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Measurements of temperatures (secondary outputs) and flows (inputs) are used
to estimate product compositions (outputs) in a distillation column. The problem
is characterized by strong collinearity (correlation) between temperature meastre-
ments and an ill-conditioned model from inputs to outputs. In a linear study, three
estimator methods, the Kalman-Bucy filter, Brosilow’s inferential estimator, and
principal component regression (PCR), are tested for performance with p-analysis.
One can achieve remarkably good control performance with the static PCR estimator,
which is almost as good as the dynamic Kalman filter. The quality of the estimate
for these two estimators is improved by additional temperature measurements, al-
though the improvement is only minor for more than about five measurements. On
the other hand, the performance of the Brosilow inferential estimator may not
improve by adding measurements due o sensitivity to modeling errors. For all
estimators, the use of flow (input) measurements does not improve the estimator
performance and does in fact damage the performance if a static estimator is used.

Introduction

This article addresses estimation of unmeasured process out-
puts based on multiple secondary measurements. The appli-
cation chosen here is the use of temperature and flow
measurements to estimate the product compositions in a dis-
tillation column, which has been studied previously by a num-
ber of authors, for example, Joseph and Brosilow (1978a,b).
This is an important industrial problem since on-line com-
position measurements are expensive and unreliable. Further-
more, it provides an interesting estimation problem which
features a large number of strongly coupled measurements,
and several disturbances and inputs with similar effects on the
outputs resulting in an ill-conditioned plant model.

This article compares and discusses various dynamic and
static estimators. Although it is based on a particular distil-
lation column example, the treatment in this article is rather
general. Readers who want more information about the dis-
tillation example and how temperatures may be used to esti-
mate compositions in distillation columns should consult
Mejdell and Skogestad (1991a). In that article we also discuss
in detail the use of the static PCR or PLS estimators for the
example column, and we introduce means coping with non-
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linearity. In Mejdell and Skogestad (1991b) we consider the
implementation of such static estimators on a pilot-plant col-
umn, and we also discuss the use of experimental data rather
than models to obtain the estimators.

Problem definition

The objective is to obtain the best estimate ¥ of the outputs
(product compositions in our application) using all available
information, 8. In terms of deviation variables the linear es-
timator may be written:

F()=K(s)B(s) e))

This estimate should be obtained based on a descriplion of the
process (nominal model and expected uncerlainty), the ex-
pected noise and disturbances, and a more precise definition
of what we mean by ‘‘best.”’ In the general case, 6 should
include all measured dependent variables (primary measure-
ments, y, and secondary measurements, 0) and all known in-
dependent variables (manipulated inputs, u, and measured
disturbances, d). In this article, we usually have §=0, that is,
the estimate is based on only the secondary temperature meas-
urements. The reason is that we assume no primary measure-
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Figure 1. Control scheme based on LV configuration.

ments, no measured disturbances, and we shall show for our
case that the additional information contained in u is of limited
value. This estimation problem is usually called ‘‘inferential’’
estimation in the process control literature.

Use of separate estimator

An estimator-based control scheme for the distillation col-
umn is shown in Figure 1. Note that we are implicitly assuming
that the controller should be separated into two parts: one
estimator which condenses all the measurements into a few
estimated outputs, and a ‘“‘small’’ (in terms of number of
inputs) controller which uses these estimates for feedback con-
trol. The motivation for doing this is reliability, design sim-
plicity and robustness.

In this article, we consider three different approaches to the
problem: the Kalman-Bucy filter, Brosilow’s inferential esti-
mator, and principal component regression (PCR). In the last
two cases, we use a steady-state (static) estimator such that K
is a constant matrix.

Use all available measurements

The statement in the problem definition above that the best
estimate should be based on ¢/l available measurements is not
as obvious as onc should think. For example, our example
column has 41 temperature measurements. That is, we need
to determine 41 parameters in K for each output if all tem-
peratures are used. However, since the temperatures are
strongly coupled, all these parameters cannot be determined
independently. To avoid this overparameterization problem,
the general consensus within the process control community
has been until quite recently that one should use only a few
(typically, two or three) temperatures (for example, Weber and
Brosilow, 1972; Joseph and Brosilow, 1978a,b; Morari and
Stephanopoulos, 1980; Patke et al., 1982; Yu and Luyben,
1986; Moore et al., 1987, Keller and Bonvin, 1987). In 1987
and 1988, we started looking at multivariable regression tech-
niques, PCR and the closely related PLS (partial least square),
used by the analytical chemists, where it is stressed that all
available measurements should be used, and this made us ques-
tion the conventional wisdom. We then set out to do a rigorous
linear comparison of the inferential estimator presented by
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Brosilow and coworkers (denoted the Brosilow estimator in
the following), with a simple regression estimator (PCR) and
the standard quadratic state estimation scheme (Kalman filter).
The results from this comparison are presented in this article.
The analysis includes both measurement noise and model un-
certainty, and the structured singular value, u, is used as a
tool. The conclusion is that for the two latter estimators the
estimate is improved by including more measurements (spe-
cifically, it reduces the effect of measurement noise), and that
the earlier finding that more measurements could deteriorate
the estimate was a result of the particular methods used in
those studies and not an inherent property of the problem.

