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The objective of this chapter is to give the
reader a basic knowledge of how robustness
problems arise and what tools are available
to identify and avoid them.

“We first discuss possible sources of model
uncertainty and look at the traditional
methods for obtaining robust designs, such
as gain margin, phase margin, and maxi-
mum peak criterion (M circles). However,
these measures are difficult to generalize to
multivariable systems.

As an introductory example to robustness
problems in multivariable systems we then
discuss two-point control of distillation
columns using the LV configuration. Be-
cause of strong interactions in the plant, a
decoupler is extremely sensitive to input
gain uncertainty (caused by actuator uncer-
tainty). These interactions are analyzed us-
ing singular value decomposition (SVD) and
RGA analysis. We show that plants with
large RGA elements are fundamentally
difficult to control and that decouplers
should not be used for such plants. It is
shown that other configurations may be less
sensitive to model uncertainty.

At the end of the chapter we look at
uncertainty modelling in terms of norm
bounded perturbations (As). It is shown that
the structured singular value u is a very

powerful tool to analyze the robust stability
and performance of multivariable control
systems.

14-1 ROBUSTNESS AND
UNCERTAINTY

A control system is robust if it is insensitive
to differences between the actual system
and the model of the system that was used
to design the controller. Robustness prob-
lems are usually attributed to differences
between the plant model and the actual
plant (usually called model-plant mismatch
or simply model uncertainty). Uncertainty
in the plant model may have several origins:

1. There are always parameters in the lin-
ear model that are only known approxi-
mately or are simply in error.

2. Measurement devices have imperfec-
tions. This may give rise to uncertainty of
the manipulated inputs in a distillation
column because they are usually mea-
sured and adjusted in a cascade manner.
In other cases, limited valve resolution
may cause input uncertainty.

3. At high frequencies even the structure
and the model order is unknown, and the
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uncertainty will exceed 100% at some
frequency.

4. The parameters in the linear model may
vary due to nonlinearities or changes in
the operating conditions.

Other considerations for robustness in-
clude measurement and actuator failures,
constraints, changes in control objectives,
opening or closing other loops, and so on.
Furthermore, if a control design is based on
an optimization, then robustness problems
may also be caused by the mathematical
objective function, that is, how well this
function describes the real control problem.

In the somewhat narrow use of the term
used in this chapter, we shall consider ro-
bustness with respect to model uncertainty
and shall assume that a fixed (linear) con-
troller is used. Intuitively, to be able to cope
with large changes in the process, this con-
troller has to be detuned with respect to the
best response we might achieve when the
process model is exact.

To consider the effect of model uncer-
tainty, it needs to be quantified. There are
several ways of doing this. One powerful
method is the frequency domain (so-called
H-infinity uncertainty description) in terms
of norm-bounded perturbations (As). With
this approach one also can take into ac-
count unknown or neglected high-frequency
dynamics. This approach is discussed to-
ward the end of this chapter. Readers who
want to learn more about these methods
than we can cover may consult the books by
Maciejowski (1989) and Morari and Zafiriou
(1989).

The following terms will be useful:

Nominal stability (NS). The system is stable
with no model uncertainty.

Nominal performance (NP). The system sat-
isfies the performance specifications with
no model uncertainty.

Robust stability (RS). The system also is
stable for the worst-case model uncer-
tainty. '

Robust performance (RP). The system also
satisfies the performance specifications
for the worst-case model uncertainty.

14-2 TRADITIONAL METHODS
FOR DEALING WITH MODEL
UNCERTAINTY

14-2-1 Single-Input-Single-Output
Systems

For single-input—single-output (SISO) sys-
tems one has traditionally used gain margin
(GM) and phase margin (PM) to avoid
problems with model uncertainty. Consider
a system with open-loop transfer function
g(s)c(s), and let gc(jw) denote the fre-
quency response. The GM tells by what
factor the loop gain |gc(jw)l may be in-
creased before the system becomes unsta-
ble. The GM is thus a direct safeguard
against steady-state gain uncertainty (error).
Typically we require GM > 1.5. The phase
margin tells how much negative phase we
can add to gc(s) before the system becomes
unstable. The PM is a direct safeguard
against time delay uncertainty: If the system
has a crossover frequency equal to w, [de-
fined as |gc(jw )l = 1], then the system be-
comes unstable if we add a time delay of
6 = PM/w,. For example, if PM = 30° and
. = 1 rad/min, then the allowed time de-
lay error is 6 = (30/57.3) rad/1 rad/min
= 0.52 min. It is important to note that
decreasing the value of w, (lower closed-
loop bandwidth, slower response) means
that we can tolerate larger deadtime errors.
For example, if we design the controller
such that PM = 30° and expect a deadtime
error up to 2 min, then we must design the
control system such that w, < PM/0 =
(30/57.3)/2 = 0.26 rad/min, that is, the
closed-loop time constant should be larger
than 1/0.26 = 3.8 min.

Maximum Peak Criterion
In practice, we do not have pure gain @d
phase errors. For example, in a distillatlf)ﬂ
column the time constant will usually 12
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crease when the steady-state gain increases.
A more general way to specify stability mar-
gins is tO require the Nyquist locus of gc(jw)
to stay outside some region of the —1 point
(the “critical point”) in the complex plane.
Usually this is done by considering the max-
imum peak M, of the closed-loop transfer
function T

Mt=max|T(jw)|, T = ge(1 +gc)_1

(14-1)

The reader may be familiar with M circles
drawn in the Nyquist plot or in the Nichols
chart. Typically, we require M, = 2. There
is a close relationship between M, and PM
and GM. Specifically, for a given M, we are
guaranteed

1
GM>1+ —,
M

t

1 1
PM > 2 i > — rad (142
arcsm( M ) rad (14-2)

t Ml

For example, with M, = 2 we have GM >
1.5 and PM > 29.0° > 1/M, rad = 0.5 rad.

