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Pairing Criteria for Decentralized Control of Unstable Plants 

Morten Hovd and Sigurd Skogestad’ 
Chemical Engineering, University of Trondheim-NTH, N-7034 Trondheim, Norway 

The widely used pairing criteria involving the Niederlinski index and the steady-state relative gain 
array (RGA) used for evaluating integrity under decentralized control are extended to  open-loop 
unstable plants i t  will in some cases be preferable to  choose pairings giving negative Niederlinski 
index and/or RGA. The  relationship between the two measures is also clarified. 

1. Introduction 
Decentralized control remains popular in the industry, 

despite developments of advanced controller synthesis 
procedures leading to full multivariable controllers. Some 
reasons for the continued popularity are the following: 

1. Decentralized controllers are easy to implement. 
2. They are easy for operators to understand. 
3. The operators can easily retune the controllers to 

take into account changing process conditions (as a result 
of 1 above). 
4. Some measurements or manipulated variables may 

fail. Tolerance of such failures is more easily incorporated 
into the design of decentralized controllers than full 
controllers. 

5. The control system can be brought gradually into 
service during process startup and taken gradually out of 
service during shutdown. 

The design of a decentralized control system consists of 
two main steps: 

Step 1 is the control structure selection, that is, pairing 
inputs and outputs. 

Step 2 is the design of a single-input single-output (SISO) 
controller for each loop. 

In this paper we consider the pairing problem (step 1). 
Selected pairings based on intuition and physical insight 

usually results in pairings for which the controlled and 
manipulated variables are close; i.e., the manipulated 
variable has a fast and direct effect on the controlled 
variable in open loop. Whereas such pairings may give 
good performance, interactions between the loops at  low 
frequencies may give rise to problems with integrity. 
Integrity means that the system remains stable as sub- 
system controllers are arbitrarily brought in and out of 
service and is defined more precisely next. 

Definition of integrity. Consider a plant G(s) and a 
controller C(s).  Then the closed-loop system possesses 
integrity i f  the controller C’(s) = AC(s) stabilizes the 
system for all 

(1) 

Normally, one requires the plant G(s)  to be stable as a 
prerequisite for integrity because the uncontrolled systems 
(corresponding to 6i = 0 in eq 1) may otherwise be unstable, 
for example, with C’(s) = 0. However, in this paper we 
will not consider the stability of the uncontrolled sub- 
systems, and we can then consider integrity also for 
unstable plants. 

A significant amount of work has been done on the choice 
of pairings for decentralized control of stable plants, e.g., 
Bristol(1966), Niederlinski (19711, McAvoy (19831, Gros- 

A = (diag(6i))6j E (O,l), i = 1, ..., n) 
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Figure 1. Block diagram of control system with a decentralized 
controller. 

didier and Morari (1986), and Skogestad and Morari 
(19881, to reference a few. Most of the proposed pairing 
criteria are steady-state conditions for achieving integrity 
assuming integral action. This is the case for the widely 
used conditions based on the relative gain array (RGA) 
(Bristol, 1966) and Niederlinski index ( N I )  (Niederlinski, 
19711, where in order to achieve integrity one must avoid 
pairings corresponding to negative steady-state values. 

However, these pairing criteria were derived for open- 
loop stable plants, and their application or relevance for 
open-loop unstable plants have not been clarified previ- 
ously. The objective of this paper is to generalize these 
“steady-state” pairing criteria to unstable plants. 

Remark: We will in this paper avoid the term “steady 
state” since a steady state does not exist for an unstable 
system in open loop. Instead we refer to conditions at  
zero frequency (w = 0 or s = 0), and use, for example, the 
term “RGA(0)” instead of “steady-state RGA”. 