The fact that the goodness of the estimate generally improves
when measurements are added does not mean that one nec-
essarily should use all measurements. Additional measure-
ments are costly and may be unreliable, and may therefore not
be needed since:

(1) The relationship between the measurement and the out-
put is insignificant or uncertain.

(2) The measurements are strongly correlated, and addi-
tional measurements provide only minor improvements for the
estimate. In our case, there seems to be little need to implement
more than about five temperature measurements.

(3) The measurement noise is so great that the measurements
contain little information. In our case, this may be a problem
if we use input measurements, because the gain from inputs
to outputs is large. Then, the compositions (outputs) are very
sensitive to small changes in the flows (inputs), and the input
flow measurements are not sufficiently accurate to provide
useful information.

(4) The dynamic response of the measurement is different
from that of the outputs and for a static estimator the estimate
using input measurements is poor dynamically. In our case,
the dynamic lag from inputs to outputs cause the static PCR-
and Brosilow-estimators to perform poorly when input flow
measurements are used (even in the absence of measurement
error).

We will discuss the three last items in more detail. Note that
items 3 and 4 provide two different reasons for why we may
not want to use flow measurements.

Latent variables

in the PCR method, the available data are smoothed by
obtaining a smaller number, k, of “‘latent variables,”” , which
are not coupled and contain most of the original information.
These latent variables may be written =P8, where P, is the
projection matrix. The estimator then becomes y =K,/ where
K, is a “small” matrix with k parameters for each output
(typically k is the number of degrees of freedom, 3 in our
examples), and the overparameterization in the regression step
is avoided. In the Brosilow method, the (estimated) disturb-
ances may be viewed as latent variables, but this may not be
a good choice from a numerica) point of view. In the Kalman
estimator, the states may be regarded as latent variables. The
effect of measurement noise on the states is smoothed by the
strong couplings in the model used in the Kalman estimator.

Distillation Column Application
Example column

As an example, we use the distillation column A studied by
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Table 1. Data for Distillation Column Example

o N  Ng ZF Yo Xp D/F L/F
1.5 40 21 0.50 0.99 0.01 0.500 2.706

¢ Liquid feed ¢ Const. molar flows
® [deal VLE ¢ Pressure 1 atm
® Holdup on each tray; M,/F=0.5 min

Antoine parameters: A B C
Light component 15.8366 2,697.55 —48.78
Heavy component 15.4311 2,697.55 —48.78

Skogestad and Morari (1988). The column separates a binary
mixture with relative volatility 1.5 and has 40 theoretical stages,
including the reboiler, plus a total condenser. Other column
data are given in Table 1.

The difference in boiling points of the two pure components
is 13°C. In Figure 2 some steady-state temperature profiles for
the column are displayed. We note that variations in temper-
ature are small toward the ends of the column. Thus, although
for our binary mixture with constant pressure there is a one-
to-one relationship between the product mole fraction and the
temperature at the corresponding column end, it may be dif-
ficult to use these measurements for estimation because they
are not sensitive enough to changes. On the other hand, inside
the column where the sensitivity is large, changes in feed com-
position have a large effect on the temperatures even with
constant product compositions. This demonstrates the limi-
tations of single temperature control and motivates the use of
an estimator where multiple temperatures are used.

In this study, we use a linear model of the column. To
simplify the model the liquid holdup is assumed constant, that
is, the flow dynamics are neglected. This gives rise to a 41st-
order linear model in terms of the mole fraction of the light
component on each tray, which yields the following transfer
function model:

Y(8) =G, ()u(s) +Gy(s)d(s) (2)
0(s)=F,(s)u(s) +Fy(s)d(s) 3)

Here the inputs are = [L, V], the disturbances are d = [z, F]",
the outputs y = [yp,x5]” and the (secondary) measurements are
6 = temperatures on all trays. The dominant time constant (cor-
responding to the smallest eigenvalue) of the column model is
194 min. At steady state,

87.8 —-86.4
G0)= (108.2 —109.6) “)

Here, the gain matrix has been scaled such that the outputs
(compositions) are in relative units (an output of magnitude 1
corresponds to 0.01 mole fraction units), and the inputs are
scaled relative to a feed rate of F=1. The large elements in
this matrix should be noted as they make it difficult to make
use of input data when estimating product compositions. Such
large gain elements are indeed common to all distillation col-
umns with both products of high purity. For example, we find
for changes in external flows when we assume that the overall
separation in the column is constant (Skogestad and Morari,
1987b):
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Figure 2. Column temperature profiles.

Upper profiles for difterent Teed compositions when yp, and xg
are held constant. Lower proliles for ditferent top product com-
positions when z; and x, are held constant.
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Applying this expression to our example where xz=1
—yp=0.01yields that all elements in the matrix in Eq. 4 should
be 100 in magnitude, which is in good agreement with the exact
model,

The condition number of the matrix in Eq. 4 is 141.7, and
the diagonal RGA elements are 35.5. This plant is consequently
ill-conditioned (Skogestad and Morari, 1987a). The other mat-
rices in Eqs. 2 and 3 are also ill-conditioned and have large
elements at steady state.

Estimators

Block diagrams of the three estimators are shown in Figure
3.

