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Abstract

For decentralized control the pairing criteria involving the Niederlinski Index
and the steady state Relative Gain Array are extended to open loop unstable
plants. It is found that for unstable plants it will in some cases be preferable to
choose pairings giving negative Niederlinski Index and/or RGA.
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1 Introduction

Decentralized control remains popular in the industry, despite developments of ad-
vanced controller synthesis procedures leading to full multivariable controllers. Some
reasons for the continued popularity are:

1. Decentralized controllers are easy to implement.
2. They are easy for operators to understand.

3. The operators can easily retune the controllers to take account of changing process
conditions (as a result of 2 above).

4. Some measurements or manipulated variables may fail. Tolerance of such failures
are more easily incorporated into the design of decentralized controllers than full
controllers.

5. The control system can be brought gradually into service during process startup
and taken gradually out of service during shutdown.

The design of a decentralized control system consists of two main steps:
1) Control structure selection, that is, pairing inputs and outputs.
2) Design of a single-input single-output (SISO) controller for each loop.

In this paper we consider the pairing problem (Step 1). A significant amount
of work has been done on the choice of pairings for decentralized control of stable
plants, e.g. Bristol (1966), Niederlinski (1971), McAvoy (1983), Grosdidier and Morari
(1986), Skogestad and Morari (1988), to reference a few. Most of the proposed pairing
conditions use steady-state information, including the Relative Gain Array (RGA)
(Bristol, 1966) and the Niederlinski Index (Nj) (Niederlinski, 1971), and the rule is to
avoid pairings corresponding to negative steady-state values. However, these pairing
criteria were derived for open loop stable plants, and their application or relevance
for open loop unstable plants have not been clarified previously. The objective of this
paper is to generalize these “steady-state” pairing criteria to unstable plants.

Remark: We will in this paper avoid using the term “steady state” since it does
not exist for an unstable system in open loop. Instead we refer to conditions at zero
frequency (w = 0 or s = 0), and use, for example, the term “RGA(0)” instead of
“steady-state RGA”.

2 Tools for pairing selection

In the paper G(s) denotes a square n X n plant and C(s) the decentralized controller.
Without loss of generality we assume that C(s) is diagonal (after possibly rearranging
the order of columns and rows in G(s)). We also assume that GC(s) contains integrators
in all channels, and that C(s) otherwise is stable. G may be unstable and we let P



denote the number of unstable poles in the open right half plane (RHP), not counting
poles at s = 0 (integrators). Negative feedback is assumed throughout the paper, amd
we assume that G(s)C/(s) has no internal pole-zero cancellations in the right half plane.
We then have that closed-loop stability is guaranteed if and only if (I + G(s)C(s))™!
has no RHP-poles. The Laplace variable s will be dropped where it is not needed for
clarity.

2.1 Niederlinski Index
The Niederlinski Index, denoted Ny, is defined as

Ni(3) = det(G)/ ﬁgii = det G/ det G (1)

=1

where
gn
~ . 922
G = diag{g;;} = g (2)

Gnn

For later use let P denote the number of unstable poles in G, and P denote the number
of unstable poles in G. Note that P is equal to the sum of unstable poles in the diagonal
elements of G(s). Thus in most cases P > P.

2.2 Relative Gain Array
The RGA-elements, A;;, are defined as follows
Xij(s) = 9i[G7 ;i (3)

where [G1];; represents the ji’th element of G™1. We have [G7!];; = ¢;;/ det(G) where
cij = (—1)" det(G*) denotes the i5’th cofactor of G, and G is obtained from G by
removing row ¢ and column j.

We will here consider the diagonal RGA-elements for which we derive

() = a1y, et G
Xi(8) = 9ilG™ ] = eI det G,/ det G (4)
where 0
G:’i = (géZ Gii) (5)

For later use let P/, denote the number of unstable poles in G,. For plants with
many inputs and outputs we usually have P > P/, > P. For example, consider an X n
plant G with a single unstable pole which appears in all the elements of GG. In this case
P =n, P/ = 2,Vi and P = 1. However, note that P/, in general may be different for
different loops 1.