2. Tools for Pairing Selection 

In the paper G(s) denotes a square n X n plant and C(s )  
the decentralized controller; see Figure 1. Without loss 
of generality we assume that C(s) is diagonal (after possibly 
rearranging the order of columns and rows in G(s)). We 
also assume that GC(s) contains integrators in all channels, 
and that C(s)  otherwise is stable. G may be unstable and 
we let P denote the number of unstable poles in the open 
right half plane (RHP), not counting poles a t  s = 0 
(integrators). Negative feedback is assumed throughout 
the paper, and we assume that G(s) C(s)  has no internal 
pole-zero cancellations in the right half plane. We then 
have that closed-loop stability is guaranteed if and only 
if (I + G(s) C(s))-’ has no RHP poles. The Laplace variable 
s will be dropped where it is not needed for clarity. 

We next define the Niederlinski index and the relative 
gain array where the rule for stable systems is to avoid 
pairings corresponding to negative steady-state values. 

Niederlinski Index. The Niederlinsk index, NI,  is 
defined as 

n 
N ~ ( s )  = det (G) lngi i  = det Gldet (2) 

i = l  

where 
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Proof: Trivial by noting that A = &!(I + &)-I = ( I  + 
The following lemma then follows directly from the 

multivariable Nyquist theorem. For completeness a proof 
is given in Appendix 1, but similar results, a t  least for 
stable plants, have been presented before (e.g., Grosdidier 
and Morari, 1986; Nwokah and Perez, 1991). 

Lemma 1. Let the number of open-loop unstable poles 
of G(s) C(s) and &(s) C(s) be P and P, respectively. 
Assume that the closed-loop system consisting of &s) 
C(s) is stable. Then the closed-loop system consisting of 
G(s) C(s) is stable i f  and only i f  

(10) 

where JV denotes the number clockwise encirclements of 
the origin as s traverses the Nyquist D contour. 

In other words, (10) says that for stability det(I + El?) 
must provide for the difference in the number of required 
encirclements between det(I + GC) and det(I + 0 0 .  If 
this is not the case, then at  least one of the systems 
consisting of GC or etC must be unstable. 

We will now see that information about what happens 
at  s = 0 may provide useful information about the number 
of encirclements. 

Lemma 2. Let the number of open-loop unstable poles 
(excluding poles at s = 0)  of G(s) C(s) and &s) C(s) be 
P and p ,  respectively. Assume that the controller C is 
such that &2 has integral action in all channels, and 
that the transferfunctions GCand GCarestrictlyproper. 
Then i f  

GC)-'etC. 

JV(det(I + El?)) = P - P 

/ 811 \ 

For later use let P denote the number of unstable poles 
in 6. Note that P is equal to the sum of unstable pole: 
in the diagonal elements of G(s). Thus in most cases P 
> P. 

Relative Gain Array. The RGA elements, Xij, are 
defined as follows 

hij(s) = gij[G-'lji (4) 

where [ G-llji represents the jith element of G-l. We have 
[G-']ji = cij/det(G) where cij = (-l)i+jdet(Gij) denotes the 
ijth cofactor of G, and Gij is obtained from G by removing 
row i and column j. In general, the RGA is computed as 
a function of frequency, but we shall mainly consider its 
value at  s = 0. 

We will here consider the diagonal RGA elements for 
which we derive 

gii det Gii 
det G = det G',,/det G (5) A&) = gii[G-'Iii = 

where 

gii 0 GIii = ( 0 Gii ) 
For later use let P i i  denote the number of unstable poles 

in G'iiz For plants with many inputs and outputs we usually 
have P > Pii > P. For example, consider a n X n plant 
G with a single unstable pole which appears in all the 
elements of G. In this case P = n, P i i  = 2, -i and P = 1. 
However, note that P i i  in general may be different for 
different loops i. 

For the special case of 2 X 2 plants we get 6 = G'ii, so 
Pii = P, and we also see from (2) and (5) that N I  = l/Xii. 
Consequently, for 2 X 2 plants the RGA and N I  contain 
the same information. At  the end of the paper we shall 
discuss how they differ. 

