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The procedure for independent design of robust decentralized controllers proposed by Skogestad and 
Morari is improved by requiring that each individual controller is of the internal model control (IMC) type. 
It is shown how to find bounds on the magnitude of the IMC filter time constants such that robust stability 
or performance is guaranteed. In contrast, Skogestad and Morari found bounds on the sensitivity functions 
and complementary sensitivity functions for the individual loops, and therefore allowed a much larger class 
of designs, resulting in more donservative conditions. A property called robust decentralized detunability 
(RDD) is introduced. If a system has this property, any subset of the loops can be detuned independently 
and to an arbitrary degree without endangering robust stability. A simple test for RDD is developed for 
systems controlled by decentralized IMC controllers. 

(Keywords: decentralized control; intemal model control; structured singular value) 

Decentralized control remains popular in the chemical 
process industry, despite developments in advanced con- 
troller synthesis procedures leading to full multivariable 
controllers. Some of the reasons for the continued popu- 
larity of decentralized control are: 

(1) 
(2) 
(3) 

(4) 

(5) 

Decentralized controllers are easy to implement. 
They are easy for operators to understand. 
The operators can be allowed to retune the con- 
trollers to take account of changing process con- 
ditions (as a result of (2) above). 
Some measurements or manipulated variables may 
fail. Tolerance of such failures is more easily incor- 
porated into the design of decentralized controllers 
than full controllers. 
The control system can be brought gradually into 
service during process startup and taken gradually 
out of service during shutdown. 

A system is said to have robust stability if it is stable 
regardless of whatever uncertainty is contained within 
the system. Because of items (4) and (5) above, we would 
like the system to remain stable if any subset of the 
control loops is out of service, or if the individual con- 
trollers have been detuned. Furthermore, we would like 
this stability to be a robust property. We define such 
systems to be robust decentralized detunable: 
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Definition 1: A closed loop system is said to be robust 
decentralized detunable (RDD) if each controller ele- 
ment can be detuned independently by an arbitrary 
amount without endangering robust stability. 

Decentralized detunability for a given controller 
should not be confused with decentralized integral con- 
trollability (DIC), which is a property of the plant only. 
DIC implies that there exists for a given plant a decentra- 
lized controller with integral action in all channels that is 
decentralized detunable. Note that the notion of RDD 
requires that for each controller parameterization one 
defines more precisely what is meant by ‘detuning’. For a 
PID controller, detuning usually refers to reducing the 
gain, increasing the integral time or decreasing the deri- 
vative time (or all combined). For an IMC controller 
detuning refers to increasing the filter time constant, ci. 

The design of a decentralized control system consists 
of two main steps: 

(A) Control structure selection, that is, choosing mani- 
pulated inputs and controlled outputs, and pairing 
inputs and outputs. 

(B) Design of each single-input single-output (SISO) 
controller. 

In this paper we will consider step B, and assume that 
step A has already been done (e.g. by using the tools in 
References, 1 and 2). 

Standard controller synthesis algorithms (e.g. HZ or 
H, synthesis) lead to multivariable controllers, and can- 
not handle requirements for controllers with a specified 
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Figure 1 Block diagram of feedback systems: a, conventional decen- 
tralized controller; b, decentralized IMC controller 

structure. Instead, some practical approaches to the 
design of decentralized controllers have evolved: 

0 Parameter optimization 
l Sequential designs5 
l Independent designbe. 

In this work we consider independent design, and 
throughout we will use the structured singular value (see 
below) as the measure of control quality. 

The independent design procedure presented in this 
paper consists of three key steps: 

(1) Treat the controller parameters as real design uncer- 
tainty. 

(2) Ensure that only parameters with the correct sign are 
allowed by the design uncertainty description. 

(3) Find bounds on the controller parameters such that 
robust stability or robust performance is guaranteed. 

In this paper this procedure is applied to an IMC type 
controller, but a similar procedure may be applied to 
other controller parameterizations. 