For the special case of 2 x 2 plants we get G = G, s0 P; = P, and we also see from
(1) and (4) that Ny = 1/A;. Consequently, for 2 x 2 plants the RGA and N; contain

the same information. We shall at the end of the paper discuss how they differ.
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Example 1.
Consider the plant G(s) = C(sI — A)~'B, with

1 0 0 5 —8 L1 o
A=|o -1 o |; B=|4 10], C:<1 0 _1> (6)
0 0 -2 2 -8

Clearly, there is only one unstable pole so P = 1. For G we get P = 2 because the RHP
pole appears in both diagonal elements of (G. This is seen from the transfer matrix

9541 —25—18
G(s) = [ Cotlott) - (eb)lor)) ] (7)
(—s+1)(0.554+1)  (—s+1)(0.55+1)

At s = 0 we get
1 —18
The pairing (y1 —u1, y2 —u2) indicated by Eq. (8) we term “pairing 17, and the opposite

pairing we term “pairing 2”. We get for pairing 1 the RGA-matrix (denoted A) and
the Niederlinski Index

Ni(0) = -8, A(0) = (-0-13 1.13 )

.13  —-0.13

Thus, if the plant were stable we would from the conventional pairing rules based on
the Niederlinski Index and the RGA prefer pairing 2, but as we will show, the opposite
conclusion is correct for this unstable plant since P — P = 1 is odd.

3 Nyquist stability conditions

We showed above that N;(s) = det G/ det G and );i(s) = det G';/ det G, that is, both
the N; and the RGA-elements are given by the ratio of two determinants, one involving
the plant model (G), and one involving some “alternative” model (G or G%). The
following derivation makes it possible to derive the results for these two measures in a
unified manner.

Let (G denote some alternative model of the plant G. Throughout this paper we
assume that both that both of the square matrices G(0) and G(O) are non-singular.
Introduce the complementary sensitivity function in terms of G

H=Gcu+ao)™ (9)

and the relative “error”

E=(G-&G (10)
Then the following factorization applies (e.g. Grosdidier and Morari, 1986)

(I+GC)=(I+EH)I+GC) (11)



Proof: Trivial by noting that i = GC(I + GC)™! = (I + GC)'GC.
The following Lemma then follows directly from the multivariable Nyquist Theorem.
For completeness a proof is given in Appendix, but similar results, at least for stable

plants, have been presented before (e.g., Grosdidier and Morari, 1986, Nwokah and
Perez, 1991).

Lemma 1 Let the number of open loop unstable poles of G(s)C(s) and GAA(S)C(S) be
P and P, respectively. Assume that the closed loop system consisting of G(s)C(s) is
stable. Then the closed loop system consisting of G(s)C(s) is stable if and only if

N(det(I + EH))=P - P (12)

where N denotes the number clockwise encirclements of the origin as s traverses the
Nyquist D-contour.

In other words, (12) says that for stability det(I 4+ EI) must provide for the differ-
ence in the number of required encirclements between det(I + GC) and det(I + GC).
If this is not the case then at least one of the systems consisting of GC' or GC must be
unstable.

We will now see that information about what happens at s = 0 may provide useful
information about the number of encirclements.

Lemma 2 Let the number of open loop unstable poles (excluding poles at s = 0) of
G(s)C(s) and G(S)C(S) be P and P, respectively. Assume that the controller C is such
that GC has integral action in all channels, and that the transfer functions GC and
GC are strictly proper. Then if

<0 forP—Peven

. (13)
>0 for P— P odd

det G(0)/ det G(0) {
at least one of the following instabilities will occur: a) The closed-loop system consisting
of GC is unstable. b) The closed-loop system consisting of GC' is unstable.