3. Nyquist Stability Condition 
We showed above that NI(s)  = det G/det B and hii(s) 

= det G'iJdet G, that is, both the N I  and the RGA elements 
are given by the ratio of two determinants, one involving 
the plant model (G) and one involving some "alternative" 
model (6 or G'ii). The following derivation makes it 
possible to derive the results for these two measures in a 
unified manner. 

Let & denote some alternative model of the plant G. 
Throughout this paper we assume that both that both of 
the square matrices G(0) and Q(0) are nonsingular. 
Introduce the complementary sensitivity function in terms 
of et 

a = &(I+ GC)-l (7) 

and the relative uerror" 

E = (G - &)et-' (8) 

Then the following factorization applies (e.g., Grosdidier 
and Morari, 1986) 

(9) ( I  + GC) = (I + E m ( I  + OC) 

at least one of the following instabilities will occur: (a )  
the closed-loop system consisting of GC is unstable; (b)  
the closed-loop system consisting of &! is unstable. 

Proof: For stability of both ( I  + GC)-' and (I + cfC)-' 
we know from lemma 1 that det(I + E(s) a(s)) needs to 
encircle the origin P - P times as s traverses the Nyquist 
D contour. A'(0) = I  because of the requirement for integral 
action in all channels of QC. Also, since GC and etC are 
strictly proper, E R  is strictly proper, and hence E(s) A'(s) - 0 as s - a. We therefore have 

lim det(I + E(s) A'(s)) = 1 (12) 

lim det(I+ E(s) a(s)) = lim det(G(s) 0%)) (13) 

Thus, the map of det(I+ El?) starts a t  det G(O)/det e ( 0 )  
(for s = 0) and ends at  1 (for s = a). A more careful 
analysis of the Nyquist plot reveals that the number of 
encirclements will be even for det G(O)/det b ( 0 )  > 0, and 
off for det G(O)/det &O) < 0. Thus, if this parity (odd or 
even) does not match that of P - P we will get instability, 
and the theorem follows. 

8-m 

E-0 8 4  

Remarks: 
1. Lemmas 1 and 2 are not restricted to decentralized 

control, but their interpretation in terms of RGA and 
Niederlinski index given in the next section are. 

2. The results in the next section follow directly from 
lemma 2 since det G(O)/det 6 ( 0 )  = NI(O) and det G(O)/det 
G'ji(0) = l/Xii(O). 

4. Pairing Criteria for Unstable Plants 
Theorem 1: Niederlinski Index. Let the number of 

open-loop unstable poles (excluding poles at s = 0) of 
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G(s)  and 6(s) = d i a g ~ g u ( s ) ~ z ~ ( s ) ,  ...$,,( s ) ~  be P and P, 
respectively. Assume that the controller C is such that 
6 C  has integral action in all channels and is otherwise 
stable, and assume that GC is strictly proper. Then i f  

NI(0) { >o fo rP -Podd  (14) 

at least one of the following instabilities will occur: 
(a) (I + GI?)-’ is unstable, that is, the overall system 

is unstable. 
( b )  (I + & ! ) - I  is unstable, that is, for decentralized 

control at least one of the loops is unstable by itself. 
Proof Let 0 = 6 in lemma 2 and use the definition 

of NI in (2). 
Remarks: 
1. Theorem 2 is a direct generalization of the Nieder- 

linski pairing criterion (see theorem 3 in Grosdidier et al. 
(1985)) to unstable lants. 

index is the inverse of the PRGA matrix introduced by 
Hovd and Skogestad (1992). The diagonal elements of 
the PRGA are identical to the diagonal elements of the 
RGA. 

