol purposes, they are usually sized in a rather ad
hoc manner without explicitly considering the ex-
pected disturbances and desired control objectives.
The simple results on controllability analysis with
respect to disturbances presented above provide the
basis for a quantitative approach.

To design the bu�er tank consider the controlla-
bility of the plant when the disturbance transfer func-
tion gd(s) is replaced by ĝd(s) = gd(s)h(s) where h(s)
represents the transfer function for the bu�er tank
(including the level control). That is, h(s) should
be selected such that requirements (17) and (18) are
satis�ed.

We also discussed in detail a ph-example where
the neutralization must be performed in several tanks
to get acceptable controllability.

The tools presented in this paper may be general-
ized to multivariable plants where directionality be-
comes a further crucial consideration. Some results
are given in Wol� et al. (1992) and Skogestad and
Wol� (1992). A direct generalization to decentral-
ized control of multivariable plants is given by Hovd
and Skogestad (1992).
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ity analysis. He also directed me to the paper of
Ziegler and Nichols (1943) who �rst introduced the
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term controllability in the control literature.
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Appendix. Neutralization model

Derivation of model: Consider Fig.7. Let cH [mol/l]
and cOH [mol/l] denote the concentration of H+ and
OH�-ions, respectively. Material balances for these
two species yield

d

dt
(V cH) = qAcH;A + qBcH;B � qcH + rV

d

dt
(V cOH ) = qAcOH;A + qBcOH;B � qcOH + rV

where r [mol/s,m3] is the rate for the reaction H2O =
H++OH� which for completely dissociated (\strong")
acids and bases is the only reaction in which H+

and OH� participate. We may eliminate r from the
equations by taking the di�erence to get a di�erential
equation in terms of the excess of acid, c = cH�cOH :

d

dt
(V c) = qAcA + qBcB � qc

This is the material balance for a mixing tank with-
out reaction. The reason is that the quantity c =
cH � cOH is not a�ected (invariant) by the reaction.
Note that c will take on negative values when pH is
above 7.

We are not interested in variations in the feed con-
centrations, cA and cB , so they are assumed constant.
Linearization and Laplace transformation yields

c(s) =
1

1 + �s

�
c�A � c�

q�
qA(s) +

c�B � c�

q�
qB(s)

�

where � = V=q� is the residence time and � is used
to denote steady-state values. To derive this we have
made use of the total material balance dV=dt = qA+
qB � q (alternatively one may assume V is constant
but this is not strictly necessary) and the correspond-
ing steady-state balance q�A + q�B = q�. We now in-
troduce the following scaled variables

y(s) =
c(s)

cmax
; d(s) =

qA(s)

qAmax
; u(s) =

qB(s)

qBmax

and get

y(s) =
1

�s+ 1

0
BBB@
c�A � c�

cmax
� qAmax

q�| {z }
kd

d(s) +
c�B � c�

cmax
� qBmax

q�| {z }
k

u(s)

1
CCCA

We use the following numbers: V= 10 m3, q�A =
q�B = 0:005 m3/s, q� = 0:01 m3/s, c�H;A = 10 mol/l

(corresponding to pH= �1 and cA = 10�10�15 � 10
mol/l), c�OH;B = 10 mol/l (corresponding to pH=15

and c�B = 10�15 � 10 � �10 mol/l), c� = 0 mol/l
(corresponding to pH=7), cmax = 10�6 � 10�8 �
10�6 mol/l (i.e., pH= 7 � 1), and qAmax = q�A=2 =
0:0025 m3/s, qBmax = q�B = 0:005 m3/s. Note from
the latter that the largest disturbance is �50% of
q�A, while the largest input is �100% of q�B. With
these values we get � = 1000 s, kd = 2:5 � 106 and
k = �5 � 106.
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