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Abstract

Some plants have better \built-in" disturbance rejection
capabilities than others, that is, their dynamic resilience
(controllability) with respect to disturbance rejection is
better. In the paper we consider controller independent
disturbance measures for six classes of problems:
1. Open-loop disturbance sensitivity.
2. Disturbance sensitivity for decentralized control.
3. Disturbance sensitivity for system under partial con-

trol.
4. Input magnitude for rejecting disturbances.
5. Output magnitude for disturbances in the presence

of input limitations.
6. Maximum disturbance range
For all six problems we obtain frequency-dependent

measures, and appropriate scaling of the variables is cru-
cial for interpreting these measures. In the paper we also
discuss the relationship between these measures and the
Relative Disturbance Gain (RDG) of McAvoy and cowork-
ers and the disturbance condition number of Skogestad and
Morari.

1 Introduction

The objective of this paper is to consider \controllabil-
ity" measures for disturbances (often called \loads"). By
the \controllability" or \dynamic resilience" of a plant we
mean the inherent control properties of the plant. That is,
if a plant has poor controllability, then the responses for
that plant will be poor no matter what controller we select
to use.
Notation. In this paper we consider linear transfer

function models on the form

y(s) = G(s)u(s) +Gd(s)d(s) (1)

where u is the vector of manipulated inputs, d the vec-
tor of (physical) disturbances, and y is the vector of out-
puts (controlled variables). The objective is to keep the
error e = y � r small, where r is the vector of reference
signals (setpoints). G(s) and Gd(s) are transfer matrices
which need not be square. In many cases we consider a
single disturbance at the time and d is a scalar, and in this
case we write gd instead of Gd to show explicitly that it
is a vector. Throughout the paper subscript i denotes a
particular output, subscript j denotes a particular input,
subscript k (or no subscript) denotes a particular distur-
bance, while subscript l denotes a set of variables. The
linear feedback controller is denoted C(s). In the paper
we refer to the loop transfer function L = GC, the sensi-
tivity S = (I + L)�1, and the complimentary sensitivity
T = L(I + L)�1. We de�ne the closed-loop bandwidth,
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!B, as the lowest frequency where �(L(j!)) = 1, where �
is the minimum singular value. The Laplace variable s or
frequency argument s = jw is usually omitted to simplify
notation.
Surprisingly, the issue of disturbances has not been

widely discussed in the general literature on controllability
analysis. Of course, it has been known for a long time that
disturbance rejection is an important property of the plant,
and this issue has been discussed in detail for distillation
columns (e.g., McCune and Gallier, 1973, Waller et al.,
1988, Skogestad and Morari, 1987b). However, there has
been a lack of systematic tools for quantifying the e�ect
of disturbances. Morari (1983) considers the magnitude
of the inputs needed for disturbance rejecetion, and ar-
gues that the minimum singular value of the plant, �(G),
may provide a useful measure. However, he does not use
any information about the disturbance model, gd(s). Stan-
ley et al. (1985) introduced a dimensionless measure for
disturbance which they called the Relative Disturbance
Gain (RDG). Morari et al. (1985) consider the allowed
magnitude of disturbances to achieve feasible steady-state
operation, and denote their measure the Resilency Index
(RI). Shimizu and Matsubara (1985) discuss the direction
of combined disturbances in the frequency domain using
the singular value decomposition. Skogestad and Morari
(1987a) present a similar analysis, but also consider the
direction of an individual disturbance. They stress that in
multivariable systems some disturbances may be di�cult
to reject if they are in the \bad" direction compared to the
direction of the plant, and to quantify this they introduce
the disturbance condition number, 
d(G). They also pro-
vide a performance interpretation of the RDG and extend
it to non-zero frequencies. Perkins (1989) also considers
frequency-dependent disturbances and uses the the mag-
nitude of the disturbance transfer function, jgdj or ��(Gd),
as a measure of the expected output error in the absence
of control. Luyben (1988) stresses that the choice of the
control structure may strongly in
uence the sensitivity to
disturbances. He introduceses the term \eigenstructure"
(which has nothing to do with for eigenvalues) for the
control structure that has the best self-regulating proper-
ties. Skogestad and Hovd (1990) and Hovd and Skogestad
(1992) argue that for decentralized control one should use
the Closed-loop disturbance gain (CLDG) rather than Gd

when evaluating the e�ect of disturbances.
The main topic of the paper is to present controller-

independent measures for evaluating a plant's sensitivity to
disturbances. In all cases we consider frequency-dependent
measures, and the class of disturbances we shall consider
is sinusoids d(jw) with magnitude less than 1 at each fre-
quency !.