Comment The peak value M, of the
sensitivity function S = (1 + gc)~! may be
used as an alternative robustness measure.
1/M, is simply the minimum distance be-
tween gc(jw) and the —1 point. In most
cases the values of M, and M, are closely
related, but for some “strange” systems
it may be safer to specify M, rather than
M. For a given value of M, we are guar-
anteed GM > M,/(M, — 1) and PM >
2arcsin(1/2M)) > 1/M..

14-2-2 Multi-input-Multi-output
Systems

The traditional method of dealing with
robustness for multi-input—multi-output
(MIMO) systems (e.g., within the frame-
work of “optimal control,” linear quadratic
Gaussian (LQG), etc.) has been to intro-
duce uncertain signals (noise and distur-
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bances). One particular approach is the loop
transfer recovery (LTR) method where un-
realistic noise is added specifically to obtain
a robust controller design. One may say that
model uncertainty generates some sort of
disturbance. However, this disturbance de-
pends on the other signals in the systems,
and thus introduces an element of feed-
back. Therefore, there is a fundamental
difference between these sources of uncer-
tainty (at least for linear systems): Model
uncertainty may introduce instability,
whereas signal uncertainty may not.

For SISO systems the main tool for ro-
bustness analysis has been GM and PM,
and as previously noted, these measures are
related to specific sources of model uncer-
tainty. However, it is difficult to generalize
GM and PM to MIMO systems. On the
other hand, the maximum peak criterion
may be generalized easily. The most com-
mon generalization is to replace the abso-
lute value by the maximum singular value,
for example, by considering

M, = meE(T(jw)) ,

T =GC(I1+ GC)™! (14-3)

The largest singular value is a scalar posi-
tive number, which at each frequency mea-
sures the magnitude of the matrix 7. As
shown later, this approach has a direct rela-
tionship to important model uncertainty de-
scriptions and is used in this chapter.

Comment In Chapter 11, a different
generalization of M, to multivariable sys-
tems is used: First introduce the scalar
function W(jw) = det(J] + GC(jw)) — 1
[for SISO systems W(jw) = GC(jw)] and
then define L, = |W/(1 + W)|. The maxi-
mum peak of |L | (in decibels) is denoted
L™ and is used as part of the biggest
log-modulus tuning (BLT) method. For
SISO systems L7 = M,.

Even though we may easily generalize
the maximum peak criterion (e.g., M, < 2)
to multivariable systems, it is often not use-
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ful for the following three reasons:

1. In contrast to the SISO case, it may be
insufficient to look at only the trans-
fer function T. Specifically, for SISO sys-
tems GC = CG, but this does not
hold for MIMO systems. This means
that although the peak of T [in terms
of (T(jw))] is low, the peak of T, =
CG(I + CG)™! may be large. (We will
see later that the transfer function T is
related to relative uncertainty at the out-
put of the plant, and 7, at the input of
the plant.)

2. The singular value may be a poor gener-
alization of the absolute value. There
may be cases where the maximum peak
criterion, for example, in terms of &(7),
is not satisfied, but in reality the system
may be robustly stable. The reason is
that the uncertainty generally has “struc-
ture,” whereas the use of the singular
value assumes unstructured uncertainty.
As we will show, one should rather use
the structured singular value, that is,
u(T).

3. In contrast to the SISO case, the re-
sponse with model error may be poor
(RP not satisfied), even though the sta-
bility margins are good (RS is satisfied)
and the response without model error is
good (NP satisfied).

In the next section we give a multivariable
example where the maximum peak criterion
is easily satisfied using a decoupling con-
troller [in fact, we have GC(s) = CG(s) =
0.7/sl, and the values of M, and M, are
both 1]. Yet, the response with only 20%
gain error in each input channel is ex-
tremely poor. To handle such effects, in
general, one has to define the model uncer-
tainty and compute the structured singular
value for RP.

The conclusion of this section is that
most of the tools developed for SISO sys-
tems, and also their direct generalizations
such as the peak criterion, are not sufficient
for MIMO systems.

14-3 A MULTIVARIABLE
SIMULATION EXAMPLE

This idealized distillation column example
will introduce the reader to the deteriorat-
ing effect of model uncertainty, in particular
for multivariable plants. The example is
taken mainly from Skogestad, Morari, and
Doyle (1988).

14-3-1 Analysis of the Model

We consider two-point (dual) composition
control with the LV configuration as shown
in Figure 14-1a. The overhead composition
of a distillation column is to be controlled at
yp = 0.99 and the bottom composition at
xg = 0.01, with reflux L and boilup V as
manipulated inputs for composition control,
that is,

_ [y _(AL)
Y=lax,]” *“lav

This choice is often made because L and V
have an immediate effect on the product
compositions. By linearizing the steady-state
model and assuming that the dynamics may
be approximated by first-order response with
time constant 7 = 75 min, we derive the
linear model in terms of deviation variables

(AyD) =GLV(AL),

Axpg AV

e 0.878 —0.864)

G (s)‘7s+1(1.082 —1.096
(14-4)

Here we have normalized the flows such
that the feed rate F = 1. This is admittedly
a poor model of a distillation columl}-
Specifically, (a) the same time constant 7 1§

used both for external and internal flow  §
changes, (b) there should be a high-ordel
lag in the transfer function from L to x5 10

represent the liquid flow down to the col-

umn, and (c) higher-order composition d¥-
namics should also be included. Howeveh
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FIGURE 14-1. Control of distillation column with LV and DV configurations.

the model is simple and displays important
features of the distillation column behavior.
The RGA matrix for this model is at all
frequencies:

35.1
—36.1

~36.1
35.1 ) (14-5)

The large elements in this matrix indicate
that this process is fundamentally difficult to
control.