Kalman filter

In the Kalman filter scheme (Kalman and Bucy, 1961), a
dynamic state space model is used in parallel with the process,
and the deviation between the outputs from the process and
the model is used as feedback to the model through a filter
gain K,. Write the linear state space model on the following
standard form:

x=Ax1t Bui v (6)
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Figure 3. Block diagrams for the three estimators: (a)
Kalman filter; (b) static Brositow estimator; (c)
static PCR-estimator based on output meas-
urement only.

y=Cx )]

0=Cox+w 8)
Here, v and w are assumed to be white noise processes with
covariance matrices V and W. Minimizing the expected vari-
ance 6 — 0 yields the estimated states:

X= A%+ Bu+ K (6 — CoR) 9
= (A-KCp)i+Bu+KSb (10)

where filter gain K| is.
Ky=XCjw ™! an

Here, X, the covariance matrix of £, is found from solving
the algebraic matrix Riccati cquation:

AX +XAT = XCh=W " 'CX + EVE"=0 (12)

The overall Kaliman estimator then becomes:
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J(s)=C(sI-A+K,Cy) "'[K,0(s) + Bu(s)] 13)

The covariance matrix of the measurement noise W was set
to 0.04 I for our example column (7 is the identity matrix).
This corresponds to 0.2°C noise on each temperature. The
process noise (disturbance) is here v"=[L,V,F,zs (reflux,
boilup, feed rate, and feed composition). Its covariance matrix,
V, was assumed diagonal and was varied in order to tune the
Kalman filter. Four different values of the variance on L and
V were selected (Table 2), and the corresponding filter gain
matrices are denoted K1 to K4, The assumption of white noise
process disturbances is somewhat unrealistic in a distillation
column, and we might add an integrator and use a nonsta-
tionary disturbance d=(1/s)v. The estimator, however, is not
significantly improved by such changes, although it will remove
the steady-state offset for the case with perfect temperature
measurements.

Brosilow estimator

The following linear steady-state model of the column in
terms of deviation variables is used in the Brosilow estimator
(Weber and Brosilow, 1972; Joseph and Brosilow, 1978a):

y=Gu+G (14)

0=Fu+Fd (15)
where d denotes the disturbances. The matrices above are of
course related to those used in the state space description in
the Kalman filter. For example, G,= — CA~'B, and for the
case v=d we have F,= — CyA~'E. The main idea is now to
use Eq. 15 to estimate the disturbances. We get:

d=F})(0—Fu) (16)
where the pseudoinverse FJ,is the optimal inverse in the general
least-square sense. Except for the dynamics, the main differ-
ence from the Kalman filter is that the presence of measurement
noise and input noise/disturbances are neglected.

The inversion in Eq. 16 may be impossible, or at least nu-
merically ill-conditioned, when there are collinearities among
the variables (Weber and Brosilow, 1972; Joseph and Brosilow,
1978a). To avoid some of these problems one should obtain
the pseudoinverse, F},, from a singular value decomposition
(SVD) of F, by deleting directions with singular values equal
or close to zero (for example, see Strang, 1980, p. 142). Com-
bining Eqgs. 14 and 16 yields the Brosilow estimator

V=K + (G,~ KpF,)u (17)

where

Table 2. Process Disturbance Covariance Matrix of Kalman
Filter Gains: ‘W =0.047

Case v

L vV F Ir
K1 diag [ 200 200 0.01 0.01 |
K2 diag | 0.10 0.10 0.01 0.01 ]
K3 diag | 0.01 0.01 0.01 0.01 |}
K4 diag | 0.0 0.0 0.01 0.01 ]
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Ky=G,F (18)

For our example column d7=[zF] and u«"=[L,V]. The
matrices Fy, F,, G, and G, were found by linearizing the model
at the nominal operating point.

PCR estimator

The main idea is here to consider directly a regression be-
tween the g measurements () and the p outputs () to be
estimated. The problem is then to obtain the matrix K in

J=K9 (19)

To this end obtain n ‘‘calibration” runs of corresponding
values of y and 8, and place these as rows in the matrices Y"*?
and ©"*?, respectively. (It may seem more reasonable to place
y and 6 as columns in the matrices, but we shall here use the
standard convention from the statistics literature. This con-
vention is the reason for the reverse order in Eqgs. 19 and 20.)
If the estimator is perfect we will have:

Y=06K" 20)

Given Y and O the general least-square solution to Eq. 20 is
(for example, Strang, 1981, p. 139)

Kos=Y'[O7)! 1)

In addition to minimizing (¥ — #)? this solution minimizes the
norm of K. The pseudo inverse is obtained from a SVD of 0,
Using standard notation from the statistics literature (see for
example, Wold et al. 1987), the SVD of O is written

O=tp{+6pl+ -+« +1.p) (22

where m < min(n,q) istherank of 6. Here, p, is the eigenvector
corresponding to the largest eigenvalue of 679, (the square of
the largest singular value of 0), and p, is the eigenvector cor-
responding to the second largest eigenvalue, and so on. These
“loading vectors” (p’s) give the directions of the principal
componunts, while the ‘‘scores’’ (#’s) give the magnitude. If
all m terms in Eq. 22 are retained we obtain the generalized
pseudoinverse in Eq. 21. However, in PCR we select only those
first k principal components that can be distinguished from
the measurement noise. Let the matrices p?** and 7"** include
only these k most important directions. Define the new latent
variables as f= P, Note that P = P~ ' since P is orthonormal.
The least-square solution to y = K,f becomes K,= Y'T[T"T] ',
and the overall estimator gain matrix becomes:

Kecr=Y'OI'=Y'TIT"T"'P" (23)

In the general case, § may be replaced by § which includes also
the inputs and measured disturbances.