Theorem 2: Relative Gain Array. Let the number 
of open-loop unstable poles (excluding poles at s = 0)  of 
G(s)  and G’ii(s) diag{gii(s),G”(s)) be P and Pii, respec- 
tively. Assume that the decentralized controller C is such 
that G’iiC has integral action in all channels and is 
otherwise stable, and assume that GC is strictly proper. 
Then if Xii(0) has the “wrong” sign, that is, i f  

< 0 for Pii - P even 
Xii(0) { >o for Pii - P odd 

NI(O) has the “wrongn sign, that is, i f  

<o for P - P even 

2. The matrix G B -l which appears in the Niederlinski 

(15) 

at least one of the following instabilities will occur: 

unstable. 
(a )  The overall system is unstable; Le., (I + G O 1  is 

(b)  Loopiisunstablebyitself;i.e., (1 +giici)-’isunstable. 
( c )  The system is unstable as loop i is removed; Le., 

(I + GiiCii)-’ is unstable. 
Proof Let 0 = G’ii in lemma 2 and use the definition 

of RGA in (5). 
Remarks: 
1. All of these instabilities are undesirable. Of course, 

the worst is that the overall system is unstable. The last 
possibility for instability is also most undesirable. It will 
imply instability of the system should loop i become 
inactive, for example, due to input saturation (in which 
case ui is constant). 
2. Theorem 2 is a direct generalization of the widely 

used RGA pairing criterion (see theorem 6 in Grosdidier 
et al. (1985)) to unstable plants. 
3. Pii is equal to the sum of unstable poles in gii and 

4. For 2 X 2 plantsN~(O) = l/hii(O), but for larger systems 
the measures contain different information. Specifically, 
consider a plant of size 3 X 3 or larger where the overall 
closed-loop system (consisting of GC) is stable. Then if 
Xii(0) has the wrong sign, we know that loop i by itself is 
unstable or that the system with loop i removed is unstable, 
both of which are undesirable. Thus, pairing such that 
hii(0) has the wrong sign does not necessarily mean that 
any of the individual loops are unstable. On the other 
hand, if NI(O) has the wrong sign, we know that (at least) 
one of the individual loops are unstable. 
5. Since Xii(0) and NI(O) contain different information 

for plants larger than 2 X 2, we may have cases where all 

Gii. 

hii(0)’s ( i  = 1, ..., n)  have the right sign, whereas NI(O) has 
the wrong sign, and vice versa. 

Summary of Pairing Rules for Integrity. For stable 
plants one should select pairings corresponding to positive 
values of the Niederlinski index and RGA(0). 

For the special case of a n X n plant with one unstable 
pole which appears in all the elements of G(s),  we have 
P = n and P‘ii = 2. In this case theorems 1 and 2 yield (1) 
selection of a set of pairings such that NI(O) is positive if 
n is odd and negative if n is even and (2) pair on negative 
RGA elements (i.e., hii(0) < 0). 

For the special case of a n X n plant with P unstable 
oles which appear in all the elements of G(s) ,  we have 5 = nP and Pii = 2P. In this case theorems 1 and 2 yield 

(1) selection of a set of pairings such that NI(0) is positive 
if ( n  - l)P is even and negative if ( n  - l)P is odd and (2) 
pair on positive RGA elements (i.e., Xii(0) > 0) if P is even 
and on negative RGA elements if P is odd. 

5. Examples 
Consider a 2 X 2 plant with one unstable pole 

2s-18 1 

L-s+ 1) (0.5~+ 1) (-S+ 1) (O&+ ld 
It may not be obvious the there is only one unstable pole, 
but a minimal state space realization shows that this is 
the case, i.e., P = 1, For 6 we get P = 2 because the RHP 
pole appears in both diagonal elements of G. 

A t s  = 0 we get 

The pairing ( y 1  - u1, yz - UZ) indicated by (17) we term 
“pairing l”, and the opposite pairing we term “pairing 2”. 
We get for pairing 1 the RGA matrix and the Niederlinski 
index 

A(0) = ); NI(0) = -8 1.13 -0.13 
Since both the diagonal RGA elements and the Nieder- 
linski index are negative for pairing 1, from the conven- 
tional pairing rules we would prefer pairing 2. However, 
from both theorem 1 and theorem 2 we know that some 
kind of undesirable instability will occur for pairing 2. On 
this basis pairing 1, which corresponds to pairing on 
negative values of NI(O) and RGA(O), is preferable. 