Proof: For stability of both (I + GC)™! and (I + GC)™* we know from Lemma 1
that det(! + E(s)ﬁ(s)) needs to encircle the origin P — P times as s traverses the
Nyquist D-contour. H (0) = I because of the requirement for integral action in all
channels of GC. Also, since GC' and GO are strictly proper, EH is strictly proper,

A

and hence E(s)H(s) — 0 as s — co. We therefore have

A

lim  det(/ + E(s)H(s)) =1 (14)
lim det(! + E(s)H(s)) = lim det(G(s)G71(s)) (15)

Thus, the map of det(] + EH) starts at det G(0)/ det G(0) (for s = 0) and ends at 1
(for s = 00). A more careful analysis of the Nyquist plot reveals that the number of
encirclements will be odd for det G/(0)/ det G(0) > 0, and even for det G(0)/ det G(0) <
0. Thus, if this parity (odd or even) does not match that of P—P we will get instability,
and the theorem follows. QED.

The results in the next section follow directly from Lemma 1 since det G(0)/ det G(0) =
N1(0) and det G(0)/ det G%,(0) = 1/X::(0).



4 Pairing Criteria for Unstable Plants

Theorem 1 Niederlinski Index. Let the number of open loop unstable poles (ez-
cluding poles at s = 0) of G(s) and G(s) = diag{g11(s),922(8), - -, gnn(3)} be P and
P, respectively. Assume that the controller C is such that GC has integral action in
all channels and is otherwise stable, and assume that GC is strictly proper. Then if
Ni(0) has the “wrong” sign, that is, if

< 0 for P— Peven

N1(0 . 16
’(){> 0 for P— P odd 16)

at least one of the following instabilities will occur:
a) The overall system is unstable, i.c., (I + GC)™t is unstable.
b) At least one of the loops is unstable by itself, i.e., (I + GC)™! is unstable.

Proof: Let ¢ = (¢ in Lemma 2 and use the definition of N; in (1).
Remarks:

1. It is generally undesirable for the loops to be unstable by themselves, and one

should at least not close such a loop loop first when the system is brought into
service.

2. Theorem 2 is a direct generalization of the Niederlinski pairing criterion (see
Theorem 3 in Grosdidier et al., 1985) to unstable plants.

3. The matrix GG~! which appears in the Niederlinski Index is the inverse of the
PRGA matrix introduced by Hovd and Skogestad (1992). The diagonal elements
of the PRGA are identical to the diagonal elements of the RGA.

Theorem 2 Relative Gain Array. Let the number of open loop unstable poles (ex-
cluding poles at s = 0) of G(s) and G'(s) = diag{gii(s),G"(s)} be P and P!;, re-
spectively. Assume that the controller C' is such that G},C has integral action in all
channels and is otherwise stable, and assume that GC is strictly proper. Then if A;(0)

has the “wrong” sign, that is, if

2i(0) < 0 for P, — P even (17)
" > 0 for P, — P odd

at least one of the following instabilities will occur
a) The overall system s unstable, i.c,, (I + GC)™" is unstable.
b) Loop 1 is unstable by itself, i.e., (1 + gic;)™! is unstable.
c) The system is unstable as loop 1 is removed, i.e, (I + G*C%)™! is unstable.

Proof: Let ¢ = G in Lemma 2 and use the definition of RGA in (4).

Remarks:



1. All of these instabilities are undesirable. Of course, the worst is that the overall
system is unstable. The last possibility for instability is also most undesirable. It
will imply instability of the system should loop ¢ become inactive, for example,
due to input saturation (in which case u; is constant).

2. Theorem 2 is a direct generalization of the widely used RGA pairing criterion
(see Theorem 6 in Grosdidier et al., 1985) to unstable plants.