2 Preliminaries

Vector norms. In this paper we will at each frequency
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study the magnitude of d, u and y. In most cases we
shall assume d is a scalar, and it magnitude is then simply
jd(jw)j, which is the absolute value of the complex number
d(j!). To evaluate the magnitude of the vectors u and y
we shall use either vector 2-norm or the vector in�nity-
norm, which for a (complex) vector y = (y1; y2; : : : ; yn)

T

at a given frequency are de�ned as

kyk2 =
p
y2
1
+ y2

2
+ � � � + y2n (2)

kyk1 =
n

max
i=1

jyij (3)

Singular values. These are directly related to the vec-
tor 2-norm. Speci�cally, we have for y = Ax that

�(A) �
kyk2
kxk2

� ��(A) (4)

where ��(A) is the maximum singular value, and �(A) the
minimum singular value of A. We may choose the direc-
tions for x such that either the lower or upper bounds in
(4) is tight.
Feedback control. When feedback control is used, u =

�C(s)(r� y), the closed-loop response to a setpoint r and
a disturbance d becomes

e = y � r = �Sr + SGdd; u = CSr �CSGdd (5)

The objective of this paper is to study the inherent control
limitations of the plant, and we need measures that are
independent of the controller. It is then clarifying to study
the special case of perfect control (Morari, 1983). From
Eq. 1 we see that for a square plant perfect control (y = r)
is achieved if we apply the following input signals

u = G�1r �G�1Gdd (6)

In practice we may achieve something close to this by ap-
plying feedback control: Since T = GCS, Eq.(5) yields

u = G�1Tr �G�1TGdd (7)

At frequencies lower than the bandwidth !B the following
approximation holds1

S � L�1; T � I; ! � !B (8)

and we get

u(j!) � G�1r(j!)�G�1Gdd(j!); ! � !B (9)

which is identical to (6). Note that (9) is independent of
the controller, while the corresponding expression (5) for
the control error is not:

e(j!) = y � r � �L�1r + L�1Gdd; ! � !B (10)

3 Existing controllability mea-

sures

RGA. The most widespread controllability measure is
probably the RGA which was �rst introduced by Bristol
(1966). For a square plant G the RGA is de�ned as the
ratio of the \open-loop" and \closed-loop" gains between
input j and output i

�ij(s) =
(@yi=@uj)ul6=j

(@yi=@uj)yl6=i

= gij(s)[G
�1(s)]ji (11)

1In cases where some loops are not closed we will have�(L) =
0, and the approximation S � L�1 does not hold, but in such
cases similar approximations may be applied to subsystems.

(Proof: see appendix). A RGA matrix can be computed
at any frequency using the formula

�(s) = G(s)� (G�1(s))T (12)

where the � symbol denotes element by element multi-
plication (Hadamard or Schur product). One important
advantage of the RGA is that it independent of input and
output scaling.

PRGA. One inadequacy of the RGA (eg., McAvoy,
1983, p. 166) is that it may indicate that interactions
is no problem, but signi�cant one-way coupling may ex-
ist. This follows since the � = I when G(s) is triangular.
To overcome this problem Hovd and Skogestad (1992) in-
troduce the performance relative gain array (PRGA). The
PRGA-matrix is de�ned as

�(s) = ~G(s)G(s)�1 (13)

where ~G(s) is the matrix consisting of only the diagonal

elements of G(s), i.e., ~G = diagfgiig.The elements of � are
given by


ij(s) = gii(s)[G
�1(s)]ij =

gii(s)

gji(s)
�ji(s) (14)

Note that the diagonal elements of RGA and PRGA are
identical, but otherwise PRGA does not have all the nice
algebraic properties of the RGA.

Condition number. The condition number, 
(G) =
��(G)=�(G), is also often used as a controllability measure,
and a plant with a large condition number is called ill-
conditioned.

Disturbance measures

RDG. In the spirit of the RGA, Stanley et al. (1985)
introduced the Relative Disturbance Gain (RDG) as the
ratio between the input uj needed when rejecting a dis-
turbance k in all outputs and the input uj needed when
rejecting the disturbance k in only output j. Skogestad and
Morari (1987a) gave this measure a performance interpre-
tation and found that it may be evaluated any frequency
using (see Appendix)

�jk = gjj[G
�1Gd]jk=gdjk = [ ~GG�1Gd]jk=gdjk (15)

CLDG. Skogestad and Hovd (1990) introduced a mea-
sure that is closely related to both the RDG and PRGA.
For a disturbance k and an output i, the Closed-loop Dis-
turbance Gain (CLDG) is de�ned by

�ik = gii[G
�1Gd]ik = [�Gd]ik (16)

where � is the PRGA. The reason for the name CLDG
will become clear later. The CLDG is closely related to
the RDG since from (15)

�ik(s) = �ik(s)=gdik(s) (17)

Disturbance condition number. To study speci�-
cally the direction of a disturbance, Skogestad and Morari
(1987a) introduced the disturbance condition number of
the matrix A (A may be G or L = GC)


d(A) =
kA�1gdk2
kgdk2

��(A) (18)
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4 Scaling

All interpretations and examples in this paper assume that
appropriate scaling has been performed. The RGA has
the advantage of being scaling independent, but for the
other measures it is crucial that the variables are scaled
properly. In general, the variables should be scaled to be
within the interval -1 to 1, that is, their desired or expected
magnitudes should be normalized to be less than 1 at each
frequency. Recommended scalings:

� Inputs (u): Normalize uj with respect to its allowed
range.