Nyquist plots. For pairing 1 we use the controllers 

s + l  (s + l)(O.lS + 1) 
s(O.0ls + 1) cl(s) = - - , C Z W  = - S 

Figure 2 shows Nyquist plots of 1 + gllc1,l + gzzcz, and 
I + EH& for this choice. We find that 1 + gllcl and 1 + 
g22c2 each make one counterclockwise encirclement of the 
origin (there seem to be two when negative frequencies 
are included, but one of them comes from the integrator) 
and we get from the Nyquist stability criterion that the 
individual loops are stable. Furthermore, det(I + E“) 
makes one clockwise encirclement of the origin, which is 
equal to P - P, and the system is closed-loop stable 
according to lemma 1. This confirms the predictions based 
on the Niederlinski index and RGA(0). 

Comment. It may be of interest to check the result 
using the Nyquist stability condition. From (9) we have 
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Figure 2. Example 1. Nyquist plots for 1 + g11c1, 1 + g~c2,  and 
det(Z+E&). The arrowsshowthedirectionofincrsasingfrequency. 
Only positive frequencies are shown. 

n 

det(1+ GC) = det(1+ E @ n ( 1  + giici) 

and the number of clockwise encirclements of the origin 
for det(1 + GC) is therefore N(det(1 + GC)) = +1 - 1 - 
1 = -1 = -P, and the system is stable according to the 
generalized Nyquist stability theorem. 

Example 2. Consider a CSTR in which the exothermic 
reaction A - B takes place. Heat is removed from the 
CSTR by external cooling. It is desired to control the 
concentration of component A, CA, the concentration of 
component B, CB, and the temperature T. Available 
manipulated variables are the feed flow rate, F, the 
concentration of component A in the feed, CAF, and the 
cooling water temperature, Tc. The nonlinear model is 
given in Appendix 2. After linearization, the following 
model is obtained: 

-0.1562 0 -0.01553 .=[ 0.0562 -0.1000 0.01553 x + 
0.7803 0 0.07958 

F l  

-0.1124 u (18) 
0.1Ooo 0.1122 

-0.2000 
where x = [CA CB TIT and u = [Tc CAF FIT. The eigenvalues 
of A are -0.100, -0.081, and 0.004, and we find that there 
is one unstable pole, i.e., P = 1. All three states are 
measured, i.e., y = x ,  and we get 

1.80 25.57 18.71 

1 
[: 0 

1 

1 0.0361 0 

G(0) = -1.80 -24.57 -18.71 ; 
-18.12 -250.74 -180.96 [ -34.0 25.6 9.41 

26.1 -0.1 -25.0 
A(0) = 8.9 -24.5 16.6 (19) 

Conuentional pairing. Conventional pairing rules for 
stable plants would indicate the pairing T - Tc, CB - F, 
CA - cm, to be preferable, since this is the only pairing 
corresponding to all positive RGA’s, and the value of the 
Niederlinski index for this pairing is 0.015. This choice 
of pairings also happens to makes sense from a physical 
point of view and corresponds to RGA close to the identity 
matrix a t  high frequency. 

[ 

I O 2  i 

10.41’. . . . . . .  1 . . . . . . . .  . .  . .  
1 oJ 1 0 ’ ~  1 o‘2 10’’ 1 o‘ 10’ 

Frequency [radlrnin] 

Figure 3. Example 2. Singular values of the sensitivity function, 
oi(S), with the ‘conventional pairing” (solid) and the ‘pairing for 
integrity” (dashed). 