3. P! is equal to the sum of unstable poles in g; and G*.

it

4. For 2 x 2 plants Nr(0) = 1/X;(0), but for larger systems the measures contain
different information. Specifically, consider a plant of size 3 x 3 or larger where
the overall closed loop system (consisting of G/C) is stable. Then if A;(0) has
the wrong sign, we know that loop ¢ by itself is unstable or that the system with
loop ¢ removed is unstable, both of which are undesirable. Thus, pairing such
that A;;(0) has the wrong sign does not mean that any of the individual loops
are unstable. On the other hand, if N;(0) has the wrong sign we know that (at
least) one of the individual loops are unstable.

5. Since A;(0) and N;(0) contain different information for plants larger than 2 x 2,
we may have cases where all A\;;(0)’s (z = 1,...,n) have the right sign, whereas
Ni(0) has the wrong sign, and vice versa.

Summary of Pairing Rules

e For stable plants one should select pairings corresponding to positive values of

the Niederlinski Index and RGA(0).

o For the special case of a n X n plant with one unstable pole which appears in all
the elements of G(s) we have P = P and P/, = 2. In this case Theorems 1 and 2
yield:

1. Select a set of pairings such that N;(0) is positive if n is odd and negative
if n is even.

2. Pair on negative RGA elements (i.e, A\;;(0) < 0).

e For the special case of a n X n plant with P unstable poles which appear in all
the elements of G(s) we have P = nP and P, = 2P. In this case Theorems 1
and 2 yield:

1. Select a set of pairings such that Ny(0) is positive if (n — 1)P is even and
negative if (n — 1)P is odd.

2. Pair on positive RGA elements (i.e, A;(0) > 0) if P is even and on negative
RGA-elements if P is odd.



4.1 Example, continued

For the 2 x 2 example with one unstable pole introduced before we get both from
Theorem 1 and Theorem 2 that some kind of undesirable instability will occur for
pairing 2. On this basis pairing 1, which corresponds to pairing on negative values of

N(0) and RGA(0), is preferable.

Nyquist plots. For pairing 1 we use the controllers

s+1 (st 1)(0.15 4 1)

als) = - s erfs) = 5(0.01s + 1)

Fig. 1 shows Nyquist plots of 1 + ¢11¢1, 1 + ga2¢p and I + EHﬁ for this choice. We see
that 1+ g11¢1 and 1 + gaa¢g each make one counterclockwise encirclement of the origin
and we get from the Nyquist stability criterion that the individual loops are stable.
Furthermore, det(I + ExH) makes one clockwise encirclement of the origin, which is
equal to P — P, and the system is closed-loop stable according to Lemma 1. This
confirms the predictions based on the Niederlinski Index and RGA(0).

Comment. It may be of interest to check the result using the Nyquist stability
condition. From (11) we have

det(I + GC) = det(I + EH H (1 + gisci)

and the number of clockwise encirclements of the origin for det(I + GC) is therefore
N(det(I + GC)) = +1 —1—1=—1 = —P, and the system is stable according to the
generalized Nyquist stability theorem.

5 RGA as a special case of the Niederlinski Index

As discussed above, the Niederlinski Index, N;(0), and the RGA-elements, A;;(0), con-
tain different information for n x n plants with n > 3. Nevertheless, it is clear from (1)
and (4) that the two quantities are closely related, and we will show that if we consider
the Niederlinski Index also of the subsystems then the RGA is strictly not needed.
Define the Niederlinski Index for subsystem i (that is, with loop ¢ removed) as

N}i(s) = det(G“)/ ngj (18)
J#
Then we get from (1) and (4) B
Aii = NT'[N1 (19)

(this expression applies to the diagonal RGA-elements, and not to the off-diagonal
ones). It is then clear that if we evaluate the Niederlinski Index also of the subsystems
then we will have all the information given by the diagonal RGA-elements (and more).

Still the RGA-matrix is very useful because it has nice algebraic properties, since
it can be evaluated once for all possible choices of pairings (if one computes the entire
RGA-matrix and not only the diagonal elements), and because one can often with one
“glance” decide on an appropriate set of pairings.
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Figure 1: Nyquist plots for 1 + g11¢1, 1 4 gooce and T + EgH. The arrows show the
direction of increasing frequency. Only positive frequencies are shown.