� Outputs (y): Normalize ei with respect to its allowed
range.

� Disturbances (d): Normalize dk with respect to its
expected range.

The measures depend on scaling as follows:

� RGA: independent of scaling

� PRGA: depends on scaling of y (except diagonal ele-
ments)

� Gd, CLDG, RDG: depend on scaling of d and y

� 
(G); 
d(G): depend on scaling of u and y.

Comment: In this paper we scale directly the transfer
matrices G and Gd and assume that the expected or al-
lowed magnitude of the signals d, u, e and r does not vary
with frequency. If their magnitudes vary then we should
rather scale the signals using frequency-dependent weights.
This signal approach is also more general, for example, if
the setpoints do not have same size as the allowed errors
(as we implicitly have to assume).

5 Results on disturbance mea-

sures

The main objective of this paper is to derive simple
controller-independent measures, and we shall consider dis-
turbance measures for six di�erent problems.

5.1 Interpretation of open-loop distur-
bance sensitivity, Gd

SISO plants. Select at each frequency d(j!) = 1 (the
worst case). Then the output at this frequency is y(j!) =
gd(j!)d = gd(j!). Now, note that the outputs have been
scaled such that we require at each frequency jy(j!)j < 1.
Consequently, at frequencies where jgdj is large (larger than
1), we need control (feedforward or feedback) in order to
reject this disturbance. Typically, jgdj is larger than 1 at
low frequencies and drops to zero at high frequencies. The
frequency, !d, where jgd(j!)j crosses 1 is then a useful con-
trollability measure, since it yields the minimum bandwidth
requirement for feedback control. Plants with a small value
of jgdj and !d are preferable (better dynamic resilience)
since the need for control is less, or alternatively, with a
given controller the e�ect on the output of the disturbance
is less.

Example. Consider the disturbance model

gd(s) = kd=(1 + �ds) (19)

where kd = 10 and �d = 2 [min]. Scaling has been ap-
plied to gd, so this means that with no control, the ef-
fect of disturbances on the outputs at low frequencies is
kd = 10 times larger than what we allow. Thus con-
trol is required, and since gd crosses 1 at a frequency

!d � kd=�d = 0:5 rad/min, the minimum bandwidth re-
quirement for disturbance rejection using feedback control
is !B > 0:5 rad/min. Waller et al. (1988) found that the
disturbance parameter kd=�d correlated well with the ob-
served disturbance sensitivity for various distillation con-
trol con�gurations.
Use of feedback control. In this case the response

to the disturbance is y(s) = S(s)gd(s)d(s), and at a given
frequency where d(j!) = 1, the requirement of jy(j!)j < 1
is satis�ed

if and only if jS(j!)j < 1=jgd(j!)j (20)

At low frequencies, ! � !B, where feedback is e�ective and
we have jL(j!)j > 1 and S(j!) � 1=L(j!), (20) becomes

jy(j!)j < 1 if and only if jL(j!)j > jgd(j!)j; ! � !B
(21)

Thus, at frequencies where feedback is needed for distur-
bance rejection (jgdj > 1), we must require the loop transfer
function jL(j!)j to be larger than the disturbance transfer
function, jgd(jw)j (appropriately scaled).
MIMO plants. Consider one disturbance and select

at each frequency d(j!) = 1 (the worst-case disturbance).
We then have y = Sgd � 1

�(S)kgdk2 � kyk2 � ��(S)kgdk2 (22)

At low frequencies we have S � L�1 and �(S) � �(L�1) =
1=��(L); ��(S) � 1=�(L), and we derive

kgdk2
��(L)

� kyk2 �
kgdk2
�(L)

; ! � !B (23)

which gives

kyk2 < 1 only if ��(L) > kgdk2; ! � !B (24)

kyk2 < 1 if �(L) > kgdk2; ! � !B (25)

For MIMO plants we have a bandwidth region ranging
from !B (where �(L) crosses 1) to !0B (where ��(L) crosses
1). For ill-conditioned systems the di�erence between the
bandwidth in the worst direction (!B) and in the best
direction (!0B) may be large. For a single disturbance con-
sider the frequency !d where kgdk2 crosses 1. Then we
must require that !0B > !d and we may have to require
!B > !d (dependening of the direction of the disturbance).

