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Abstract

The procedure for independent design of robust decentralized controllers pro-
posed by Skogestad and Morari [20] is improved by requiring the controller to be
a decentralized Internal Model Control (IMC) type controller. It is shown how to
find bounds on the magnitude of the IMC filter time constants such that robust
stability or performance is guaranteed. This allows the use of real perturbation
blocks for modeling the uncertainty associated with the controllers. In contrast,
Skogestad and Morari [20] found bounds on the sensitivity functions and com-
plementary sensitivity functions for the individual loops, and therefore allowed
a much larger class of designs, resulting in more conservative conditions.

The concept of Robust Decentralized Detunability is introduced. If a sys-
tem is Robust Decentralized Detunable, any subset of the loops can be detuned
independently and to an arbitrary degree without endangering robust stability.
A simple test for Robust Decentralized Detunability is developed for systems
controlled by a decentralized IMC controller.

The problem of sequential design of robust decentralized controllers is also
addressed. It is shown how to include into the design problem for loop k a simple
estimate the effect of closing subsequent loops will have on loop k and the loops
that have already been closed.

*To whom correspondence should be addressed. FAX: +47-7-594080, e-mail: skoge@kjemi.unit.no
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1 Introduction

Decentralized control remains popular in the chemical process industry, despite de-
velopments of advanced controller synthesis procedures leading to full multivariable
controllers. Some of the reasons for the continued popularity of decentralized control
are:

1. Decentralized controllers are easy to implement.
2. They are easy for operators to understand.

3. The operators can be allowed to retune the controllers to take account of changing
process conditions (as a result of 2 above).

4. Some measurements or manipulated variables may fail. Tolerance of such failures
are more easily incorporated into the design of decentralized controllers than full
controllers.

5. The control system can be brought gradually into service during process startup
and taken gradually out of service during shutdown.

The design of a decentralized control system consists of two main steps:

a) Control structure selection, that is, choosing manipulated inputs and controlled
outputs, and pairing inputs and outputs.

b) Design of each single-input single-output (SISO) controller.

In this paper we will consider b), and assume that a) has already been done (e.g.
by using the tools in [8, 9]). Standard controller synthesis algorithms (e.g. H, or
Ho, synthesis) lead to multivariable controllers, and cannot handle requirements for
controllers with a specified structure. Instead, some practical approaches to the design
of decentralized controllers have evolved:

e Parameter optimization.
e Sequential design [3, 14, 16].
e Independent design [20].

We discuss all these three approaches to the design of decentralized controllers, with
reference to the potential advantages of decentralized control listed above. Parame-
ter optimization will be considered only briefly, whereas we discuss and illustrate the
unique problems associated with sequential design in more detail. New results on in-
dependent design are presented which represent improvements over the existing design
procedure. Throughout this work we will use the structured singular value (see below)
as the measure of control quality.

A system is said to have robust stability if it is stable regardless of whatever uncer-
tainty is contained within the system. Because of items 4 and 5 above, we would like
the system to remain stable if any subset of the control loops are out of service, or if
the individual controllers have been detuned. Furthermore, we would like this stability
to be a robust property, We define such systems to be Robust Decentralized Detunable:
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Definition 1 A closed loop system is said to be Robust Decentralized Detunable if
each controller element can be detuned independently by an arbitrary amount without
endangering robust stability.

Decentralized detunability for a given controller should not be confused with decentral-
1zed integral controllability (DIC), which is a property of the plant only. DIC implies
that there for a given plant ezists a decentralized controller with integral action in all
channels that is decentralized detunable.

2 Notation

In this paper, G(s) will denote the plant, which is assumed to be of dimension n x n.
The matrix consisting of the diagonal elements of G(s) is denoted G(s), and g;;(s) is
the 25’th element of G(s). The reference signal (setpoint) is denoted r, manipulated
inputs are denoted u and outputs are denoted y. If disturbances are present, G4(s) de-
notes the (open loop) transfer function from disturbances d to outputs y. Throughout
this work, all controllers are assumed to be completely decentralized. The decentral-
ized conventional feedback controller is denoted C(s), with ¢’th diagonal element ci(s)
(Fig. 1a). Likewise, the decentralized IMC controller is denoted @, with ¢’th diagonal
clement ¢;(s) (Fig. 1b). The controllers C(s) and Q(s) are related by

C(s) = Q) = G(s)Q(s))™ (1)

The sensitivity function is S(s) = (I + G(s)C(s))™" and the H(s) = I — S(s) =
G(s)C(s)(I + G(s)C(s))™! is the complementary sensitivity function. The sensitivity
functions and complementary sensitivity functions for the individual loops are col-
lected in the diagonal matrices S(s) = (I — G(s)C(s))~! and H(s) = G(s)C(s)(I —
G(s)C(s))~!. Note that the diagonal elements of S(s) and H(s) do not equal the di-
agonal elements of S(s) and H(s), respectively. The i'th element on the diagonal of §
and H are §; and h;, respectively.

3 Robust Control and the Structured Singular Value

Since no model is a perfect representation of the system, the control system stability
and performance should be little affected by the uncertainties of the model. In this
paper we use the structured singular value, y, introduced by Doyle [5], as a measure
of the robustness of feedback systems. Within the y framework, one accepts that it
is the impossible to find a perfect model, and instead require information about the
structure, location and estimates of the magnitude of the model uncertainties.

In Fig. 2 we have drawn an example of a feedback system with uncertainty in the
inputs and outputs', represented by the perturbation blocks A; and Ao, respectively.
Note that the individual perturbations can be restricted to have a certain structure.