RGA(G™) = (

Interactions and Ill-Conditionedness

Consider the case with no composition con-
trol. The effect on top composition of a
small change in reflux L with V' constant is

0.878
Ayp(s) = 77

If we increase L by only 0.01 (that is, L /F
is increased 0.4% from 2.7 to 2.701), then
we see that the steady-state increase in yp,
predicted from this linear model is 0.00878
(that is, y,, increases from 0.99 to 0.99878).
This is a rather drastic change, and the
reason is that the column operation is very
dependent on keeping the correct product

split D/F (with V constant the increase in
L vyields a corresponding decrease in D),
that is, the column is very sensitive to
changes in the external flows D and B.

Similarly, if we increase V' by only 0.01
(with L constant), we see that the predicted
steady-state change in y, is —0.00864.
Again, this is a very large change, but in the
direction opposite that for the increase
in L.

We therefore see that changes in L and
V counteract each other, and if we increase
L and V simultaneously by 0.01, then the
overall steady-state change in y, is only
0.00878 — 0.00864 = 0.00014. The reason
for this small change is that the composi-
tions in the column are only weakly depen-
dent on changes in the internal flows (i.e.,
changes in the internal flows L and V' with
the external flows D and B constant).

Summary Because both L and V affect
both compositions y, and xg, we say that
the process is interactive. Furthermore, the
process is “ill-conditioned,” that is, some
combinations of AL and AV (correspond-
ing to changing external flows) have a strong
effect on the compositions, whereas other
combinations of AL and AV (correspond-
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ing to changing internal flows) have a weak
effect on the compositions. The condition
number, which is the ratio between the gains
in the strong and weak directions, is there-
fore large for this process (as seen in the
following text, it is 141.7).

Singular Value Analysis of the Model
The preceding discussion shows that this
column is an ill-conditioned plant, where

the effect (the gain) of the inputs on the

outputs depends strongly on the direction of
the inputs. To see this better, consider the
SVD of the steady-state gain matrix

G=U3VT (14-6)
or equivalently, because V7 = V1

Gv =0(G)u, Guv=0(G)u
where o denotes the maximum singular
value and ¢ the minimum singular value.
The singular values are

3 = diag{7, g} = diag{1.972,0.0139}
The output singular vectors are

. ( 0707 0.708
V=(o Q)—(—0.708 0.707)

The input singular vectors are

U= (7 ) = (0.625

0.781
0.781

—-0.625

The large plant gain, ¢(G) = 1.972, is ob-
tained when the inputs are in the direction

ALY _ = _ [ o0707) : . .
(AV) =7 _0.708), i.e., an increase in AL

and a simutaneous decrease in AV. Because
AB = —AD = AL — AV (assuming con-
stant molar flows and constant feed rate),
this physically corresponds to the largest
possible change in the external flows D and
B. From the direction of the output vector

0= (8'%?), we see that this change causes

the outputs to move in the same direction,
that is, it mainly affects the average compo-

sition (y, + xg)/2. All columns with both
products of high purity are sensitive to
changes in the external flows because the
product rate D has to be about equal to the
amount of light component in the feed. Any

" imbalance leads to large changes in product

compositions (Shinskey, 1984).
The low plant gain, o(G) = 0.0139, is

obtained for inputs in the direction (2{;) =

V= (g‘zgg which corresponds to changing

the internal flows only (AB = AL — AV = ().

_{ 0781
From the output vector u = (_ 0.625) we

see that the effect is to move the outputs in
different directions, that is, to change y, —
xg. Thus, it takes a large control action to
move the compositions in different direc-
tions, that is, to make both products purer
simultaneously. The condition number of
the plant, which is the ratio of the high and
low plant gain, is then

Y(G) =(G)/a(G) = 141.7 (141

The RGA is another indicator of ill-condi-
tionedness, which is generally better than
the condition number because it is scaling
independent. The sum of the absolute value
of the elements in the RGA (denoted
IRGA|; = LIRGA,;) is approximately
equal to the minimized (with respect to
input and output scaling) condition number
y*(G). In our case we have |RGA|; =
138.275 and y*(G) = 138.268. We note that
the minimized condition number is quite
similar to the condition number in this case,
but this does not hold in general.

14-3-2 Use of Decoupler

For “tight control” of ill-conditioned plants
the controller should compensate for the
strong directions by applying large input
signals in the directions where the plant
gain is low, that is, a “decoupling” con-
troller similar to G~! in directionality 18
desired. However, because of uncertainty,
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FIGURE 14-2.

Response for decoupling controller using LV configuration.
Setpoint change in yp, = 1073 /(55 + 1). Solid line: No uncertainty; dotted line:
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20% input gain uncertainty as defined in Equation 14-9.

the direction of the large inputs may not
correspond exactly to the low plant gain
direction, and the amplification of these
large input signals may be much larger than

the simulated response to a setpoint change
in top composition.

expected. As shown in succeeding simula-
tions, this will result in large values of the
controlled variables y, leading to poor per-
formance or even instability. Consider the
following decoupling controller (a steady-

state decoupler combined with a PI con-
troller):

k,
C(s) = —GH7(s)

| )

k;=0.7min"! (14-8)

ky(1 + 755)

A

39.942
39.432

—31.487
—31.997

We have GC, = 0.7/sl. In theory, this con-
troller should counteract all the directions
of the plant and give rise to two decoupled
first-order responses with time constant
1/0.7 = 1.43 min. This is indeed confirmed
by the solid line in Figure 14-2, which shows

14-3-3 Use of Decoupler When There
is Model Uncertainty

In practice, the plant is different from the
model, and the dotted lines in Figure 14-2
show the response when there is 20% error
(uncertainty) in the gain in each input chan-
nel (“diagonal input uncertainty”):

AL=12AL,, AV = 0.8 AV, (14-9)

AL and AV are the actual changes in the
manipulated flow rates, whereas AL_ and
AV, are the desired values (what we believe
the inputs are) as specified by the con-
troller. It is important to stress that this
diagonal input uncertainty, which stems
from our inability to know the exact values
of the manipulated inputs, is always pre-
sent. Note that the uncertainty is on the
change in the inputs (flow rates), not on
their absolute values. A 20% error is rea-
sonable for process control applications
(some reduction may be possible, for exam-
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ple, by use of cascade control using flow
measurements, but there will still be uncer-
tainty because of measurement errors). Re-
gardless, the main objective of this chapter
is,to demonstrate the effect of uncertainty,
and its exact magnitude is of less impor-
tance.