The calibration sets for the example column were obtained
from a linear steady-state column model. Note that there are
only three degrees of freedom for our example column but
additional runs were added to better study the effect of meas-
urement noise. Thus, a factorial design method was used to
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Table 3. Data to Simulate Stationary Temperature Profile:
qr=1.0, P=1.0 atm

s Y Xy Zy Ya Xy
0.4000 0.9810 0.0190 0.4000 0.9810 0.0010
0.4000 0.9990 0.0190 0.4000 0.9990 0.0010
0.6000 0.9810 0.0190 0.6000 0.9810 0.0010
0.6000 0.9990 0.0190 0.6000 0.9990 0.0010
0.4500 0.9855 0.0145 0.4500 0.9855 0.0055
0.4500 0.9945 0.0145 0.4500 0.9945 0.0055
0.5500 0.9855 0.0145 0.5500 0.9855 0.0055
0.5500 0.9945 0.0145 0.5500 0.9945 0.0055

select 16 different runs (sets of corresponding values of 6 and
y) around the operating point. The independent variables for
generating these data were chosen as the oulpuls y,, and x,
and the feed composition z,, see Table 3. Since the column
conditions in the simulation model are independent of the load,
it is not necessary to simulate different leed rates.

1t is important to note that this approach allows us to freely
vary the outputs (¥, and xp), and we are thus able (o span all
directions in the output space. This is dilfercnt from other
approaches, for example, the Brosilow estimator, which is
based on an open-loop model in terms ¢f the inputs (L, V,F,z;),
and where the output space may not be properly spanned for
ill-conditioned plants with strongly coupled outputs.

When stated random noise of magnitude 0.1°C was added
on all temperatures in the calibration set, but the default is no
noise. During the regression step the temperature data were
reduced to three latent variables and K¢, was computed from
Eq. 23.

Analysis of the Estimators

The objective is to evaluate the different estimation methods
described above. In this section, we define our criteria and
tools for the evaluation. We shall consider both the ‘“‘open-
loop™’ estimation error, e,;=y — ¥, and the ‘‘closed-loop’” (when
the estimate is used for closed-loop control) control error,

ea=y—JYs

p-analysis

Our main analysis tool is the structural singular value (u)
(Doyle, 1982). In this framework, we rearrange the system to
fit the general form shown in Figure 4. Herc the interconnection

ol
=z
(2]

Figure 4. Structure singular value analysis.

e may be the “open loop’ estimation civor ¢, <y—#, or the
““closed-loop’’ controt error, ¢,=y — y..
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matrix N includes the plant, the controller, the estimator and
the weights. d denotes external inputs (disturbances, noise and
setpoint changes), and e is the *‘error’ we want to keep small.

We have a separate A-block loop to represent the model
uncertainty. Weights are used to scale the signals, d and e,
and the uncertainty A to be less than 1. In the p analysis we
evaluate the worst case amplification from d to e at each
frequency, and the performance requirement for the error, ey
or e, is satisfied if u is less than one at ail frequencies. Nominal
performance (with A=0) is satisfied if u(N) <1, and robust
performance (for all allowed A’s) is satisfied if p(N)<1. In
the article, we plot x as a function of frequency, and estimators
with small » values are preferred. More details about the meth-
ods used for p analysis may be found in Mejdell and Skogestad
(1989) and Mejdell (1990).

Uncertainty Weights. 'The most important source of un-
certainty is assumed (o be on the inputs (L and V). We shall
use the same multiplicative input uncertainty weight as
Skogestad el al. (1988), which is given by:

Ss+1

D(s)=0.2
wils) 0.55+1

(24)

In the low frequency range the weight allows for 20% input
gain uncertainty and the uncertainty reaches 100% at about
w=1 min

Weights for Ixternal Inputs. The external inputs to the
systems (the d’s in Figure 4) consist of setpoints, as well as
disturbances and unoise. The maximum setpoint changes are
set to +£0.01 mole fraction units. The disturbances in the feed
rate F and the feed composition z,- are set to 20%, that is, zp
may vary from 0.4 to 0.6 mole fraction units. Noise was gen-
erated by adding a constan! vector of random values with
normal distribution and a standard deviation of 0.2°C to all
41 temperatures. Noise is included in the p analysis only if
stated.

Evaluation criteria

Open-Loop Evaluation (OL). One obvious criteria for
evaluating the different estimators is the estimation error
ey=y—J. The system is assumed to operate under feedback,
since this is closer to a real situation than a pure open loop
test where it may ‘‘drift away.”” The term ‘‘open loop”’ is still
used since the controller uses the actual y, that is, there is no
feedback from the estimate y. We use single-loop PID con-
trollers since this is the most common choice in practice. The
tunings were obtained for optimal robust performance (min-
imize p) when the estimate is exact. To make our results less
dependent on the controller used, we shall only consider the
nominal performance in this test, that is, without any uncer-
tainty. This makes the comparison independent of the robust
stability requirement of the system which depends strongly on
the controller. The performance weight for the open-loop test
is:

10

25
45+ 1 25

Wool (8) =

This weight requires less than 10% estimation error at steady
state (w=0.1 min ). At higher frequencies the weight increases
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o one at w=2.5 min~'. This allows for an error greater than
100% at frequencies above 2.5 min™".