5.2 Disturbance sensitivity for decen-
tralized control

For SISO systems we found at low frequencies that the
loop transfer function L = gc must be larger than gd in
magnitude to achieve disturbance rejection. Decentralized
control is frequently used for MIMO plants, and we would
like to derive for this case similar bounds on each loop
transfer functions, giici. To this end, assume G is a square
matrix, and C(s) is diagonal with entries ci(s).
Eq. 10 applies at low frequencies where �(L) > 1. For

gii 6= 0, we may write L = GC = G( ~G)�1 ~GC and (10)
may then be written as

e = y � r � �(~L)�1 ~GG�1r + (~L)�1 ~GG�1Gdd; ! � !B
(26)

where ~L has as diagonal elements the individual loop gains

~L = ~GC = diagfLig; Li = giici (27)

For a particular disturbance k and a setpoint change j,
(26) yields for output i (closed-loop response for loop i
with all loops closed)

ei � �

ij
Li

rj +
�ik
Li

dk; ! � !B (28)
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where 
ij = [GG 1]ij is the performance relative gain

(PRG), and �ik = [ ~GG�1Gd]ik is the closed-loop distur-
bance gain (CLDG). To get a better interpretation of the
RGA and CLDG consider the response êi to a setpoint
change ri and a disturbance dk when only loop i is closed
(closed-loop response for loop i with all other loops open)

êi � �
1

Li
ri +

gdik
Li

dk; ! � !B (29)

(29) applies at low frequencies where jLij > 1. A compari-
son of equations (29) and (28) shows how the control error
ei is changed by closing the other loops. We see that

� For a setpoint change ri the change is given by the
relative gain, �ii = 
ii.

� Similarly, for a disturbance dk the change is given by
the relative disturbance gain (RDG), �ik = �ik=gdik
(recall (17)).

� We also note that the open-loop disturbance gain,
gdik, is replaced by the closed-loop disturbance gain,
�ik. Thus �ik represents for loop i the apparent (open-
loop) disturbance gain from disturbance k to output
i when all loops are closed.

From (28) we see that to achieve jyi(j!)j < 1 for a unit
disturbance j�k(j!)j = 1, we must require that the loop
gain, jLij, is larger than the CLDG, j�ikj (at low frequencies
where jLij > 1). The frequency where j�ik(j!)j crosses 1
gives the minimum bandwidth requirement in loop i for
this disturbance. It should be less than the bandwidth
that can be achieved in practice, which will be limited by
time delays, RHP zeros etc. A plot of j�ik(j!)j will give
useful information about which disturbances k are di�cult
to reject.

5.3 Disturbance sensitivity for system
under partial control

The open-loop disturbance sensitivity for an output i and
disturbance k is

(@yi=@dk)u = gdik (30)

We now want to �nd the corresponding disturbance sensi-
tivity with all the other outputs l 6= i perfectly controlled.
For a square plant the following analytical expression is
derived (see appendix)

PDGijk = (@yi=@dk)uj ;yl6=i
= [G�1Gd]ik=[G

�1]ji (31)

We denote this measure the partial disturbance gain
(PDG). The term partial is used since the system is only
partially controlled. Note that we get a di�erent value for
each input uj left in manual and thus get an array of PDG's
with 3 indices (i, j and k). The PDG is a useful measure
for cases where it may be di�cult to reject disturbances
in all outputs simultaneously, for example for plants with
large RGA-elements, and one may want to consider having
one output yi uncontrolled. For a particular disturbance,
one should then check if there exists a particular pairing
of yi and uj for which the PDG is less than 1 in magni-
tude. For simultaneous disturbances we should evaluate
the worst overall e�ect by taking for each \pairing" the
sum of element magnitudes. This gives rise to a combined
PDG-matrix, denoted GPDG, with elements

[GPDG]ij =
X
k

j[PDG]ijkj (32)

It it desirable to �nd \uncontrolled pairings" uj�yi where
the GPDG-element is less than 1.

For the case j = i (that is, we have paired up the un-
controlled output with the output we want in manual),
the PDG is equal to the ratio between the CLDG and the
corresponding RGA-element (see Appendix):

(@yi=@dk)ui ;yl6=i
= �ik=�ii (33)

Another measure that may be of interest is the relative
change in disturbance sensitivity caused by controlling all
the other outputs. This measure, denoted the partial-
relative-disturbance gain (PRDG), is de�ned as the ratio
between (31) and (30) For the case i = j the RPDG is
equal to the ratio between the RDG and the RGA

RPDG :
(@yi=@dk)ui;yl6=i

(@yi=@dk)u
=

�ik
�iigdik

=
�ik
�ii

(34)

Note that both the RDG and PRDG yield for an output i
and a disturbance k the change in disturbance sensitivity
caused by controlling all the other outputs perfectly. The
di�erence is that the PRDG (= �ik=�ii) yields the the
change in open-loop disturbance gain with yi uncontrolled,
whereas the RDG (= �ik) yields the change in closed-loop
disturbance gain with yi under decentralized control (recall
the discussion following (29)).