Notation 

In this paper, G(s), with elements g,(s), will denote the 
plant, which is assumed to be of dimensions n x n. The 
matrix consisting of the diagonal elements of G(s) is 
denoted G(s) = diag{g&)}. The reference signal (set- 
point) is denoted I, manipulated inputs are denoted u 
and outputs y. If disturbances are present, G&s) denotes 
the (open loop) transfer function from disturbances d to 
outputs y. Throughout this work, all controllers are 
assumed to be completely decentralized. The decentra- 
lized conventional feedback controller is denoted C(s), 
with ith diagonal element c,(r) (Figure la). Likewise, the 

figure 2 Block diagram for feedback system with multiplicative input 
uncertainty and inverse multiplicative output uncertainty. The inverse 
uncertainty may alternatively represent a performance specification in 
terms of weighted sensitivity 

decentralized IMC controller is denoted Q, with ith dia- 
gonal element q&) (Figure 16). 

The sensitivity function is S(s) = (I + G(s)C(s))-’ and 
the complementary sensitivity function is H(s) = Z - 
S(s) = G(s)C(s)(Z + G(s)c(.~))-~. The sensitivity func- 
tions and complementary sensitivity functions for the 
individual loops are collected in the diagonal matrices 
S(s) = (I + G(.r)C(s))-’ and Z?(r) = &)C(s)(Z + 
G (s)C(s))- I. Note that the diagonal elements of s(s) and 
p(s) do not equal the diagonal elements of S(s) and H(s), 
respectively. The ith elements on the diagonal of 5 and fi 
are gi and 6, respectively. 

Robust control and the structured singular value 

Readers familiar with the structured singular value can 
skip this section. Since no model is a perfect represen- 
tation of the system, the control system stability and 
performance should be little affected by the uncertainties 
of the model. In this paper we use the structured singular 
value, p, introduced by Doyleg, as a measure of the 
robustness of feedback systems. Within the u framework, 
one accepts that it is impossible to find a perfect model, 
and instead one requires information about the struc- 
ture, location and estimates of the magnitude of the 
model uncertainties. 

In Figure 2 we have drawn an example of a feedback 
system with uncertainty in the inputs and outputs*, 
represented by the perturbation blocks A1 and Ap, respec- 
tively. Note that the individual perturbations can be 
restricted to have a certain structure. For instance, as 
individual inputs and outputs usually do not affect each 
other, both A1 and Ap may be diagonal. The weights W, 
and W, are frequency-dependent and normalize the max- 
imum magnitude of A, and Ap to unity. 

Any block diagram with uncertainties represented by 
perturbation blocks can be rearranged into the M - A 
structure of Figure 3, if external inputs and outputs are 
neglected. In Figure 3, A is a block diagonal matrix with 
the perturbation blocks of the original block diagram on 
the diagonal, and M contains all the other blocks in the 
block diagram (plant, controller, weights). For the speci- 
fic case in Figure 2, we have that: 

A = diag{A,, A,} (1) 

*Many other types of uncertainties are possible; see Reference 9 for 
details on how to represent different uncertainties with perturbation 
blocks. 
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Figure 3 Feedback system rearranged into a perturbation block A and 
an interconnection matrix M 

M= 
i 

- W,CG(Z + CG)-’ - R’,C(Z + GC)-’ 
W,G(Z + CC)-‘) R’,(Z + GC)-’ 1 (2) 

Provided M is stable (the system has nominal stability, 
NS) and A is norm bounded and stable (stable pertur- 
bation blocks), it follows from the Nyquist stability cri- 
teriong that the overall system is stable provided 
det(Z - MA) #O VA, Vo. In this case the system is said 
to have robust stability (RS). The structured singular 
value is defined such that: 

pi’ = 

min{bldet(Z - MA) = 0 for some A, (J(A) < S} (3) 