The dotted lines in Figure 14-2 show the
response with this model uncertainty. It
differs drastically from the one predicted by
the model, and the response is clearly not
acceptable; the response is no longer decou-
pled, and Ay, and Axgz reach a value of
about 2.5 before settling at their desired
values of 1 and 0. In practice, for example,
with a small time delay added at the out-
puts, this controller would give an unstable
response.

There is a simple physical reason for the
observed poor response to the setpoint
change in y,. To accomplish this change,
which occurs mostly in the “bad” direction
corresponding to the low plant gains, the
inverse-based controller generates a large
change in the internal flows (AL and AV),
while trying to keep the changes in the
external flows (AB= —AD = AL — AV)
very small. However, uncertainty with re-

spect to the values of AL and AV makes it
impossible to make them both large while at
the same time keeping their difference small.
The result is a undesired large change in
the external flows, which subsequently re-
sults in large changes in the product compo-
sitions because of the large plant gain in
this direction. As we shall discuss in the
following text, this sensitivity to input un-
certainty may be avoided by controlling D
or B directly, for example, using the DV
configuration.

14-3-4 Alternative Controllers:
Single-Loop PID

Unless special care is taken, most multivari-
able design methods (MPC, DMC, QDMC,
LQG, LQG/LTR, DNA/INA, IMC, etc.)
yield similar inverse-based controllers, and
do generally not yield acceptable designs for
ill-conditioned plants. This follows because
they do not explicitly take uncertainty into
account, and the optimal solution is then to
use a controller that tries to remove the
interactions by inverting the plant model.
The simplest way to make the closed-loop
system insensitive to input uncertainty is to

x 103 ' '

Ayp

FIGURE 14-3.

min

Response for PID controller using LV configuratio®: _- '




e a simple controller (for example, two
single-loop PID controllers) that does not
try to make use of the details of the direc-
tions in the plant model. The problem with
such a controller is that little or no correc-
tion is made for the strong interactions in
the plant, and then even the nominal re-
sponse (with no uncertainty) is relatively
pOoOT. This is shown in Figure 14-3 where we
have used the following PID controllers
(Lundstrom, Skogestad, and Wang, 1991):

yp — L:
K, =162, 7, = 41 min,
7, = 0.38 min (14-10)
Xp— V:
K,= -39, 7, = 0.83 min,
7p = 0.29 min (14-11)

The controller tunings yield a relatively fast
response for x, and a slower response for
yp- As seen from the dotted line in Figure
14-3, the response is not very much changed
by introducing the model error in Equation
14-9.

In Figure 14-4 we show response for
a so-called mu-optimal controller (see
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Lundstrém, Skogestad, and Wang, 1991),
which is designed to optimize the worst-case
response (robust performance) as discussed
toward the end of this chapter. Although
this is a multivariable controller, we note
that the response is not too different from
that with the simple PID controllers, al-
though the response settles faster to the
new steady state.

14-3-5 Alternative Configurations:
DV Control

The process model considered in the pre-
ceding text, which uses the LV configura-
tion, is fundamentally difficult to control
irrespective of the controller. In such cases
one should consider design changes that
make the process simpler to control. One
such change is to consider the DV configu-
ration where L rather than D is used for
condenser level control (Figure 14-1b). The
independent variables left for composition
control are then D and V:

(AyD<s> ( )) )

_ bV AD(s
Axg(s) =G7(s) AV (s)

x 1073 ' ; ' . £

0" 10 20 30 40 50 60

FIGURE 14-4.

70 80 90 100

min

Response for p-optimal controller using LV configuration.
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Comment It is somewhat misleading to
consider this a design change because the
change from LV to DV configuration is
accomplished by a change in the level con-
trol system. However, many engineers con-
sider the level control system to be such an
integral part of the process as to consider it
part of the design, although this is, of course,
not strictly true.

To derive a model for the DV configura-
tion, assume constant molar flows and per-
fect control of level and pressure (these
assumptions may easily be relaxed). Then
AL = AV — AD and we have the following
transformation between the two configura-

tions:

AL\ (-1 1\(AD

(AV) = ( 0 1)(AV) (14-13)
and the following linear model is derived
from Equation 14-4:

GPY(s) = GLV(s)( -l 1)

This process is also ill-conditioned as
y(GPV) = 70.8. However, the RGA matrix
is

0.45 0.55

RGA(G?") = (0.55 0.45) (14-15)

The diagonal elements are about 0.5, which
indicates a strongly interactive system. How-
ever, in this case the RGA elements are not
large and we may use a decoupler to coun-
teract the interactions.

Simulations using a decoupler are shown
in Figure 14-5. As expected the nominal
response is perfectly decoupled. Further-
more, as illustrated by the dotted line in
Figure 14-5, the decoupler also works well
when there is model error. The reason why
the model error does not cause problems in
this case is that we have one manipulated
variable (A D) that acts directly in the high-
gain direction for external flows and an-

0 1 other (AV') that acts in the low-gain direc-
1 0878 . —0.864 tion for internal flows. We may then make
= 75—1( 0.01 4i” _0.01 4) large changes in the internal flows V' with-
s+ ' ' out changing the external flows D. This was
419 hot possible with the L}V configuration,
x 107 N
2t ]
Ayp
1k
AXB
0 -------- B
0 10 20 30 40 50 60 70 80 s 10
min

-

FIGURE 14-5. Response for decoupling controller using DV configuration.




where we had to increase both L and V' in
order to increase the internal flows.