5.4 Magnitude of inputs needed for re-
jecting disturbances

In words the problem we want to solve is the following:
\Given speci�cations on the control outputs, y, and a set
of disturbances, �nd the smallest possible inputs needed
to reject the disturbance".

5.4.1 Speci�ed control performance, kyk � 1

Mathematically, the problem we want to solve is: For the
case with one disturbance

Umin = min
u

kuk s:t: kyk = kGu+ gddk � 1; d = 1 (35)

d = 1 is chosen because it corresponds to the worst case
at any frequency. For the case with simultaneous distur-
bances

Umin = max
d

(min
u

kuk) s:t: kGu+Gddk � 1; kdk � 1

(36)
These problems must be solved numerically. Note that
in general all elements in the u; y; G etc. are complex.
We have not speci�ed which norm to use. In general, we
would prefer to use the in�nity-norm for d. For u we prefer
to the in�nity-norm when we are concerned about input
constraints, and the 2-norm when we are concerned about
not generating disturbances for other subprocesses. For y
we may also use the in�nity-norm or 2-norm.

5.4.2 Perfect control (y = 0)

Perfect control is possible when we have at least as many
inputs as outputs. Mathematically, for simultaneous dis-
turbances the problem to solve is

U�min = max
d

(min
u

kuk) s:t: Gu+Gdd = 0; kdk � 1 (37)

Square plants. For square plants the problem y = 0 has
for any given d only one unique solution given by

u = �G�1Gdd (38)
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Assume that the inputs have been scaled with respect to
constraints. Then a frequency dependent plot of the el-
ements of the matrix G�1Gd will show for which distur-
bances and which inputs constraints may be a problem -
this will be the case if an element-magnitude is close to 1
or larger.
If we have several disturbances at the same time, then

we must �nd the worst-case combination of disturbances.
The solution to (37) using the in�nity-norm for d and u is
given by

U�min = kuk1 = kG�1Gdki1 (39)

where the induced in�nity-norm of a matrix is equal to its
largest row-sum.
It is also instructive to consider the input magnitude

using the two-norm. For one disturbance with d(j!) = 1
we have kuk2 = kG�1gdk2, and using (4) we get

kgdk2
��(G)

� kuk2 �
kgdk2
�(G)

(40)

We see that the singular values of the plant provide bounds
for the necessary input magnitude, but that the exact value
will depend on the direction of the disturbance (gd). In-
deed, we may make the lower bound tight by introducing
into (38) the disturbance condition number, 
d(G), and
derive the necessary input magnitude for rejecting a par-
ticular disturbance:

U�min = kuk2 = ��(G�1gd) =
kgdk2
��(G)


d(G) (41)

More inputs than outputs. In this case there are many
possible combinations of inputs that yield y = 0, and we
look for the one with the smallest kuk. If we use the 2-
norm for u and d, then Eq.(37) has a simple analytical
solution

U�min = kuk2 = ��(GH(GGH)�1Gd) (42)

5.4.3 CAUTION

The above measures (35)-(42) for kuk must be used with
care when comparing alternative control structures. The
reason is that if we are really concerned with the magni-
tudes of the inputs - either because the inputs are con-
strained or because they are disturbances to other subpro-
cesses - then we must consider all variables (inputs) that
may vary and possibly reach constraints, including inputs
that are used for other lower-level control loops which are
already closed, or in other ways directly depend on u. The
\correct" optimization problem when we are concerned by
the magnitude of the input signals is then

Ûmin = min
u

kûk; û =
�
u
uy

�
(43)

where û is the extended input vector, and uy = Pu denotes
the other dependent \input" variables (e.g., inputs used in
loops that are already closed).

Example. Distillation con�gurations. Shimizu and Mat-
subara (1985) use the value of kuk2 for perfect control to
compare the LV-con�guration (with u = [L V ]T ) and the
DV-con�guration (with u = [D V ]T ). These and other
con�gurations di�er only in how the level loops are con�g-
ured, and for perfect control we get the same values of the
�ve 
ows, L, V , D, B and VT (i.e., kûk is the same for all
con�gurations), and a comparison of the input magnitudes
based on only a subset (using kuk) is not meaningful.
This does not mean that the \incorrect" measures, such

as (39), are completely useless when comparing alternative
control con�gurations, but the interpretation in terms of

the input magnitudes is misleading. Speci�cally, the com-
parison makes more sense if we interpret it from a feedback
point of view, where a small change in the inputs is desired
because it corresponds to a low-bandwidth controller. In
this case it is of most interest to consider frequencies cor-
responding to the closed-loop bandwidth.