Closed-Loop Evaluation (CL). The main objective of the
estimator is to replace the primary measurement of y with the
estimate  for feedback control. The error of interest to be
minimized, is then the control error, e; = y—J,, that is, the
difference between the actual outputs and the setpoints (ref-
erence signals). In this case, we include the uncertainty and
consider the robust performance. We use the same controller
as for the open-loop comparison. One disadvantage with this
test is that using the same PID controller for all estimators
will bias the comparison somewhat, since the optimal controller
in each case will depend on the estimator used. The perform-
ance weight for the closed-loop test is

10s+1

—_— 26
100s + 1 26

Wp($) =35

This implies that the control error, y — y;, should be within
20% at steady state. Our feedback system should be effective
up to about w=0.05 min~' and the amplification at high fre-
quencies should never exceed 2. Except for the allowed steady-
state offset, this weight is the same as the one used by Skogestad
et al. (1988).

Results
Comparison of Kalman filter and static PCR estimator

In Figure 5, we compare the pu-plots of the Kalman and PCR
estimators, using 41 temperatures. The first thing to note is
how well the simple static estimator §= Kpcpf performs in the
closed-loop test. The main reason is that the dynamic responses
of the temperatures ¢ and the compositions y are very similar.
This will be the case for most distillation columns, at least for
sections of the column, but may of course not be the case for
other applications.

In the *“‘open loop’” analysis, the Kalman filter is significantly
better than the PCR estimator at higher frequencies. This is
due to the dynamics included in this estimator. On the other
hand, the “‘closed loop’’ test shows that the estimators will
perform about equally well when used for feedback, and also
as well as using perfect measurements. Actually, for some
frequencies, the PCR estimator is even better than using perfect
measurements. The reason is that the temperatures in the mid-
dle of the column generally change slightly faster than at the
ends, and the steady-state estimator will therefore have a small
inherent ‘‘feedforward’’ effect. The linear simulation re-
sponses in Figure 6 confirm that the PCR-estimate is almost
equal to the true value. One exception is for feed composition
disturbances, where it shows a small inverse response.

The PCR estimator uses only temperatures, but we did also
evaluate the effect of adding input flow measurements. How-
ever, even at steady state with exact measurements (no model
error) the improvement in estimator performance was very
small and with measurement noise it was not significant. Fur-
thermore, the dynamic behavior of a static estimator is much
worse when inputs are used unless a dynamic lag (low-pass
filter) is used on the flow measurement.

Different Kalman filters and use of inputs in estimator

Figure 7 shows p plots for the Kalman filters obtained using
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Figure 5. Comparison of Kalman (case K1) and PCR estimator with 41 temperatures.
Upper: without noise in p analysis; lower: with noise.

the four different levels of process noise on L and V in Table
2. The best Kalman filter, K1, is the one that was compared
with PCR above. The remarkable thing with this best estimator
is the very large assumed variance on the inputs u (L and V).
In effect, this variance is so large that the transfer function
from u to ¥ in Eq. 13 is approximately zero, that is, the es-
timator does not use the information about the input signals.

The worst Kalman filter, K4, assumes disturbances (noise)
of magnitude 0.1 for F and gz, but assumes no disturbances
on the inputs. This estimator performs reasonably well in the
open-loop p test when there is no uncertainty (left in Figure
7). However, it is extremely poor when input uncertainty is
added in the closed-loop test (right). Similar differences are
found for the open-loop estimation error when there is un-
certainty.

For the case with no measurement noise the steady-state
offset of the Kalman Filter may be removed by including non-
stationary noise as discussed earlier, but otherwise this change
has very little effect.

Brosilow estimator

The p plots for the Brosilow inferential estimator, Eq. 17,
with different numbers of temperature measurements are shown
in Figure 8. The estimator performs poorly, and its perform-
ance does not improve with increasing number of measure-
ments. The open-loop test shows that the estimator nominally
works well at very low frequencies (w < 0.001 min~ "). The poor
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dynamic performance at intermediate frequencies is due to the
fact that the estimator uses the input signals ¥ (L and V), as
shown in Eq. 17. As discussed in the introduction, the dynamic
behavior of u and the compositions y are very different and
using a constant matrix G,— KyF, does not work well. This
problem might have been corrected by using a low-pass filter
on the inputs with a large time constant of about 194 min (that
is, add dynamics to G, and F,) (Joseph and Brosilow, 1978b).
However, even this estimator would not perform well, since
we find that with model uncertainty the performance is poor
even at low frequencies (for example, see the closed-loop plot
in Figure 8). This is mainly due to the input error, that is, that
the actual values of L and V are ditfcrent from those used by
the estimator. As mentioned above, the Kalman filter suffers
from the same problem when it is tuned such that it makes
use of the input measurements.