If weights are used to normalize the maximum value of 
the largest singular value of A to unity (@A) = 1) at all 
frequencies, as in Figure 2, the system is robustly stable 
(RS) for any allowable perturbation A provided 

u&W Cl. 
Doyle9 showed that performance can be analysed in 

the p framework by considering an equivalent stability 
problem of larger dimension. In this paper we use a 
performance specification of the type @W&J < 1 Vo 
where S, is the worst sensitivity function (S) made poss- 
ible by the perturbation blocks. This can be represented 
in Figure 2 by letting the block Ap be a full matrix which 
represents the perfomance specification 6(&S,) < 1 
rather than uncertainty, and robust performance (RP) 
may be tested in the same way as robust stability. To 
simplify the notation, we will in some cases use u(M) to 
mean sup,,,~.&W). Doyle and ChuiO proposed an algor- 
ithm for the synthesis of controllers which minimizes p, 
known as D - K iteration. However, D - K iteration 
results in full controllers, and the problem of synthesiz- 
ing u-optimal decentralized controllers has not been 
solved. This paper discussed a procedure for indepen- 
dently designing decentralized controllers which yield 

u(M) G 1. 

Independent design 

Independent design of robust decentralized controllers 

was introduced by Skogestad and Mora+. It is based on 
Theorem 1 in Reference 11, which we restate here. 

Theorem 1: Let the u interconnection matrix M be 
written as lower linear fractional transformation (LFT) 
of the transfer function matrix T 

A4 = F,(N, T) = N,, + N,2T(Z - Z&T)-‘A$, (4) 

Assume uA(ZV,,) < 1 and det(Z - ZV,,T) # 0, then 

if 

where cr solves 

(5) 

(6) 

(7) 

and A = diag(A, Tj 

Proof: See Reference 11. 

The condition u,@) < 1 is typically the RP condition 
we want to satisfy, and T is some important transfer 
function which depends on the controller. cr represents 
the upper bound on the design ‘uncertainty’ allowed for 
T. Skogestad and Morari” use Theorem 1 to find bounds 
on the senstivity function and complementary sensitivity 
functions for the individual loops (i.e. T = sand T = Z? 
are used). The bounds on 5 and fi can be combined over 
different frequency ranges. Thus, if either the bound on 5 
or the bound on Z? is fulfilled for all loops at all freqen- 
ties, then PA(M) < 1 is achieved. 

The rationale behind Theorem 1 is to treat the transfer 
functions (7”) as a ‘class of possible designs’ (i.e. as design 
uncertainty), and find bounds on the magnitude of this 
fictitious uncertainty which guarantee that PA(M) < 1. 
One is subsequently faced with finding controllers such 
that the bounds on the transfer functions are fulfilled. It 
is therefore important for the success of independent . 
design that T introduces as little additional uncertainty 
as possible. It turns out that parameterizing the class of 
possible designs as T = sand T = Z?is not ideal for this 
purpose. 

Example I 

Consider Example 1 in Chiu and Arkun? 

1.66 - 1.74e-” 
39s + 1 4.4s + 1 

G(s) = 0 34e-s 1 k-s 

I I 

(8) 

8.9s + 1 3.8s + 1 

There is independent input uncertainty with input uncer- 
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tainty weight W,(s) = 0.074, and the performance 
requirement is given by the performance weight 
W,(s) = 0.25((7s + 1)/7s)I,. 

The condition for robust performance becomes 
u,(M) < 1, with A = diag{A,, Ar}. A, is a complex diag- 
onal matrix representing the input uncertainty, and AP is 
a full complex matrix representing the performance. The 
interconnection matrix M is given in Equation (2). Chiu 
and Arkun3 attempted independent design for this exam- 
ple, using T = s” and T = I?, but were unable to find an 
IMC controller which fulfilled the resulting bounds. We 
will, however, demonstrate that independent design can 
be used to design an IMC controller for this example, if 
we parameterize the class of possible designs in terms of 
the IMC filter time constant ei rather than in terms of 3 
and ii. 