For large systems it is very useful to evaluate the Niederlinski Index of the susbsys-
tems in the order one plans to close the loops when the system is brought into service.
One should not close the loops in an order where the Niederlinski index of any of these
“increasing” submatrices has the wrong sign.

6 Conclusions

e The pairing criteria based on the Niederlinski Index and RGA for systems under
decentralized integral control have been generalized to hold for open loop unstable
plants (Theorems 1 and 2).

e By evaluating the Niederlinski Index of the subsystems the RGA is strictly not
needed (Eq.19), but in practical use the RGA-matrix is still very useful.

Nomenclature

C - Controller transfer function matrix.
¢; - 1¢'th element of controller C' (for diagonal C).

E-(G-&)G™.



GG - Plant transfer function matrix.

G - Simplified or alternative model for G.

GY - G with row ¢ and column ¢ deleted.

( - Matrix consisting of the diagonal elements of G, diag{gi;},i = 1,n.

Gl; - diag{gis, G*}.

gij - ©J’th element of G.

H- complementary sensitivity matrix corresponding to é, GC (1 + GC )L

H - matrix of complementary sensitivity functions for individual loops, GC (I+ GC )L
Np - Niederlinski Index, det G(0)/I1; ¢::(0).

P - number of open loop unstable poles of GC.

P - number of open loop unstable poles of GC.

P - number of open loop unstable poles of GC.

P!, - number of open loop unstable poles of G,C.

RGA - Relative Gain Array matrix, G x [G7}]T, x denotes element-by-element multi-
plication.

s - Laplace variable.

Greek symbols:
Aij - 17°th element of RGA.
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7 Appendix

Proof of Lemma 1

Let us first state the multivarieble Nyquist theorem.

Theorem 3 The multivariable Nyquist theorem. Let N(f(s)) denote the number
of clockwise encirclements of the map of the Nyquist D contour under the function
f(s). Let the number of open loop unstable poles of G(s)C(s) be P. Then the closed
loop system is stable if and only if

N(det(I + GC)) = —P (20)

Proof: The theorem has been proved several times, see Maciejowski (1989).
Remarks:

1. In this paper we define “unstable poles” or “RHP-poles” as poles in the open
RHP, excluding the jw-axis.

2. The Nyquist D-contour follows the jw-axis and encircles the entire RHP, but
must avoid locations where f(s) has poles. This means that the Nyquist D
contour should make an indention into the RHP at locations where f(s) has jw-
axis poles. In practice, this is not a problem in this paper, since the function we

A

consider, f(s) = det( + E(s)H(s)), does not generally have jw-axis poles.

For the encirclements of the product of two functions we have
N(fifz) = N(f1) + N(f2) (21)

From (11) and the fact det(AB) = det A - det, B we then get
N (det(I + GC)) = N(det(I + EH)) + N(det(I + GC)) (22)

Lemma 1 now follows from Theorem 3 and Eq.(22).
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EXAMPLE

2 x 2 plant with one unstable pole

" 9s —2s—1
G(a) = [ =s+1)(s+1) =+ {s17
0

~1.5s—6

12
(FoF1)(05s71) (at1)(05647)

Evaluate at s =
1 -18
G(0) = (—6 12 )
For stable plants: Pair on positive steady-state NI and RGA
_ _(-013 113
Ni=-8 RGA={, 4 —0.13),__

LL SHOW * MUST PAIR ON NEGAT(VE R4

e G has P = 1 unstable poles.

o G hes P = 2 unstable poles.

ARV

TOOLS FOR PAIRING SELECTION

1. Niederlinski Index (1971)

Ny(e) = detG/ .-919“:" ety

where G = diag{y:;} - diagonal elements of G

2. Relative Gain Array (Bristol, 1966).

= LdetGY det Gy
-1, _ ii = 1]} 2
Xi(s) = gilG ]'L: detG detG @)
where o
! — 1 .
Gy = ( Gu)

G remove column i and row i

r~t
Special case 2 X 2 systems: G = G'; and
Ni=1/As

n X n systam with n > 3: Not the same.