A better approach for our casc is to regard the inputs (L
and V) as additional unknown disturbances. ‘1 his gives rise to
a ‘“‘modified’’ Brosilow estimator which uses the temperature
measurements only. For the case with perfect model this es-
timator is identical to the PCR-estimator with no noise. How-
ever, because the matrices G,,, G, F, and I/, arc ill-conditioned
for our example, small modeling errors may in practice cause
also this modified estimator to perform poorly (Mejdell, 1990).
In particular, this will be the case if the model is obtained
experimentally. Brosilow and coworkers discuss the ill-con-
ditioning of Fycaused by using too many measurements (Weber
and Brosilow, 1972; Joseph and Brosilow, 1978a), but in ad-

Vol. 39, No. 10 1647




x1072
0.4~
_ B y
D
n.2 \ -
\ IH
0.0~ ~— ,"‘ o S
|~ veeT YD B
yp /7
-]
0.4~ T T T T T T T T
o 20 10 60 80 100 120 140 160
x10°2 time (min)
0.4-
| & Yp
bas ;\\
\ __TB <
0.0 — . {;’_‘:-..,_1_
//" v TB
0.2—
QD S
-]
0.4 = T T T T T T T
20 10 &0 L1} 100 120 140 160
time (min)

Figure 6. Comparison of actual output y(f) (

) and PCR-estimate y(#) (- - - - ).

Responscs under feedback control are shown for a 20% increase in feed rate at £=0, a 20% increase in feed composition at /=80 min, and a sctpoint
change in y;, at =120 min. The PCR estimate uses all temperature measurements. Upper: y used for feedback control; Lower: § used for fecdback

control.

dition some plants, for example, our high-purity distillation
column, are inherently ill-conditioned and the matrices G, G,
F, and F, are all ill-conditioned even for the case with few
measurements. The PCR-estimator does not suffer from these
robustness problems since it deals directly with the relationship
between 6 and y.

Number of measurements and their location

The pu plots in Figure 9 for the PCR estimator shows the
effect of using varying numbers ot measurements. (Note that
the noise in this case is put on the temperatures in the cali-
bration set and not in the u analysis.) Figure 9 demonstrates
that adding temperature measurements improves the estimates
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Figure 7. u plots for different Kalman filter gains (Table 2).
41 temperatures and noise are included in the u analysis.

1648

October 1993 Vol. 39, No. 10

AIChE Journal

) &



frequency (radians/min)

Open Loop Closed Loop

3 T 3
{3e,t, ! ]
150 | ]

2 JI 2

Ko r ]

_ / i

1 ,'( 1 —
] 2¢c g
] '/ \ 4 [
4.~ \\\ -

0 -.'l LAAALLL RS A L1 B B AL I LB R L I R T IIIIII-I 0 LS sl LR LU, BELE R LR AL A n UL e R R
107} 102 107t 1 10 102 10? 107 1072 107! 1 1 10?  yo?

0
frequency (radians/min)

Figure 8. Brosilow inferential estimator for various number of measurements.
No noise. Tray locations: 2¢:9, 33; 3c:10, 22, 33; 5b:10, 15, 22, 29, 33.

and the control performance. The main difference is between
two and three measurements. Similar results also apply for the
Kalman filter.

When using more temperatures than necessary (three for our

'example column with three degrees of freedom), the additional

temperatures will reduce the effect of the measurement noise
and, more importantly, make the performance less sensitive
to measurement location. Figure 10 clearly illustrates this.

Use of Inputs in Estimator

We found above that when the inputs are used explicitly by
the estimator, the Kalman filter (case K4) and the Brosilow
estimators are very sensitive to input errors, even at steady
state. In this section, we shall provide some simple explanations
for these results.

The inputs # used for estimation may be either a measure-
ment of the inputs (u,,) or the controller output (1) (see Figure
11). To understand the effect of input error, consider a simple
estimator K= G, based only on the inputs:

J=G, ()i (27
and the estimation error becomes:
y—y=G,(u—-1) (28)

Measured inputs (= u,,). In this case, the estimation error
becomes:
y—y=G,u, (29)
where u, is the input error (noise). We here assume that the
input noise and the outputs have been normalized such that
their expected/allowed variations are in the range —1 to 1.
We then note that the estimation error may be very large if
the elements in the matrix G, (jw) are much larger than 1, and
in such cases little will be gained by using the measured inputs
for estimation. In particular, this applies to ill-conditioned
plants under feedback control where the inputs (L and V) are
correlated, whereas the measurement noise ;1) is uncorrelated,
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Figure 9. Effect on p of number of temperatures for PCR estimator.
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such that the measurement error may easily exceed 100% in
the direction of the largest singular value of Gu. Specifically,
for our example column, the clements in G,(0) (appropriate
scaled) are about 100, and an error in one flow measurement
of only 0.01 inpul unit (0.3% of the total flow in L and V)
results in an estimation error of 1.0 output units (0.01 mole
fraction units, which is 100% of the nominal impurity).
Controlled outputs (1i=u,). The actual inputs are:

u=+A)u, (30)

ATI e

Wy

Lo ol Uy

Figure 11. Actual input, u, will differ from value, u.;, com-
puted by the controller and from the meas-
ured output, pp,.
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where the uncertainty matrix A;= diag{A,;} is a diagonal matrix
consisting of the relative input errors on each input channel
Jj. The estimation error becomes y — ¥ = G,Apu,, and using Eq.
28 we get:

y—9=G,AG;'p @31

Skogestad and Morari (1987a) found that the ith diagonal
element of the term G,A,G,' is given by L\;(G,)4,, where
\;; denotes the ijth RGA elements. Consequently, in the pres-
ence of input uncertainty, the estimation error, y—J, is likely
to be very large for plants with large RGA elements. Note that
this result is independent of scaling and of the controller used.
The model, Eq. 4, used throughout this article has diagonal
RGA values of 35.1 and with an input gain error of 20%
(A, = — A,=0.2) the diagonal elements of G,AG, !"are about
14. This large value explains the large p values that were ob-
tained for the Kalman K4-estimator for the ‘‘closed-loop’’ case
in Figure 7 which includes input uncertainty.