Independent design with decentralized IMC controllers 

We use the internal model control (IMC) technique12 to 
parameterize the individual controller elements ci, and 
select T as a parameterization of the tuning constant si in 
the IMC controller. Note that the design of ci is based on 
the corresponding diagonal element of the plant, and this 
may not be a good choice in some cases. Our approach is 
similar to that of Lee and Morariu, but we use ei as the 
parameter rather than the filter A. The relationship 
between the elements qi of the IMC controller and the 
elements ci of the conventional decentralized controller is 
given by (Figure I): 

Ci = 4x1 - g$i)-’ 

In the IMC design procedure qi has the form: 

(9) 

qi = g,‘x (10) 

where iii is the minimum phase part of g,, andf;: is a low- 
pass filter used to make qi realizable and to detune the 
system for robustness. In order to simplify the exposi- 
tion, we will assume the plant G to be open loop stable, 
and use a low-pass filter of the form: 

fi= l 
(El.9 + 1)y (11) 

That is, thef; is taken to be a low-pass filter of order nr, 
consisting of nr identical first-order low-pass filters in 
series. 

Choice of T for independent design. After fixing nf, the 
only thing which remains unknown in the IMC tech- 
nique is the value of Ed To fulfil performance require- 
ments at low frequencies, the closed loop system must be 
sufficiently fast, which means that the filter time constant 
Ei must be smaller than a certain value. On the other 
hand, the closed loop system must be suthciently detuned 
to avoid robustness problems at higher frequencies, thus 
requiring Ei to be larger than a certain value, meaning 
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Figure 4 The interconnection matrix M expressed as an LFT of the 
IMC filter F and as an LFT of the ‘uncertainty’ associated with the 
filter time constants 

that l/ei must be smaller than some value. We will there- 
fore use Theorem 1 to find bounds on ei and also on: 

E?i dAf l/ci (12) 

which can be combined over different frequency ranges. 
Since we are using a specific control structure, the class of 
possible designs is much smaller than if we use Theorem 
1 to find bounds on 3 and Z?. Bounds on 3 and A are 
therefore potentially much more conservative. 

To derive conditions on Ei and ei that guarantee 
u&V) < 1 we will proceed as follows. First we parame- 
terize the u interconnection matrix M as an LFT of the 
IMC filter F and then as an LFT of the ‘uncertainty’ in 
the filter time constant. We refer readers to Reference 11 
for details on how to find the matrix NF needed in Figure 
4. We will only elaborate on how to find fi_ i.e. to 
expressA as an LFT of the design ‘uncertainty’ T = AC or 
T = A, associated with Ei or eti We then solve Equation 
(7) at each frequency point to find the desired bound. 
Note that it is sufficient at each frequency toesatisfy the 
bound either for Ei or for ei = l/ci, but we must of course 
use the same bound for Ei (and eJ at all frequencies. Note 
that although 6;; in Equation (10) will normally not be 
realizable, its frequency response is easily calculated. 
Also note that since we work with the frequency res- 
ponse, we will have to check aposteriori for the (internal) 
stability of the u interconnection matrix. 

First-order low-pass jilters. Consider first the case 
n, = 1. We then havef;, = l/(ep + 1). The objective is to 
find the allowable ranges for ei and ei = l/ci that at each 
frequency guarantee u(M) < 1. Since we do not allow 
negative values for ci we should not simply write leil < c,. 
Instead write: 

Ei = $1 + A,i) 1 Ail 6 1 (13) 



Design of robust decentralized controllers: M. Hovd and S. Skogestad 

In order to use Theorem 1 we now need to write J as an 
LFT of Aei and AeP We have: 

A= l 
gl + A& + 1 (1% 

which may be written as an LFT, f;: = F,(flti, A,), with: 

L 

Similarly, fi: = F,(Nei, A,J with 

(17) 

This shows how to express an individual titer element 
J as an LFT of the design ‘uncertainty’ in the filter time 
constant (Ei or l/Q. The LFT for the overall IMC filter 
F = diagm is then just a simple diagonal augmentation 
of the corresponding blocks of the LFT for the indivi- 
dual filter elements. 