The RGA behavior for various other
configurations is treated in detail by
Shinskey (1984) for the static case and by
Skogestad, Lundstrém, and Jacobsen (1990)
for the dynamic case.

14-3-6 Limitations with the Example:
Real Columns

It should be stressed again that the column
model used in the preceding text is not
representative of a real column. In a real
column the liquid lag 6,(min), from the top
to the bottom, makes the initial response
for the LV configuration less interactive
and the column is easier to control than
found here. It turns out that the important
parameter to consider for controllability is
not the RGA at steady state (with exception
of the sign), but rather the RGA at frequen-
cies corresponding to the closed-loop band-
width. For the LV configuration the RGA
is large at low frequencies (steady state),
but it drops at high frequencies and the
RGA matrix becomes close to the identity
matrix at frequencies greater than 1/, .

Thus, control is simple, even with single-
loop PI or PID controllers, if we are able to
achieve very tight control of the column.
However, if there are significant measure-
ment delays (these are typically 5 min or
larger for GC analysis), then we are forced
to operate at low bandwidths and the re-
sponses in Figures 14-2 through 14-4 are
more representative. Furthermore, it holds
in general that one should not use a
steady-state decoupler if the steady-state
RGA elements are large (typically larger
than 5).

In a real column one must pay attention
to the level control for the DV configura-
tion. This is because D does not directly
affect composition; only indirectly, through
its effect on reflux L through the level loop,
does it have influence. In practice, it may be
a good idea to let the condenser level con-
troller set L + D rather than L. In this
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case a change in D from the composition
controller will immediately change I, with-
out having to wait for the level loop.

14-4 RGA AS A SIMPLE TOOL TO
DETECT ROBUSTNESS PROBLEMS

14-4-1 RGA and input Uncertainty

We have seen that a decoupler performed
very poorly for the LV model. To under-
stand this better consider the loop gain GC.
The loop gain is an important quantity be-
cause it determines the feedback properties
of the system. For example, the transfer
function from setpoints y, to control error

=y, —y is given by e= S8y, =+
GC)~'y,. We therefore see that large
changes in GC due to model uncertainty
will lead to large changes in the feedback
response. Consider the case with diagonal
input uncertainty A;. Let A, and A, repre-
sent the relative uncertainty on the gain in
each input channel. Then the actual (“per-
turbed”) plant is

G,(5) = G(s)(I + A,),
A, 0
By ( 0 &2]

In the simulation example we had A; = 0.2
and A, = —0.2. The perturbed loop gain
with model uncertainty becomes

(14-16)

G,C = G(I+A4,)C=GC+GA,C
(14-17)

If a diagonal controller C(s) (e.g., two PIs)
is used, then we simply get (because A, is
also diagonal) G,C = GC(I + A,) and
there is no particular sensitivity to this un-
certainty. On the other hand, with a perfect
decoupler (inverse-based controller) we have

C(s) =k(s)G™(s) (14-18)
where k(s) is a scalar transfer function, for
example, k(s) = 0.7/s, and we have GC =
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k(s)I, where I is the identity matrix, and
the perturbed loop gain becomes
G,C=G,(I+A))C
=k(s)(1 + GA,G™Y) (1419

For the aforementioned LV configuration,
the error term becomes

GLVAI(GLV)—1

—27.7A, + 27.7A,

—34.1A, + 35.1A,
(14-20)
This error term is worse (largest) when A,

and A, have opposite signs. With A, = 0.2
and A, = —0.2 as used in the simulations

(Equation 14-9), we find
@ (33 1) e

The elements in this matrix are much larger
than 1, and the observed poor response with
uncertainty is not surprising. Similarly, for
the DV configuration we get

~0.02 0.18
0.22 0.02) (14-22)

The elements in this matrix are much less
than 1, and good performance is maintained
even in the presence of uncertainty on each
input.

The observant reader may have noted
that the RGA elements appear on the diag-
onal in the matrix G*YA (G*¥)~! in Equa-
tion 14-20. This turns out to be true in
general because diagonal elements of the
error term prove to be a direct function of
the RGA (Skogestad and Morari, 1987):

GDVAI(GDV) -1 — (

n
(GAG™); = X A (G)A; (14-23)
ji=1

Thus, if the plant has large RGA elements
and an inverse-based controller is used, the
overall system will be extremely sensitive to
input uncertainty.

Control Implications
Consider a plant with large RGA elements
in the frequency range corresponding to the

closed-loop time constant. A diagonal con-
troller (e.g., single-loop PIs) is robust (in-
sensitive) with respect to input uncertainty,
but will be unable to compensate for the
strong couplings (as expressed by the large
RGA elements) and will yield poor perfor-
mance (even nominally). On the other hand,
an inverse-based controller that corrects for
the interactions may yield excellent nominal
performance, but will be very sensitive to
input uncertainty and will not yield robust
performance. In summary, plants with large
RGA elements around the crossover fre-
quency are fundamentally difficult to con-
trol, and decouplers or other inverse-based
controllers should never be used for such
plants (the rule is never to use a controller
with large RGA elements). However, one-
way decouplers may work satisfactorily.

14-4-2 RGA and Element Uncertainty /
ldentification

Previously we introduced the RGA as a
sensitivity measure with respect to input
gain uncertainty. In fact, the RGA is an
even better sensitivity measure with respect
to element-by-element uncertainty in the
matrix.

Consider any complex matrix G and let
A;; denote the ijth element in its RGA
matrix. The following result holds (Yu and
Luyben, 1987):

The (complex) matrix G becomes
singular if we make a relative change
—1/A;; in its jth element, that is, if
a single element in G is perturbed
from g;; to g,; = 8;;(1 — 1/A;)).