However, the plant has one unstable pole, which appears 
in all elements of the transfer function matrix, and 
therefore P = 3 for all pairings, Pii = 2 for all loops for 
all pairings, and integrity considerations require pairing 
on a positive Niederlinski index, but negative RGA’s. In 
particular, theorem 2 tells us that with the “conventional” 
pairing, we will have an integrity problem either where 
the overall system is unstable, or where one of the loops 
is unstable by itself, or where the system becomes unstable 
as one of the loops is removed. Nevertheless, in a practical 
situation, this pairing may be preferable, because it may 
yield better closed-loop performance with all loops closed. 
Thus, a choice may have to be made between performance 
and integrity. We shall return to this point in the 
discussion. 

Pairing for integrity. The only pairing fulfilling the 
requirement of pairing on negative RGA elements is CA - 
Tc (loop l), CB - CAF (loop 21, T - F (loop 3), which in 
addition to having negative RGA’s has a Niederlinski index 
of 0.0016. 

For this pairing we may use the controllers 

200s + 1 , c3 = 0.04- 150s + 1. c1 = -5-. 125s + 1, c p  = 0.3 
125s 150s 200s 

With these controllers we find (1) the overall system is 
stable, (2) each loop by itself is stable (Le., each loop 
stabilizes the plant), and (3) the system remains stable as 
one of the loops is taken out of service (i.e., due to input 
saturation). 

Thus we have stability in all seven cases, which may be 
confirmed by computing the closed-loop poles for the 
overall 3 X 3 system, the three 2 X 2 subsystems, and the 
three single loops. Note that in this case closing any one 
of the three single loops will stabilize the overall system. 
Thus, the only situation for which we do not have stability 
is the C(s) = 0. 

However, the resulting closed-loop performance with 
this controller is poor as is illustrated by the singular values 
of the sensitivity function in Figure 3 (dashed lines). We 
note that the speed of response in the worst direction is 
very slow (time constant about lo4 min), in spite of the 
fact that the sensitivity function has a peak value larger 
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than 10. No attempt has been made at  optimizing closed- 
loop performance, but it appears difficult to improve close- 
loop performance while maintaining stability of the 
individual loops. 

6. Discussion 

RGA as a Special Case of the  Niederlinski Index. 
As discussed above, the Niederlinski index, NI(O), and the 
RGA elements, hii(O), contain different information for n 
X n plants with n L 3. Nevertheless, it is clear from (2) 
and (5) that the two quantities are closely related, and we 
will show that if we consider the Niederlinski index also 
of the subsystems then the RGA is strictly not needed. 

Define the Niederlinski index for subsystem ii (that is, 
with loop i removed) as 

Nf;'(s) = deg(Gii)/ngjj 
IZI  

(21) 

Then we get from (2) and (5) 

Xii = N;'/N, (22) 

(this expression applies to the diagonal RGA elements, 
and not to the off-diagonal ones). It is then clear that if 
we evaluate the Niederlinski index also of the subsystems 
then we will have all the information given by the diagonal 
RGA elements (and more). 

Still, the RGA matrix is very useful because it has nice 
algebraic properties, since it can be evaluated once for all 
possible choices of pairings (if one computes the entire 
RGA matrix and not only the diagonal elements), and 
because one can often with one "glance" decide on an 
appropriate set of pairings. 

Integrity versus Performance. Above we derived 
conditions for integrity in terms of the Niederlinski index 
and RGA at  s = 0 (theorems 1 and 2). However, the 
feedback control properties are mainly determined by the 
model behavior a t  frequencies corresponding to the closed- 
loop bandwidth, and in most cases one prefers to pair on 
variables "close to each other", which normally corresponds 
to RGA close to the identity matrix a t  high frequency. If 
the pairing criterions at  low and high frequency agree, 
then there is no problem. However, as illustrated in 
example 2 there may be cases where a trade-off has to be 
made between integrity and performance. 