We now use Theorem 1 with T = 4 = diag{Ai} and 
T=A,= diag{Aei} to derive bounds on Ei and I/El = ei, 
respectively. Using I&I < 1 (Equation (13)) and IAeiI < 1 

(Equation (14)) corresponds to setting cT = 1 in Equa- 
tion (7), such that Equation (7) becomes G(N) = 1, 
where A = diag{A, A} or 8 = diag{A, Ae}. A, and AC are 
diagonal matrices with real elements. N depends on E* or 
e* (as appropriate), and we denote the values that give 
J.&(N) = 1 as ET and ez, respectively. For a fixed fre- 
quency, we are then guaranteed that c(&4) < 1 
provided: 

or 

ei<ejVieEi2f ,’ Vi 
s 

(19) 

Note that although the r# are independent, we get the 
same bound for all eP 

Note also that l&N) is non-decreasing with increasing 
values of E: or e5, such that it is straightforward to 
obtain E* and e*. This follows from the fact that we use 
IAtiI < 1 and therefore the set of possible values for 
E, = (e*/2)(1 + 4,) for any fixed value of E* contains all 
the possible values for ei for any smaller E* (and similarly 
for ei and e*). 

Higher order low-passjilters. Above we assumed nf = 1, 
but in -1MC designs, one will often use filters of order 
higher than one. We therefore need to be able to express 
the higher order filters as LFTs of $ and A,. For this we 
can use the rules for series interconnection of linear 

dynamic systems. First note that G(s) = C(sl- 
A)-iZ3 + D may be written as an LFT of (l/s)Z, with: 

N,, = D; N,2 = c; N2, = B; N22 = A 

The formulae for series interconnection G = GIG2 of 
dynamic systems G,(s) = Cl(sZ - A,)-*B, + D, and 

(320) = C2(sZ - A,)- lB2 + D2 are14: 

A= AI 0 
i I B2G A2 

C= P2G Gl 

D = D2D, 

The formulae for series interconnection of dynamic 
systems can be used directly to express a low-pass filter 
element J of order nr as LFTs of: 

“ftima 

&i = diag{6nti) 

or 

ytimes 

Aei = diag{8,,...,6,) 

Here we have assumed that the same filter time constant 
Ei is repeated n, times as given in Equation (11). Note that 
the filter time constants Ei in the different filter elements 
are allowed to differ. For a plant of dimensions n x n we 
therefore end up with n repeated scalar uncertainty 
blocks for the IMC filter, each of these blocks being 
repeated ns times.+ 

Independent ZMC design procedure 

With the preliminaries above, we can now propose an 
independent design algorithm in terms of the IMC filter 
time constants, Ei: 

Step I: Find the matrices N,, expressing the p intercon- 
nection matrix M as an LFT of 4, and the matrix N,, 
expressing M as an LFT of 4. N, will depend on the 
value of e*, and N, will depend on the value of e*, and we 
must therefore recompute N, and N, for every new value 
of E* and e*, respectively. 

Step 2: We get 

PA(M) Q 1 

if 

Xhx may use low pass lilt4m of di&xcnt orders in the di&rcnt lilter 
elements, in which cast the value of PI, will differ for different filter 
elcmcnts. 

.l Prnc Cnnt l-Q-Q.7 t/d? Nn 1 A7 
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Figure 5 Robust performance bounds on the filter time constant for 
Example 1. Solid line, sf (upper bound); dashed line, l/e: (lower 
bound) 

where ej solves: 

W’JJ = 1 where A = diag{A, A,} (21) 

Similarly, let ez solve @(NJ = 1, giving the bound: 

Ei 2 l/ej Vi (22) 

Step 3: From Step 2 and Theorem 1 we know that 
u&%4) < 1 for th e range of values of a, which at all 
frequencies are either within the range of values in Equa- 
tion (20) or within the range of values in Equation (22). 