5.5 Output magnitudes in the presence
of input limitations

The problem we want to solve is the following: "Given
the requirement kuk < 1 (input constraints) and a set
of disturbances, how good control is possible (how small
can y be) ?". In order words: What the best closed-loop
disturbance sensitivity with input constraints.
Mathematically, for the case with simultaneous distur-

bances we want to �nd

Ymin = max
d

(min
u

kyk) s:t: kdk � 1; kuk � 1; y = Gu+Gdd

(44)
Again, di�erent norms may be used on both u and y, and
we usually prefer the in�nity-norm on d.

5.6 Maximum disturbance range

This measure provides for linear plants a generalization
of the Resilency Index (RI) of Morari et al. (1985) to
take into account the disturbance model2 , Gd, and extend
it to non-zero frequencies. The objective is to �nd the
maximum disturbance range, denoted RI, such that for all

kdk � RI (45)

we achieve \feasible operation". Here we de�ne \feasible
operation" as acceptable performance (kyk � 1) in spite
of limitations on the inputs (kuk � 1). Mathematically,
this problem may be solved by an iterative solution of (44)
(with kdk � RI instead of kdk � 1), and adjust RI until
Ymin = 1. Alternatively, we may solve (36) iteratively and
adjust RI until Umin = 1. One may also de�ne the \feasible
operation" in terms of perfect control, and compute for this
case RI�(< RI).

6 Example: LV-Distillation.

As an example we consider a distillation column controlled
with the LV-con�guration and with three disturbances re-
lated to the feed conditions in addition to possible distur-
bances in L and V . We have

y =
�
�yD
�xB

�
; u =

�
�L
��V

�
; d =

0
BB@

�F
�zF
�qF
�Ld
�Vd

1
CCA (46)

The column data are given by Skogestad and Morari
(1987a) and scalings have been applied as follows: The
outputs have been scaled such that the maximum allowed
change in impurity is 100% (in terms of linearized vari-
ables). The allowed input changes equal the nominal feed
rate, i.e., correspond to a 37% change for L and a 31%
change for V . The allowed changes for the disturbances
are 1) A 20% change in feed rate F , 2) a 0.1 mole fraction
unit change in feed composition zF , 3) a 10% change in
the liquid fraction qF , and 4) and 5) the disturbances in

2Note that in Morari et al. (1985) d denotes the e�ect of the
disturbances on the outputs, whereas it in this paper denotes a
vector of physical disturbances.
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the inputs equal 10% of their allowed changes (i.e., 3.7%
for L and 3.1% for V ). We get the following steady-state
open-loop model

G =
�
87:8 86:4
108:2 109:6

�
(47)

Gd =
�
7:88 8:81 8:68 8:78 8:64
11:72 11:19 10:92 10:82 10:96

�
(48)

The elements in the matrix Gd are larger than 1 so feed-
back control is needed to reject disturbances. Note that
all �ve disturbances are almost identical when considering
their open-loop e�ects, but we shall see that their direc-
tions are quite di�erent, as is apparent when we apply feed-
back control. Comment: One should be somewhat careful
about interpreting the results from this example since they
are based on steady-state data only.
From the gain matrix G we obtain

RGA = � = G� (G�1)T =
�

35:1 �34:1
�34:1 35:1

�

PRGA = � = ~GG�1 =
�

35:1 �27:6
�43:2 35:1

�

A singular value decomposition yields

��(G) = 197:2; �(G) = 1:39; 
(G) = 141:7

The disturbance condition number for the �ve disturbances
is


d(G) = 11:75; 1:48; 1:09; 1:42; 1:41

and we note that disturbance 1 is in the most di�cult
direction, but it is far from being entirely in the \bad"
direction which would correspond to a value of 
d(G) equal
to 
(G) = 141:7.
2). The disturbance measures for decentralized control

are

CLDG = �Gd =
�
�47:7 �0:40 2:51 8:8 0
70:5 11:68 7:83 0 11:0

�

RDG = (�Gd)=Gd =
�
�6:05 �0:05 0:29 1:0 0
6:01 1:04 0:72 0 1:0

�

where / denotes element-by element division. We note that
disturbance 2 has a much smaller e�ect (only 5%) on out-
put 1 than we may expect from the open-loop disturbance
gains, Gd, whereas disturbance 1 actually has about six
times larger e�ect.
3). Similar results are obtained when evaluating the

partial disturbance gains with the other output perfectly
controlled. For example, for output y1 uncontrolled and
with input u1 in manual (y2 constant) the PDG is for the
�ve disturbances (k = 1 to 5) is

PDG11k = (�1:36 �0:01 0:07 0:25 0 )