For the specific case in example 2 it is likely that 
performance considerations may be more important, such 
that one would sacrifice integrity and select the "conven- 
tional pairing" which corresponds to pairing on RGA 
elements with the wrong sign. However, also in this case 
the results presented in this paper may provide useful 
information. Assume we close the three loops sequentially. 
In generally, it is reasonable to first stabilize the plant and 
close a loop where it is unlikely that the measurement will 
fail or the actuator will saturate. Assume in this case that 
we select the temperature loop, T - TC (loop 1). This 
loop is then closed that it is stable by itself. Next we 
select to close the loop C B  --F (loop 2) such that the overall 
2 X 2 system is stable. We recompute the RGA for the 
corresponding 2 X 2 plant (it cannot be obtained directly 
from the previous RGA matrix in eq 19) and find that it 
corresponds to pairing on a RGA value of 26, which is the 
"wrong" sign since there is one unstable pole. Thus, since 
loop 1 is stable by itself, and since the overall 2 X 2 system 
is stable, we have from theorem 2 that loop 2 must be 
unstable by itself. Finally, we close the loop CA - cm 
(loop 3 )  which corresponds to pairing on a positive RGA 

element in eq 19. This is again the "wrong" sign, and since 
the overall system is stable and the 2 X 2 system with loop 
3 removed is stable, we have that loop 3 must be unstable 
by itself. In conclusion, when we close the loops sequen- 
tially such that the system is stable after closing each loop, 
bothloops 2 and 3 are unstable by themselves. In addition, 
the remaining system when loop 1 is removed is unstable 
(this follows since loop 1 corresponds to pairing on a 
positive RGA-element ("wrong sign") in eq 19). These 
three instabilities all occur when loop 1 is removed, so if 
we can assure that loop 1 is always functioning, we can 
design a control system with no integrity problems. As an 
example, with the "conventional pairing" the following 
controllers yield a stable closed-loop system provided loop 
1 is in service: 

10s + 1 
10s 10s 1 os 

10s + 1 c,. = -4O1OS + '; cC2 = -1- cC3 = 1+ 

This controller is of the same complexity as the proposed 
controller for the "pairing for integrity" in eq 20, but gives 
far superior closed-loop performance, as can be seen from 
the solid lines in Figure 3. 

Decentralized Detuning. In this paper we have 
derived conditions for stability of subsystems (integrity) 
under decentralized integral control by use of the general- 
ized Nyquist condition in terms of the determinant, det(1 
+ GC). 

A related problem is detuning. The simplest case is 
when each loop is detuned by the same factor. We say 
that a system is detunable if the controller controller C' 
= 6C stabilizes the system for all 0 I 6 I 1 (clearly, the 
concept of detunability only applies to stable plants). In 
this case introducing det( l+ GC') = I I iA i ( l+  GC') proves 
useful. It yields the generalized Nyquist condition in terms 
of characteristic loci where for stability we consider the 
combined encirclements of the hi(GC)'s around the point 
-1/6. This leads to the results for integral controllability 
(IC) presented by Grosdidier et al. (1985; Theorem 7). 
(More precisely, a plant is IC if there exists a controller 
yielding a detunable system.) 

A further generalization to the case where each loop 
may be detuped independently leads to the notation of 
decentralized detunability (DD): A system possesses DD 
if the controller C' = AC stabilizes the system for all A 
= diag{61, ...,6J with 6i E [0,11. (For unstable plants one 
needs to place some additional restriction on the allowed 
detuning to get useful results, for example, by allowing 
detuning only of one loop a t  the time.) The related 
existence condition called decentralized integral control- 
lability (DIC) was introduced by Skogestad and Morari 
(1988,1992). (More precisely, a plant is DIC if there exists 
a controller yielding DD.) DIC may be shown to be 
equivalent to requiring D stability (Yu and Fan, 1990). 