Step 4: Choose a value of si within the range of values 
found in Step 3, and verify the stability of h4 for this 
choice of c,.t 

*If we are successful in Steps 3 and 4, the controller 
design is completed. Since we have both real and com- 
plex perturbations, Step 2 requires p calculations for 
mixed real and complex perturbationsis, which is still a 
research topic. However, the existing u software has 
proved to be acceptable in many cases. 

Examples 

Example 1 (continued). Consider again the robust per- 
formance problem in Example 1. For this problem we 
choose a second-order low-pass filter (n, = 2) in each 
element of the decentralized IMC controller. This filter 
order is the lowest that gives a strictly proper controller. 
Since we have a 2 x 2 system, this will add two real, 
repeated scalar perturbations, each repeated twice, i.e. 
the design uncertainty is 4 = diag{$,, 6,r, S,, 8,). 

From Step 2 in the design procedure, we obtain the 
results in Figure 5. We see that values of Ei between 3.7 
and 6.6 are at all frequencies either below the upper 
bound or above the lower bound. Choosing E = 5 for 
both loops, it is easily verified that the system is nomi- 
nally (internally) stable. We have thus completed an 
independent design for this example. The response of the 

tFor any value of E, within the range found in Step 3, the map under the 
Nyquist D-contour of det(Z - MA) will encircle the origin the same 
number of times. Thus, if M is found to be unstable in Step 4, it is 
‘robustly unstable’. 

-1.51 I 
0 10 20 30 40 50 60 70 80 90 100 

Time [min] 

Fignre 6 Response for Example 1 using a decentralixed IMC con- 
troller with second-order lilter with filter time constants e, = e2 = 5 
min in both loops. Solid line, nominal plant; dashed line, + 7% uncer- 
tainty in u, and - 7% uncertainty in u,; dotted line, - 7% uncertainty 
in u, and + 7% uncertainty in q 

system to a step change in the reference signal is shown in 
Figure 6 for the choice aI = a2 = 5. In Figure 6 the time 
delays in the plant are approximated by second order 
Pad& approximations. 

Example 2. The following example is provided by Chiur6. 

I - 6.7s 0.66 t 1 - 8.4s -0.61 t 1 9.06s - 0.005 + 1 1 
G(s) = 1.11 - 2.36 - 0.01 

3.25s t 1 5s t 1 7.09s t 1 1 - 34.7 46.2 0.87(11.61s t 1) 
8.15s + 1 10.9s t 1 (3.89s + 1)(18.8s t 1) 

(23) 

In this example only robust stability is considered, 
with independent, multiplicative input uncertainty with 
uncertainty weight W,(s) = 0.13(% + 1)/(0.25s + 1). 
The interconnection matrix A4 = W,CG(Z + CG)-1 and 
the condition for robust stability is p&4) < 1, where A 
is a complex diagonal matrix representing the input gain 
uncertainty. In Reference 16 it is found that independent 
design using Theorem 1 with T = fi and T = 3 cannot 
be used to design a robust controller for this example. 
Since the process is stable and only multiplicative uncer- 
tainty is considered, this clearly illustrates the shortcom- 
ings of that method. 

As in Example 1, a second-order low-pass fllter is used 
in each diagonal element of the IMC controller. This will 
add three real, repeated scalar perturbations, each 
repeated twice, i.e. the design uncertainty is 
4 = diag&, $,, &, &, &a, 6,). 

From Step 2 in the independent design procedure we 
obtain the results in Figure 7. From Figure 7 we see that 
any value of E larger than 0.55 will be acceptable. To 
complete the independent design procedure (Step 4), we 
choose E. = 1 for all loops, and find that the system is 
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Figure 7 Lower bound on filter time constant (l/e:) for robust stabi- 
lity in Example 2 
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Figure 8 Responses for Example 2: a, {E,,E~,E~} = {7.3,3.8,0.56}; b, 
E, = E* = E, = 0.56. Solid line, nominal plant; dashed line, 0.5 minute 
time delay in all inputs, + 13% gain uncertainty in u, and u2 and - 13% 
gain uncertainty in uj 

stable. We thus conclude that the system will be robustly 
stable for any value of ei > 0.55. 