Thus, the RGA matrix is a direct measure
of sensitivity to element-by-element uncer-
tainty and matrices with large RGA valut"fS
become singular for small relative errors 1
the elements.

Example 14-1

The matrix GV in Equation 14-4 is nom
singular. The 1,2 element of the RGA
is A,(G) = —36.1. Thus the matrix G




pecomes singular if g,, = —0.864 is per-

- _0.840.

The preceding result is primarily an im-
portant algebraic property of the RGA, but
it also has some important control implica-
tions:

Consider a plant with transfer matrix
G(s). If the relative uncertainty in an ele-
ment at a given frequency is larger than
il /Aij( jw)l, then the plant may be singular
at this frequency. This is of course detri-
mental for control performance. However,
the assumption of element-by-element un-
certainty is often poor from a physical point
of view because the elements are usually
always coupled in some way. In particular,
this is the case for distillation columns. We
know that the column will not become sin-
gular and impossible to control due to small
individual changes in the elements. The im-
portance of the previous result as a “proof”
of why large RGA elements imply control
problems is therefore not as obvious as it
may first seem.

However, for process identification the
result is definitely useful. Models of multi-
variable plants G(s) are often obtained by
identifying one element at the time, for
example, by using step or impulse re-
sponses. From the preceding result it is
clear this method will most likely give mean-
ingless results (e.g., the wrong sign of the
steady-state RGA) if there are large RGA
elements within the bandwidth where the
model is intended to be used. Consequently,
identification must be combined with first
principles modelling if a good multivariable
model is desired in such cases.

Example 14-2

Assume the true plant model is

G = 0.878 —0.864
1.082 —1.096

By extremely careful identification we ob-
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tain the model

G =(0.87 ~0.88
»= 1109 -1.08

This model seems to be very good, but is
actually useless for control purposes be-
cause the RGA elements have the wrong
sign (the 1,1 element in the RGA is —47.9
instead of +35.1). A controller with integral
action based on G, would yield an unstable
system.

Comment The statement that identifi-
cation is very difficult and critical for plants
with large RGA elements may not be true
if we use decentralized control (single-loop
PI or PID controllers). In this case we usu-
ally do not use the multivariable model, but
rather tune the controllers based on the
diagonal elements of G only, or by trial-
and-error under closed loop. However, if we
decide on pairings for decentralized control
based on the identified model, then pairing
on the wrong elements (e.g., corresponding
to negative RGA) may give instability.

The implication for distillation columns
is that one must be careful about using the
LV configuration when identifying a model
for the column. Rather, one may perform
test runs with another configuration, for ex-
ample, the DV configuration, at least for
obtaining the steady-state gains. The gains
for the LV configuration may subsequently
be derived using consistency relationships
between various configurations (recall
Equation 14-14). Alternatively, the steady-
state gains for the LV model could be ob-
tained from simulations, and test runs for
changes in L and V are used only to deter-
mine the initial dynamic response (in this
case one has the additional advantage that
it is not necessary to wait for the responses
to settle in order to obtain the gain).

14-5 ADVANCED TOOLS FOR
ROBUST CONTROL: p ANALYSIS

So far in this chapter we have pointed out
the special robustness problems encoun-
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tered for MIMO plants and we have used
the RGA as our main tool to detect these
robustness problems. We found that plants
with large RGA elements are (a) funda-
mentally difficult to control because of sen-
sitivity to input gain uncertainty (and, there-
fore, decouplers should not be used) and (b)
are very difficult to identify because of ele-
ment-by-element uncertainty.

We have not yet addressed the problem
of analyzing the robustness of a given sys-
tem with plant G(s) and controller C(s). In
the beginning of this chapter we mentioned
that the peak criterion in terms of M were
useful for robustness analysis for SISO sys-
tems both in terms of stability (RS) and
performance (RP). However, for MIMO
systems things are not as simple. We shall
first consider uncertainty descriptions and
robust stability and then move on to perfor-
mance. The calculations and plots in the
remainder of this chapter refer to the sim-
plified LV model of the distillation column,
using the controller with steady-state decou-
pler plus PI control.

14-5-1

To illustrate that most sources of uncer-
tainty may be represented as norm-bounded
perturbations with frequency-dependent
magnitudes (“weights”), we shall consider a
SISO plant with nominal transfer function

Uncertainty Descriptions

—@s

g(s) =k (14-24)

e
1+7s
The parameters k, 6, and 7 are uncertain
and /or may vary with operating conditions.
Assume that the relative uncertainty in these
three parameters is given by, r;, r,, and r;,
respectively. A general way to represent
model uncertainty is in terms of norm-
bounded perturbations A;. Then the set of
possible (or “perturbed”) values of the pa-
rameters is given by
k,=k(1+rA),
ap = 0(1 + rzAz),

7, = 7(1 + rA;),

Al <1 (4-25)
|A,l <1 (14-26)
|A;l <1 @14-27)

| L

FIGURE 14-6. Multiplicative input uncertainty.

Note that the A,’s in the remainder of this
chapter are normalized to be less than 1 in
magnitude.

First consider the gain uncertainty. For
example, assume that k& may vary +20%, so
that r, = 0.2. Note that the perturbation on
k given by Equation 14-25 may be repre-
sented as a relative (or multiplicative) un-
certainty as shown in Figure 14-6 with the
weight w = r; = 0.2. In general, the magni-
tude of the weight varies with frequency,
but in this case it is constant only with gain
uncertainty.

Now, consider the time delay uncertainty
in Equation 14-26. We also want to repre-
sent this uncertainty as a relative perturba-
tion. To this purpose use the approximation
e * = 1 — x (which is good for small x) and
derive

e—ops = e—0se—0r2A2s ~ e*()s(l _ r20sA2)

or, because the sign of A, may be both

positive or negative,

e % = eTH (1 + wyA,),  wy(s) =r,0s
(14-28)

w, is the weight for the relative error gener-
ated by the time delay uncertainty. With
this approximation, w, = 0 at steady state,
reaches 1 (100%) at the frequency 1/(6r,)
(which is the inverse of the time delay un-
certainty), and goes to infinity at high fre-
quencies.