To avoid such large RGA-values one may consider using as
inputs, for example, D and V (DV configuration) rather than
L and V. This follows since all RGA elements in this case are
less than 1, and the sensitivity to input uncertainty may be
less. However, in this case the gain elements for changes in D
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will be large as well (after appropriate scaling), and the use of
D will be sensitive to input disturbances/noise.

The conclusion for our distillation column is to base the
estimate on temperature measurements only. Flow measure-
ments do not improve the estimate significantly because of
sensitivity to small measurement errors, poor dynamic response
when used in a static estimator, and the fact that the temper-
atures contain so much information that the estimate is not
significantly improved even at steady state with no model error.
The above arguments apply to a system with constant tray
efficiencies. In practice, the tray efficiency may vary with col-
umn load, and improved estimates may be obtained by using
flow measurements to infer the efficiency.

Discussion
Kalman filter

Model uncertainty is not included explicitly when obtaining
the Kalman filter, and it may require physically unrealistic
values of the noise weights, V and W, to obtain the best
estimator when uncertainty is included. This is illustrated by
the large value needed for noise (disturbances) on the inputs
to obtain the best Kalman filter, K1. Otherwise, the Kalman
Filter performed well in the u tests and was undoubtedly the
best estimator in the open-loop u test. The main reason is its
inherent dynamic model. Furthermore, it is flexible, because
of the weights, and it may be tuned to perform well for ill-
conditioned plants as well. In this article, we have used a
dynamic Kalman filter, but separate results show that for our
application the static version, with s = 0in Eq. 13, is very similar
to the static PCR estimator.

Brosilow estimator

The Brosilow inferential estimator performs poorly for our
example plants mainly because it uses information about the
manipulated inputs ». One may consider a modified Brosilow
estimator that treats the inputs as disturbances as discussed
earlier. However, even in this case the method relies on first
estimating the disturbances, and for ill-conditioned plants this
approach is poor numerically. Rather, a direct regression be-
tween the measurements (f) and the outputs (y) for the PCR
estimator is preferred.

Principal component regression (PCR) estimator

The PCR estimator does not have the same weaknesses as
the Brosilow estimator. First, the estimator used here does not
use the input values. Second and more importantly, its nu-
merical properties are much better. The matrix to invert in
PCR, the score matrix T in Eq. 23, is generally much better
conditioned than F, used for the Brosilow estimator. For ex-
ample, for our column the condition number of 7 is 4.7,
whereas the condition number of Fj, is 50. To get a well-
conditioned T one must ensure that excitations of the weak
directions are included in the calibration set. To ensure such
excitations, one should use data with specified outputs (Table
3). One should be careful about using open-loop data such as
step responses, which will excite only the strong directions.
(The gain matrices in Brosilow’s scheme are typically obtained
from such excitations.)
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Simple static PCR-estimators should perform well also for
other applications with multiple measurements when the meas-
urement dynamics are similar to those of the outputs to be
estimated. Conceptually, it is simple to generalize the static
estimator to obtain a dynamic estimator. This may be done
by using the PCR method to derive the model relating time
series data for § and y.

Partial least-square (PLS) estimator

The PLS estimator is an alternative regression estimator,
which also takes into account the directions in Y when finding
the approximate pseudo inverse of © (Hoskuldson, 1988). In
the PLS method, this is done by considering the eigenvalues
of 87YY0 rather than of Q'O used in PCR. This takes into
account the directions in © which have the largest covariance
with Y, and thus ensures that these directions are not deleted.
For the linear distillation example studied in this article, the
PCR and PLS methods gave almost identical results. When
nonlinear data were used, however, we lfound PLS to be some-
what better (Mejdell and Skogestad, 1991a).

Obtaining and implementing the estimators

Both the Kalman filter and the Brosilow ¢stimalor require
a linear open-loop model. On the other hand, the PCR ap-
proach only deals with the data which may or may not be
obtained from a model. Using the dala is an advantage, es-
pecially when experimental data are used, but also when we
do have a good simulation model, as in this article, since we
save a significant effort in obtaining the linear model matrices.

To obtain the Kalman filter onc must specily weighting
matrices for noise and disturbances. These may be difficult to
determine a priori, especially since the best value of these
weights may not be physically meaningtul. We experienced no
numerical problems in obtaining the Kalman filter gain matrix,
even for our high order system with 41 states. The Brosilow
estimator has the advantage of having essentially no tuning
parameters, but this makes it inflexible and does not work well
for ill-conditioned plants. Although not discussed here, the
PCR/PLS estimator depends strongly on the scaling of the
variables. These scalings are then effective tuning parameters,
which are used primarily to reflect the measurement noise. No
variable scaling was applied here.