In general we want 6i to be small for a faster nominal 
response. However, since this example contains no per- 
formance specification, one should take care when 
choosing the filter time constants. This is demonstrated 
in Figure 8, which shows step responses for the case with 
large differences in the filter time constants ({E,, c2, 
e3} = {7.3,3.8,0.56}, Figure 8a) and with all loops tightly 
tuned (E, = c2 = c3 = 0.56, Figure 86) both for the 
nominal case (solid line) and with uncertainty (dashed 
line). We see that the interactions degrade the perfor- 

mance significantly when all the loops are tightly tuned, 
even in the nominal case. 

REMARK Adding performance requirements and look- 
ing for an allowable region for Ei (as we did in Example 1) 
did not prove successful for Example 2. It thus seems 
that independent design is not a very favourable design 
technique for this example, because we cannot take 
advantage of allowing the loops to be tuned differently. 
Indeed, the values {cl, c2, Ed} = (7.3, 3.8, 0.56) used in 
Figure 8a were based on experience gained using sequen- 
tial design.’ 

Robust decentralized detunability in the MC framework 

In the IMC framework, controllers are detuned by 
increasing the filter time constants. We have thus found 
for Example 2 that the loops can be detuned indepen- 
dently of each other, without endangering robust stabi- 
lity, provided all loops have et > 0.55. Thus the closed 
loop system in Example 2 with Ei > 0.55 in all loops is 
found to be robust decentralized detunable according to 
Definition 1. Similarly, after removing the performance 
requirement from Example 1 and redoing the calcula- 
tions for robust stability, we find that it is robust decen- 
tralized detunable provided ci > 0.16 for both loops. 

A requirement for robust decentralized detunability is 
that the individual loops are stable. A decentralized IMC 
controller as parameterized in Equation (10) will make 
the individual loops stable, which in most cases is an 
advantage. However, integral action is inherent in IMC 
controllers, and integral action and stability of the indivi- 
dual loops are known to be incompatible with stability of 
the overall system for certain plants. The Niederlinski 
index criterion17 gives a necessary condition for obtain- 
ing stability both of the individual loops and the overall 
system when there is integral action in all channels. The 
Niederlinski index criterion has recently been generalized 
to open loop unstable plants2. Let the number of right 
half plane (RHP) poles in G be nU (including multiplici- 
ties), and the number of RHP poles in G” be fiu. Note that 
in general fiU # nU. If all the individual loops are stable, 
a necessary condition for the stability of the overall 
system is that the sign of the Niederlinski index, 
N, = detG(O)/detG(O), is positive if n’” - nU is even and 
negative if n”” - n,, is odd. Thus, before attempting to 
perform an independent design, one should check that 
overall stability can be achieved with integral action in 
all channels and having stable individual loops. 

Example 3. We would like to emphasize Step 4 in the 
independent design procedure, that nominal stability 
must be checked explicitly for one value of Ei within the 
bounds found. Consider the process: 

5 8 
209 + 12s + 1 2052 + 12s -t 1 1 

G(s) = 6 2 (24) 

40.9 + 12s t 1 409 + 12s + 1 

J 
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with independent actuator uncertainty with uncertainty 
weight W,((s) = 0.2((10s + I)/@ + l))& Since this 
plant is stable we have that fiu - nu = 0 and since the 
Niederlinski index is negative, N, = - 3.8, we know that 
we cannot have the individual loops stable and at the 
same time achieve overall system stability. Nevertheless, 
assume that we proceed with independent design, and 
choose third-order low-pass filters for both loops. We 
find that Step 2 in the independent design procedure 
indicates that any value of E > 4 (approximately) will 
give robust stability (figure omitted). Calculating p for 
E = 5 for both loops, we do indeed obtain a value of 
p < 1 at all frequencies. The reason, which we find in 
Step 4 in the independent design procedure, is that the 
overall system is nominally unstable. The p test merely 
tells us that this instability is a robust property. For other 
cases, it may not be this easy to tell a priori that the 
overall system will be unstable with the individual loops 
stable. 