MULTIVARIABLE NYQUIST THEOREM

Stability of closed-loop system: Consider (I +GC)™.

P: no. of unsiable poles in GC

N: No. of Nyquist plot encirclements of origin.

Theorem. The closed loop system is stable if and only if
N(det(I +GC))=—P

leg,




ENCIRCLEMENTS OF det(f + EH)

G (#) - model with P unstable poles

£ - “alternative” model ('G.' or G4;) with £ unstable pblm.
£ =8&c (1 +Ec)! - complementary sensiti;/ity‘

E = (6 — &)E! - relative “error”

Factorization of return difference

(r+cc) =(1+£eR) (1+8c)

=P encirclements =P encirclements

det(r + ER ) : must encircle £ — P times I

Otherwise: (I +GC) ™ or (I + &) unstable.

NIEDERLINSKI INDEX (sct o )

Assuime:
1. G has P unstable poles

2. 6'(3) ={911(2), 922(5), . . ., gnn(s)} has P unstable poles
3. Integral action and GC strictly proper

Theorem. If N(0) has the “wrong” sign, that is, if

< 0forP—p
¥1(0) or P even
> 0 forP — P odd
then at least one of the following instabilities will occur:
a) The overall system is unstable,
ie., (I +GC)7! is unstable.

b) At least one of the loops is unstable by itself,
ie., (I +GC)™ is unstable.

CONDITIONS AT s =0

o det(I + ER): encircle # — P times.
o Integral action: £ (0) = 1. .
o Strictly proper: £ (co) = 0.
eEBE=G6A""-1

o Get:

s— 00

A 1
det(f + EH) — .
det G(0)/ det G (0) s— O

o det G(0)/ det & (0) < 0: odd no. of encirclements )

o det ¢ (0)/ det @(0) > 0: even no. of encirclements
o If parity (odd/even) does not match P — P: Unstable

G

[}
RELATIVE GAIN ARRAY (et (AN
Assume
1. G has P unstable poles
9. Gl(s) = {ii(s), G¥(s)} has P|; unstable poles
3. Integral action and GC strictly proper

Theorem. If A;(0) has the “wrong sign, that is, if

< 0 for P};— P even 3)
O S 0 forpy— P odd

then at least one of the following instabilities will occur

a) The overall system is unstable,
ie, (I +GC) s unstable.

b) Loop i is unstable by itself,
je, (14 g.‘.‘c.')_1 is unstable.

c) The system is unstable as loop i is removed,
ie, (F+G¥%cH) ™ is unstable.

[



SUMMAIRY Ok PALKING RULES

o Stable plants: Pair on positive N/(0) and RGA(0).

o Special case: n x n plant with one unstable pole which
appears in all elements of G (s):

1. Want N /(0) positive if n is odd (negative if even).
2. Want negative RGA elements.
S

¢ Special case: n Xn plant with P unstable poles which appear
in all elements of G (s):

1. Want N/(0) positive if (n —1)P is even (negative if odd).

2. Want positive RGA elements if P is even (negative if
odd).

CONCLUSIONS
o Pairing criteria based on the NI and RGA have been gener-
alized to open loop unstable plants.

¢ By evaluating the NI of subsystems the RGA is strictly not
ueeded, but in practice the RGA-matrix is very useful.

iNeed bouvl fva A and 1Nk

Define Niederlinski Index for subsystem with loop i removed
N(s) = det(G ")/ WL oii “4)
Definitions of RGA and NI yield
Ai=NJ/Ng
That is, do not need RGA.
¢ But RGA

1. Has nice algebraic properties
2. Ouly one cvaluation needed

3. One “glance” yields pairings