As for implementation, a static estimator is, of course, much
simpler than a dynamic estimator.

p-analysis of estimators

The structured singular value, , is a powerful tool for com-
paring multivariable linear systems with unknown disturbances
and uncertainty, without having to perform a large number
of simulations. Since p is a worst-case measure, this tool de-
termines explicitly the weak spots in a system. For example,
it would have been much more difficult (o determine the es-
timators’ sensitivity to input uncertainty from simulations.
However, the test requires additional modeling effort to cap-
ture the uncertainty in an adequatce way.

When comparing different estimators, both the performance
in the ““open loop”’ (estimalion error) and in the *‘closed loop”’
(control error) should be considercd. One disadvantage with
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the closed-loop test is that it may depend strongly on the
controller chosen.

While using (he o analysis we encountercd problems with
how to include measurement noise. Modeling it as independent
disturbances would give a worst-case combination which would
be extremely unlikely to occur when there are many temper-
ature measurements. Therefore, in the p analysis we added the
noise as n = kn,, where n, is a constant random vector, k is a
scalar, and the noisc is assumed equal for all frequencies
lk(jw)| < 1. This approach works well when comparing es-
timators with the same location and number of measurements.
in other cases, however, the specific value of the random
numbers in the noise vector n, may be important and may bias
the g values. When comparing various PCR estimators we
therefore did not include noise in the p analysis, but rather
included noise in the calibration sets.

Although the g analysis has some difficulties of representing
noise, it was found to be most suilable for studying the per-
formance of the estimaltors for this ill-conditioned plant.

Nonlinearity and real implementation

All models used in (his article are linear. This simplifies the
problem and is nccessary for using the p analysis. Also, a
system that does not perform well in the linear case will gen-
erally not perform well in the nonlinear case, and a linear study
is therefore a good first step in a performance evaluation.
Nevertheless, distillation columns are known to be strongly
nonlinear, so the effect of nonlinearity should be taken into
consideration. Mejdell and Skogestad (1991a,b) show that with
both simulations and implementation on a pilot-plant column,
a linear PCR/PLS estimator works very well also for real
nonlinear distillalion columns. Logarithmic transforms on the
temperatures were used to reduce the nonlinearity.

We have also implemented a linear static PLS regression
estimator on an industrial C,-C;y-splitter and have obtained
excellent results. The estimator was based on historical data
using ten temperature measurements as well as a measurement
of the bottom flow. The flow measurement was filtered through
a large dynamic lag and was included mainly to take into
account variations in the column behavior with load. Loga-
rithmic transforms on the composilions were used to reduce
the effect of nonlincarity. Another implementation has been
performed on an industrial butane-splitter using nine temper-
ature measurements. [For both these implementalions it was
found that the static estimator had the additional advantage
of providing values that are a few minutes ahead of the actual
compositions. (The reason for this is that the internal tray
temperatures respond somewhat faster than those at the col-
umn ends.) Similar results are reported for the pilot-plant
column studicd by Mejdell and Skogestad (1991b). Pilot-plant
data on the same column also show that temperature meas-
urements on the exlernal column wall, which are much cheaper
to implement, may give very good results when experimental
data are used (o obtain a PCR/PLS estimator.

Conclusions

We found for our distillation example that one can achieve
remarkably good performance with the static PCR estimator,
and almost as good as a Kalman filter based on a detailed
dynamic model.
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From a theoretical point of view, one may always improve
the estimate by the use of additional information (measure-
ments). In some cases, however, the value ol additional in-
formation may be minor and must be traded off against the
cost of obtaining the measurements and the increased risk of
failures.

In distillation columns, one usually should use all the avail-
able temperature measurements. More temperature measure-
ments make the estimator less sensitive to nonoptimal sensor
locations and measurement noise. For our high-purity distil-
lation example, the addition of input (flow) measurements is
not recommended, since it improves the estimate only insig-
nificantly, and with a static estimator the dynamic estimate is
deteriorated.

The reason why the static PCR estimator performed so well
is that there is a very close relationship, also dynamically,
between the temperature measurements (secondary oulputs)
and composition (primary output). Another suitable appli-
cation with multiple correlated measurements is the use of
temperature profile data from chemical reactors.

Notation

d = disturbances (= [zF]" in most cases)
d = external inputs in g-analysis

D distillate flow rate

ey y—1y, “‘closed-loop’’ control error
e, = y—J, “open-loop” estimation error

F = feed flow rate
F,,F, = gain matrices from inputs (¥ and d) to secondary meas-
urements (0)
G,,G, = gain matrices from inputs (# and d) to primary outputs ()

K = estimator block
L = rellux flow rate

PCR = principal component regression
RGA = relative gain array, =G (jw) X [G~' (jw)]T where X denotes
clement-by-element multiplication
u = manipulated inputs (=[L,V]")
v = process noise (disturbances) = [L,V,F,z]"
V = process noise covariance matrix
V = boilup rate from reboiler
W = measurement noise covariance matrix
x = state vector
xp = mole fraction of light component in bottom product
y = primary output vector = [yp, xz]”
¥ = estimated primary outputs
yp = mole fraction of light component in distillate
y, = setpoint or reference signal for y
z)- = mole fraction of light component in feed

Greek letters

relative volatility

uncertainty block

= secondary measurements (temperature vector)
vector of all available information = [6,u]
data matrix of

= structured singular value
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