The combined e�ect of the disturbances for the four alter-
native \pairings" is

GPDG = f
X
k

jPDGijkjg =
�
1:69 2:33
2:14 2:87

�

It it desirable to �nd \uncontrolled pairings" uj�yi where
theGPDG-element is less than 1. In our case we see that for
y1 uncontrolled with u1 in manual this is almost satis�ed;
the worst-case combination for simultaneous disturbances
is jy1j � 1:69:
4). The input magnitudes needed for perfect rejection

of each disturbance, dk = 1, is

G�1Gd =
�
�0:54 �0:005 0:029 0:10 0
0:64 0:111 0:071 0 0:10

�

Again we see that disturbance 1 is the worst. The input
needed for rejecting the worst-case combination of distur-
bances is

U�min = kuk1 = kG�1Gdki1 = 0:92

and since this value is less than 1 we do not reach in-
put constraints even for the worst-case combination of
disturbances.3

If we �nd that the inputs needed for perfect control,
U�min, are too large (which is almost the case here), then
one may consider the inputs needed for obtaining kyk1 <
1 by solving problems (35) or (36). We use the in�nity-
norm for u, d and y and obtain kuk1 numerically. For one
disturbance at the time (35) yields for the �ve disturbances

Umin = kuk1 = 0:049; 0:047; 0:046; 0:088; 0:046

We note with interest that the input magnitude needed for
disturbance no. 1 is now not any larger than for the other
disturbances. The reason is probably that with the allowed
error for y we need not counteract the part disturbance 1
that acts in the di�cult plant direction. For the worst-case
combination of disturbances (assuming all elements in the
vector d are real) (36) yields Umin = kuk1 = 0:251. This
shows that if we do not require perfect control, but allow
an error of 1 in each output (0.01 mole fraction units), then
we may reduce the input magnitudes by a factor of about
four.
5. The best achievable output magnitudes (disturbance

sensitivities) in the presence of input constraints, kuk1 �
1, is obtained by solving problem (44). Since, in our case
we already know that we can achieve y = 0 with kuk1 =
0:92, the solution is Ymin = kyk = 0 for all disturbances.
6. The maximum disturbance range is obtained by an

iterative solution of (35) and (36) until Umin = 1. We use
the in�nity-norm for u and y. We obtain for each of the
individual disturbances using, d = RI in (35)

RI = jdj = 2:66; 16:1; 20:0; 17:1; 17:1

Here we �nd again that disturbance 1 is the most di�cult
to reject. For simultaneous disturbances using (36) we get
RI = kdk1 = 1:86.

7 Discussion and Conclusion

The disturbance measures 3,4,5 and 6 do not make any
assumption about the controller used, and they apply to
both feedback and feedforward control. Speci�cally, note
that in (36) and (44) for the case with simultaneous dis-
turbances, we minimize over u in the inner loop. Thus
we get bound on the achievable performance for any con-
trol system. Note that these measures do not taking into
account that control performance is limited by the pres-
ence of RHP-zeros, time delays, model uncertainty, etc.
However, these e�ects may be considered separately, and
combined with the results from the disturbance analysis,
when performing an overall analysis of controllability.
We have considered six problems related to disturbance

sensitivity. Problem 1 simply involves the disturbance
transfer matrix Gd, and frequency-dependent plots may be
used to identify the bandwidth requirements for the con-
trol system. The solution to problem 2 is the Closed-loop
Disturbance Gain (CLDG) introduced by Skogestad and

3We here assume that the inputs have been scaled with re-
spect to input constraints. Also, we assume that the other de-
pendent inputs, D, B and VT (cooling), which are used for reg-
ulatory control of level and pressure, do not reach constraints
(recall discussion following (43)).
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Hovd (1990). The measures resulting from problems 3, 4
and 5 are new. Problem 2 and 3 di�er in that it is assumed
that the output in consideration is controlled in problem
2, while it is uncontrolled in problem 3. For problems 1 to
3 we �nd analytical solutions, whereas problems 4, 5 amd
6 involve numerical max-min problems.

References

Bristol, E.H., 1966. On a new measure of interaction for multi-
variableprocess control, IEEE Trans. Autom. Control,AC-11,
133-134.

Hovd, M. and Skogestad, S., 1992, Simple frequency-dependent
tools for control system analysis, structure selection and design,
Automatica, To appear.

Luyben, W.L., 1988. The concept of \Eigenstructure" in pro-
cess control, Ind.Eng.Chem.Res., 27, 206-208.

McAvoy, T.J., 1983, Interaction Analysis, ISA Monograph Se-
ries, Research Triangle Park, North Carolina, USA.

McCune, L.C. and Gallier, P.W., 1973. Digital simulation: A
tool for the analysis and design of distillation controls, ISA
Trans., 12, 193-207.