Comment 1t is also possible to make
other approximations for the time delay un-




certainty. Skogestad, Morari, and Doyle
(1988) and Lundstrém, Skogestad, and
Wang (1991) use an approach where one
considers numerically the relative uncer-
tainty generated by the time delay. This
results in a complex perturbation A,, but
otherwise in the same w,, except that it
levels off at 2 at high frequencies. This
approach is used in the computations that
follow. (However, for other reasons we
would probably have preferred to not let w,
level off at 2 if we had redone this work
today.)

We now have two sources of relative
uncertainty. Combining them gives an over-
all 2 X 2 (real) perturbation block A, with
A; and A, on its diagonal. To simplify, we
may include the combined effect of the gain
and time delay uncertainty using a single
(complex) perturbation by adding their mag-
nitudes together, that is, w = |r;| + |w,|, or
approximately

w(s) =r; +ry0s (14-29)
For example, with a 20% gain uncertainty
and a time delay uncertainty of +0.9 min
(0r, = 0.9 min), we obtain w(s) =02 +
0.9s.

We may also model the time constant
uncertainty with norm-bounded perturba-
tions, but we should preferably use an “in-
verse” perturbation. For example, we may
write

1 1 . An!
= +
1+7,s 1+~rs( wihs)
r31's
wi(s) = 7 e (14-30)

For distillation columns, the time constant
often varies considerably, but we shall not
include this uncertainty here. The reason is
that the time constant uncertainty (varia-
tions) is generally strongly coupled to the
gain uncertainty such that the ratio k, /Ty
stays relatively constant. Note that k,/7,
yields the slope of the initial response and is
therefore of primary interest for feedback
control.
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14-5-2 Conditions for Robust Stability

By robust stability (RS) we mean that the
system is stable for all possible plants as
defined by the uncertainty set (using the
A;’s as previously discussed). This is a “worst
case” approach, and for this reason one
must be careful to not include unrealistic or
impossible parameter variations. This is why
it is recommended not to include large indi-
vidual variations in the gain k and the time
constant 7 for a distillation column model.

Now, consider the distillation column ex-
ample with combined gain and time delay
uncertainty. For multivariable plants it
makes a difference whether the uncertainty
is at the input or the output of the plant.
We will here consider input uncertainty,
and the weight w, then represents, for ex-
ample, variations in the input gain and ne-
glected valve dynamics. We assume the same
magnitude of the uncertainty for each input.
The set of possible plants is given by

G,(s) = G(I +w/A)),
A = A, O
=10 A,

where A, represents the independent un-
certainty in each input channel. This is
identical to Equation 14-16, except that w,
yields the magnitude because A; is now
normalized to be less than 1. Note that A,
is a diagonal matrix (it has “structure”). We
assume that the system without uncertainty
is stable (we have NS). Instability may then
only be caused by the ‘“new” feedback paths
caused by the A, block. Therefore, to test
for RS we rearrange Figure 14-6 into
the standard form in Figure 14-7 where
A in our case is the matrix A, and M =
—-w,C(I + GC)"'G = —w,T;. M is the
transfer function from the output to the
input of the A, block. To test for stability
we make use of the “small gain theorem”.
Because the A block is normalized to be
less than 1 at all frequencies, this theorem
says that the system is stable if the M block

(14-31)
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A
M
FIGURE 14-7. General block diagram for studying

robust stability.

is less than 1 at all frequencies. We use the
singular value (also called spectral norm) to
compute the magnitude (norm) of M. Ro-
bust stability is then satisfied if at all fre-
quencies , ‘

(M) =a(wT;(jo)) <1 1432
However, Equation 14-32 is generally con-
servative for the following reasons:

1. It allows for A to be complex.
2. It allows for A to be a full matrix.

It is actually the second point that is the
main problem in most cases.

The structured singular value u(M) of
Doyle (e.g., see Skogestad, Morari, and
Doyle, 1988) is defined to overcome these
difficulties, and we have that RS is satisfied
if and only if at all w,

pa(M) = pp(w,Ty) <1 (14:33)
This is a tight condition provided the uncer-
tainty description is tight. Note that for
computing p we have to specify the block
structure of A and also if A is real or
complex. Today there exists very good soft-
ware for computing u when A is complex.
The most common method is to approxi-
mate w by a “scaled” singular value:

pa(M) < IrgnE(DMD‘l) (14-34)

where D is a real matrix with a block-diago-
nal structure such that DA = AD. This up-

6.-
4— RP
T
-
-
] Rs e
et e |
10 710 ° 10 1. 10 10
w (rad /min)
FIGURE 14-8. p plots for decoupling controller us-

ing LV configuration,

per bound is exact when A has three or
fewer “blocks” (in our example, A, has two
blocks).

As an example, consider the following
input uncertainty in each of the two input
channels

02 0.9s 0.2 5s + 1

=02+ — =02——

wi(s) 05s + 1 0.5s + 1
(14-35)

This corresponds to 20% gain error and a
neglected time delay of about 0.9 min. The

“weight levels off at 2 (200% uncertainty) at

high frequency. Figure 14-8 shows u(M) =
w(w, T,) for RS with this uncertainty using
the decoupling controller. The u plot for
RS shows the inverse of the margin we have
with respect to our stability requirement.
For example, the peak value of u A,(M )asa
function of frequency is about 0.53. This
means that we may increase the uncertainty
by a factor 1 /u = 1.89 before the worst-case
model yields instability. This means that we
tolerate about 38% gain uncertainty and a
time delay of about 1.7 min before we get
instability.