Clearly, integrity is a prequisite for DD, and satisfying 
the conditions in terms of the sign of RGA and Niederlinski 
index a t  s = 0 (theorems 1 and 2) is a prerequisite for DIC. 
Loosely speaking, one can say that the RGA and Nied- 
erlinski index provide a means of checking "corner values" 
of the DIC condition. 

7. Conclusions 

The pairing criteria based on the Niederlinski index 
and RGA for systems under decentralized integral control 
have been generalized to hold for open-loop unstable plants 
(theorems 1 and 2). 
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From (9) and the fact det(AB) = det Aodet B we then get 

N(det( l+ GC)) = N(det(1 + E@) + N(det(1 + CC))  
(26) 

By evaluating the Niederlinski index of the subsystems 
the RGA is strictly not needed (eq 22), but in practical use 
the RGA matrix is still very useful. 

Nomenclature 
C = controller transfer function matrix 
ci = iith element of controller C (for diagonal C) 

G = plant transfer function matrix 
C: = simplified or alternative model for G 
G” = G with row i and column i deleted 
6 = matrix consisting of the diagonal elements of G, diag(gii), 

G’i; = diag{ggii,Giii 
gij = ijth element of C 
I? = complementary sensitivity matrix corresponding to &, 

B = matrix of complementary sensitivity functions for 

N I  = Niederlinski index, det G(O)/ngii(O) 
P = number of open loop unstable poles of GC 
?‘ = number of open loop unstable poles of I% 
P = number of open loop unstable poles of &! 
Pi; = number of open loop unstable poles of G’i;C 
RGA = relative gain array matrix, G X [G-’IT, X denotes 

S = sensitivity function, (I + GC)” 
s = Laplace variable 
Greek Symbols 
Xi = ith eigenvalue 
X;j = ijth element of RGA 

E = (G - Cty2-1 

i = l , n  

& C ( I +  CtC)-’ 

individual loops, 6 C ( I +  &)-l 

element-by-element multiplication 

Appendix 1 

Proof of Lemma 1. Let us first state the multivariable 
Nyquist theorem. 

Theorem 3: The Multivariable Nyquist Theorem. 
Let NN(f(s)) denote the number of clockwise encirclements 
of the map of the Nyquist D contour under the function 
f ( s ) .  Let the number of open loop unstable poles of G(s) 
C(s) be P. Then the closed loop system is stable i f  and 
only i f  

N(det ( l+  GC)) = -P (24) 

Proof The theorem has been proved several times; see 
Maciejowski (1989). 

Remarks: 
1. In this paper we define “unstable poles” or “RHP 

poles” as poles in the open RHP, excluding the jw-axis. 
2. The Nyquist D contour follows the jw-axis and 

encircles the entire RHP, but must avoid locations where 
f ( s )  has poles. This means that the Nyquist D contour 
should make an indentation into the RHP at  locations 
where f (s)  hasjw-axis poles (alternatively one may replace 
term l/s by l/(s + e) where t is a small positive number). 
In practice, this is not a problem in this paper, since the 
function we consider, f (s)  = det(1 + E(s) l?(s)), does not 
generally have jw-axis poles. For the encirclements of the 
product of two functions we have 

Lemma 1 now follows from theorem 3 and (26). 

Appendix 2 

The model for the CSTR in the example is given by 

F _ -  dCB - - c  - + r  dt  BV 

where the rate of reaction, r,  is given by 

r = kCAe-E/RT (30) 

C A  = 10 kmol/m3, c, = 15.61 kmol/m3, C B  = 5.62 kmol/m3, 
C, = 1.8 kJ/(kg K), AH = -20 000 kJ/kmol, E = 80 000 
kJ/kmol, F = 5 m3/min, R = 8.314 kJ/(kg K), T = 590 K, 
Tc = 401.6 K, TF = 580 K, hA = 2600 kJ/(min K), k = 
680 000 min-’, V = 50 m3, and p = 800 kg/m3. 
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