Morari, M., 1983. Design of resilient process plants III. A gen-
eral framework for the assessment of dynamic resilience, Chem.
Eng. Sci., 38, 1881-1891.

Morari, M., Grimm, W., Oglesby, M.J., Prosser, I.D., 1985, De-
sign of resilent processing plants VII. Design of energy manage-
ment system for unstable reactors - new insights, Chem. Eng.
Sci., 40, 187-198.

Perkins, J.D., 1989. Interactions between process design and
process control, Preprints IFAC-symposium DYCORD+'89,
Maastricht, Netherlands, Aug. 1989, 349-357.

Shimizu, K. and Matsubara, M., 1985, Directions of distur-
bances and modeling errors on the control quality in distillation
systems, Chem. Eng. Commun., 37, 67-91.

Skogestad, S. and Hovd, M. Use of frequency-Dependent RGA
for control structure selection, Proc. American Control Con-
ference (ACC), 2133-2139, San Diego, May 1990.

Skogestad, S. and Morari, M., 1987a. The e�ect of disturbance
directions on closed-loop performance, Ind.Eng.Chem.Res., 26,
2029-2035.

Skogestad, S. and Morari, M., 1987b. Control con�guration
selection for distillation columns, AIChE Journal, 33, 1620-
1635.

Stanley, G., Marino-Galarraga,M., McAvoy, T.J., 1985, Short-
cut operability analysis I, The relative disturbance gain,
Ind.Eng.Chem. Process Des. Dev., 24, 1181-1188.

Waller, K.V., H�aggblom, K.E., Sandelin, P.M. and Finnerman,
D.H., 1988. Disturbance sensitivity of distillation control struc-
tures, AIChE Journal, 34, 853-858.

Appendix. Notation and proofs

We here consider only a single disturbance at the time
and write

y = Gu+ gdd (49)

where y and u are vectors, d is a scalar, G is square matrix
and gd is a vector. The results may easily be generalized
to the case where d is a vector and Gd is a matrix. On
element form (scalar notation) (49) becomes

yi =
X
l

gilul + gdid (50)

where the scalars gij and gdi are de�ned by

gij = [G]ij = (@yi=@uj)ul 6=j
; gdi = [gd]i = (@yi=@d)u

(51)

Here the notation [A]ij = aij denotes the ij'th element of
the matrix A, and [a]i the i'th element of the vector a.

Partial derivative notation: Consider a multivariable
system with n + 1 degrees of freedom. In our case there
may be n input variables and 1 disturbance. Assume n
of these degrees of freedom are kept constant, and collect
these in the vector a. Then there is one degree of freedom
that may be veried, and we denote this variable with the
scalar d. Now, consider the e�ect of d on some dependent
variable � (also a scalar). This e�ect is given by

(@�=@d)
a
=
�
�

d

�
a=0

(52)

where the equality applies since we use deviation variables.
In a speci�c case we may imagine specifying a combination
of inputs and outputs, for example, if we set a equal to
(yi; ul6=i), then this means that the single output yi and
the n � 1 inputs ul6=i are kept constant (i.e., all n inputs
are constant except input ui).

Results.

1. Input for perfect control of all outputs:

(@uj=@d)y = �[G�1gd]j (53)

Proof. Set y = 0 and (49) yields u = �G�1gdd and
thus uj = [�G�1gd]jd and the result follows.

2. Input for perfect control of one output:

(@uj=@d)yj ;ul 6=j
= [�( ~G)�1gd]j (54)

This result is due to Grosdidier and is presented in
Skogestad and Morari (1987a) but without a proof.
Proof. Set ul = 0 for all l 6= j. Then (50) yields

yj = gjjuj + gdjd

and with yj = 0 we get uj = � 1

gjj
gdjd and thus

(@uj=@d)yj ;ul6=j
= �

1

gjj
gdj = � [( ~G)�1gd]j (55)

3. Expression for relative disturbance gain (RDG):

�j
def

=
(@uj=@d)y

(@uj=@d)yj ;ul6=j

=
[G�1gd]j

[( ~G)�1gd]j
(56)

Proof. Follows directly from (53) and (54).

4. Partial gain and disturbance sensitivity (PDG) for un-
controlled output with the other outputs controlled :

(@yi=@uj)yl6=i
=

1

[G�1]ji
; (@yi=@d)uj ;yl6=i

=
[G�1gd]j
[G�1]ji
(57)

Proof. Rewrite (49) as

u = G�1y �G�1gdd

Set yl = 0 for all l 6= i. Then

uj = [G�1]jiyi � [G�1gd]jd

and we derive the �rst result by setting d = 0 and the
second result by setting uj = 0.

5. The expressions for RGA and PRDG follow by taking
ratios of (57) and (51).
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