Discussion 

For both Examples 1 and 2, Chiu and ArkunsJj were 
unable to perform an independent design, using the pro- 
cedure of Skogestad and Morari6. We have shown that a 
solution is possible using the proposed independent IMC 
design procedure. This demonstrates the importance of 
introducing as little conservatism as possible in the 
description of the design uncertainty associated with the 
controllers when performing an independent design. 

The bounds obtained in the proposed independent 
IMC design procedure are common to all the filter ele- 
ments, and it is not obvious how to take advantage of the 
possibility of having differing filter time constants in the 
different filter elements. Trying to add a performance 
requirement to Example 2 illustrates the difficulty with 
applying independent design to problems for which 
different bandwidths in the different loops are necessary. 
One may use constant ratios between the filter time con- 
stants in our independent design procedure (e.g. choos- 
ing el = E*, Ed = 10~* etc.) but in this case a simple 
parameter search for E* and e* would be much simpler. 

One can relatively easily use parameter optimization 
to find the IMC filter time constants ci that minimize 
p(IM), and a valid question is whether this is a better 
approach. The answer is that although our independent 
design procedure cannot be used to find the optimal filter 
time constants, it has the advantage of providing a range 
of values for which robust stability/performance is ful- 
filled, and can also guarantee that the system is robust 
decentralized detunable. For example, applying para- 
meter optimization to Example 1 we find+ that the opti- 
mal value of p is 0.60, which is achieved for e1 = 0.10 
and cz = 7.67. However, parameter optimization gives 
no information about how robust performance deterior- 
ates when the filter time constants are changed from their 

tAfter restricting E, > 0.10 i = 1,2, in the same way as in Reference 3. 
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optimal values, and cannot show that the robust perfor- 
mance requirements are fulfilled for any ei in the range 
3.7 < ei < 6.6. Furthermore, parameter optimization 
cannot be used to find that the system is robust decentra- 
lized detunable provided ~~ > 0.16. 

Conclusions 

We have proposed a parameterization of the class of 
allowable decentralized designs which is based on the 
following four key steps: 

(1) 
(2) 

(3) 

(4) 

Use an IMC controller design for each loop. 
Select the filter time constant Ei as the ‘uncertain’ 
parameter. 
Parameterize ei and ei = l/ei such that only positive 
values are allowed. 
Obtain bounds on both ei and ei that guarantee 
robust stability/performance. 

A new independent design procedure based on the above 
parameterization is presented and we have found that: 

The result of considering only decentralized IMC 
controllers with a specified filter structure is that the 
set of possible controller designs considered is much 
smaller than the set of possible controller designs 
when trying to find bounds on s” and E?; and the 
resulting bounds are therefore less conservative. 
One can derive a bound on the IMC filter time con- 
stants which ensures that the system is robust decen- 
tralized detunable. 
It is critical that real perturbations are used for the 
parameterization of Ei and ei. ~1 software capable of 
handling real perturbations is therefore needed. 
The procedure is difficult to apply for problems 
where different bandwidths in the various loops are 
desired. 

The independent design procedure proposed here can 
also be applied to other types of controllers. For exam- 
ple, one can find bounds on the ratio of gain to integral 
time (k/r,) for PID controllers. We can only find bounds 
for one parameter at the time; the other parameters have 
to be found by some other method in advance. In con- 
trast, decentralized IMC controllers have only one tun- 
ing parameter, and are therefore preferable for our inde- 
pendent design procedure. 
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