Comment For this decoupling con-
troller we have GC = (0.7/s)I and T, =T
= 1/(1.43s + 1)I. For this particular casc
the structure of A does not matter and W€




get a simple analytic expression for u for
robust stability:

pa(M) = o(w,T,)
5 5s +1
(0.5s + 1)(1.43s + 1) |

.

14-5-3 Definition of Performance

To define performance we shall use the
frequency domain and define an upper
bound on the sensitivity function S. The
sensitivity function gives the change in the
response caused by feedback and is proba-
bly the best and simplest function to con-
sider when defining performance in the fre-
quency domain. At each frequency we re-
quire

1SGa)| =1 + GC(jw)) 7 <Iwpl(jw)]
(14-36)

or equivalently that the weighted sensitivity
is less than 1:

NP: |[wpS(jw)| <1 atall @ (14-37)

The peak value (with respect to frequency)
of the weighted sensitivity wp.S is also called
the H, norm. wp(s) is the performance
weight. Typically, we use the weight

1 748 + M,
w(s) = o

s

(14-38)

TaS

This requires (a) integral action, (b) that the
peak value of |S| should be less than M,
(typically M, = 2), and (c) that the closed-
loop response time should be less than 7
(i.e., the bandwidth should at least be w, =
1/74).

For multivariable systems, the largest sin-
gular value of S, (), is used instead of the
absolute value |S|. In the introduction we
mentioned that the maximum peak on §
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may be used as a robustness criterion. How-
ever, here we are restricting the peak of §
at high frequencies primarily to get a good
response (without too much oscillation and
overshoot). The robustness issues are taken
care of much more directly by specifying the
allowed uncertainty: see the RS and RP
conditions.

NP Specification for our Example
At each frequency the value of &(wpS)
should be less than 1. We have selected

20s + 2

1
WP(S) = ET (14-39)

This requires integral action, a maximum
closed-loop time constant of approximately
74 = 20 min (which of course is relatively
slow when the allowed time delay is only
about 0.9 min) and a maximum peak for
a(S) of M, = 2.

As expected, we see from the plot in
Figure 14-8 that the NP condition is easily
satisfied with the decoupling controller.
a(wpS) approaches 1/M, = 0.5 at high fre-
quency because of the maximum peak re-
quirement on &(S).

14-5-4 Conditions for Robust
Performance

Robust performance (RP) means that the
performance specification is satisfied for the
worst-case uncertainty. The most efficient
way to test for RP is to compute w for RP.
If this w value is less than 1 at all frequen-
cies, then the performance objective is satis-
fied for the worst case. Although our system
has good robustness margins and excellent
nominal performance, we know from the
simulations in Figure 14-2 that the perfor-
mance with uncertainty (RP) may be ex-
tremely poor. This is indeed confirmed by
the u curve for RP in Figure 14-8, which
has a peak value of about 6. This means
that even with 6 times less uncertainty, the
performance will be about 6 times poorer
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than what we require. Because of a prop-
erty of u we may therefore define u for NP
as p,(wpS) = G(wpS) where Ap is a
“fake” uncertainty matrix. Ap is a “full”
matrix, that is, the off-diagonal elements
may be nonzero. p for robust performance
is computed as w,(N) where the matrix A
in this case has a block-diagonal structure
with A, (the true uncertainty) and A, (the
fake uncertainty stemming from the perfor-
mance specification) along the main diago-
nal and '

_WITI —WICS
“\w,SG  wpS (14-40)

The derivation of N is given in, for exam-
ple, Skogestad, Morari, and Doyle (1988).
The wp-optimal controller is the con-
troller that minimizes p for RP. For our
example we are able to press the peak
of u down to about 0.978 (Lundstrom,

Skogestad, and Wang, 1991). The simula- °

tion in Figure 14-4 shows that the response
even with this controller is relatively poor.
The reason is that the combined effect of
large interactions (as seen from the large
RGA values) and input uncertainty makes
this plant fundamentally difficult to control.
Comment In the time domain our RP-
problem specification may be formulated
approximately as follows: Let the plant be

ke " 0
0 k,e "
(14-41)

GV (s) = G™(s)

where GL¥(s) is given in Equation 14-4. Let
08<k, <12,08<k,<12,0<6,<09
min, and 0 < 6, < 0.9 min. The response to
a step change in setpoint should have a
closed-loop time constant less than about 20
min. Specifically, the error of each output to
a unit setpoint change should be less than
0.37 after 20 min, less than 0.13 after 40
min, and less than 0.02 after 80 min, and
with no large overshoot or oscillations in
the response.

14-6 NOMENCLATURE

B

.$EX xra o

S=+GO)!
T=GCU + GC)™ !
T; = CGU + CG)™!

U
14

14
Xp

Yp

Greek letters
A

A

A5, 41,45, 44

AL, Ayp, etc.

y(A) = 7(A)/a(A4)
u(A)

[0

a(A)

a(A)

Subscripts

Bottom product flow

(kmol /min)

Distillate product flow

(kmol /min)

Nominal plant model

Reflux flow (kmol/min)
Matrix used to test for robust
stability

Maximum peak of T
Maximum peak of §

Matrix of relative gains
Laplace variable (s = jo
yields the frequency re-
sponse)

Sensitivity function
Closed-loop transfer function
Closed-loop transfer function
at the input

Unitary matrix of output sin-
gular vectors

Unitary matrix of input singu-
lar vectors

Boilup (kmol/min)

Bottom composition (mole
fraction)

Distillate composition (mole
fraction)
Frequency-dependent weight
function

Overall perturbation block
used to represent uncertainty
Overall perturbation block for
input uncertainty

Individual scalar perturba-
tions

Deviation variables for reflux,
top composition, etc.
Condition number of

matrix A4

Structured singular value of
matrix A

Frequency (rad /min)
Maximum singular value of
matrix A4

Minimum singular value of
matrix A

Perturbed (with model uncer”
tainty)
Performance
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