'Many other types of uncertainties possible, see [5] for details on how to represent different uncer-
tainties with perturbation blocks.
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Figure 1: Block diagram of feedback systems. (a) Conventional decentralized controller.
(b) Decentralized IMC controller.
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Figure 2: Block diagram for feedback system with uncertainty in the inputs and out-
puts.

For instance, as individual inputs and outputs usually do not affect each other, both A;
and Ao are assumed to be diagonal. The weights W; and Wy, are frequency-dependent
and normalize the maximum magnitude of A; and Ao to unity.

Any block diagram with uncertainties represented by perturbation blocks can be
rearranged into the M — A structure of Fig. 3, if external inputs and outputs are
neglected. In Fig. 3, A is a block diagonal matrix with the perturbation blocks of the
original block diagram on the diagonal, and M contains all the other blocks in the
block diagram (plant, controller, weights). For the specific case in Fig. 2, we have that

_ -1 _w -1
A= disg{An Ao} Mo | ~WICGU+CE) ,C(I + GC)
WoG(I+CG)  —WoGC(I + GC)™!

Provided M is stable (the system has Nominal Stability, N S) and A is norm bounded
and stable (stable perturbation blocks), it follows from the Nyquist stability criterion
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Figure 3: Feedback system rearranged into a perturbation block A and an intercon-
nection matrix M.

[5] that the overall system is stable provided det(I — MA) # 0 VA,Vw. In this case
the system is said to have Robust Stability (RS). The structured singular value is
defined such that

pa = m6in{6|det(I ~MA) =0 forsome A,5(A) < 6} (2)

If weights are used to normalize the maximum value of the largest singular value of A
to unity (@(A) = 1) at all frequencies, like in Fig. 2, the system will remain stable for
any allowable perturbation A provided pa(M) < 1.

Doyle [5) showed that performance can be analyzed in the u framework by con-
sidering an equivalent stability problem of larger dimension. In this paper we use a
performance specification of the type &(WpS,) < 1 Vw where S, is the worst sen-
sitivity function ($) made possible by the perturbation blocks. This performance
specification can be incorporated in the u framework by closing the loop from outputs
to output disturbances with the performance weight Wp and a full perturbation block
Ap. If ua(M) <1 Vw (after normalizing the magnitude of the perturbation blocks)
and M is stable for the corresponding M — A structure of increased dimension (in
our specific example, A = diag{A1, Ao, Ap}), the system is said to have Robust Per-
formance (RP), as the performance specification is fulfilled for all the possible model
uncertainties.

To simplify notation, we will use “4(M)” in the meaning sup, ua(M). Doyle and
Chu [6] proposed an algorithm for the synthesis of controllers which minimizes K,
known as D — K iteration. However, D — K iteration results in full controllers, and
the problem of synthesizing p-optimal decentralized controllers has not been solved.

4 Parameter Optimization

When using parameter optimization, an a priori parametrization of the controller and
the chosen measure of control quality (in our case y) is optimized with respect to
the controller parameters, using some optimization routine. Controller design using
parameter optimization is easily formulated in a computer program and often gives
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satisfactory designs (e.g. [21]). However, the optimization is not necessarily convex,
and problems with local minima may be encountered. Another problem is that, since
all the loops are assumed to be in service at each step in the optimization, advan-
tages 4 and 5 in the introduction may not be achieved. One must therefore check
specifically whether these advantages are achieved after the optimization is finished.
More importantly, the parameter optimization approach gives no guidelines for how to
achieve advantages 4 and 5 if analysis of a proposed controller shows that they are not
achieved.

5 Independent Design

Independent design of robust decentralized controllers was introduced by Skogestad
and Morari [20]. It is based on Theorem 1 in [19], which we state here:

Theorem 1 Let the p interconnection matriz M be written as a lower Linear Frac-
tional Transformation (LFT) of the transfer function matriz T

M = Fi(N,T) = Ny, + Ni2T(I — NpoT) ™' Ny (3)

and let k be a given constant. Assume pa(Ni) <1 and det(I — NyyT) # 0 then

pa(M) <1 (4)
if
(T)<er (5)
where cr solves
II,A Nll Nl2 — 1 (6)
erNa1 erNy,

and A = diag{A, T}
Proof: See [19].

The condition pa(M) is typically the RP condition we want to satisfy, and T is some
important transfer function which depends on the controller. Skogestad and Morari [20]
uses Thm. 1 to find bounds on the sensitivity function and complementary sensitivity
functions for the individual loops (i.e. T = 5 and T = H are used). The bounds on
S and H can be combined over different frequency ranges. Thus, if either the bound
on § or the bound on H is fulfilled for all loops at all frequencies, then pua(M) <1 is
achieved.

The rationale behind Thm. 1 is to treat the transfer functions (T) as a “class
of possible designs” (i.e. as uncertainty), and finds bounds on the magnitude of this
fictitious uncertainty which guarantees that pus(M) < 1. One is faced with finding
controllers such that the bounds on the transfer functions are fulfilled. It is therefore
important for the success of independent design that T introduces as little additional
uncertainty as possible. It turns out that parametrizing the class of possible designs
as T =8 and T = H are not ideal for this purpose.
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5.1 Example 1
Consider Example 1 in Chiu and Arkun [3]:

(7)

0.34e~° 1.4e~°
8.9s+1 3.8s+1

1.66 —1.74e~2* }

G(s) = [ 395+1 44841

There is independent input uncertainty with input uncertainty weight Wi(s) = 0.0715,
and the performance requirement is given by the performance weight W,(s) = 0.25 7—37'8&] 2

Chiu and Arkun (3] attempted independent design for this example, using T' =
and T' = I, but were unable to find a controller which fulfilled the resulting bounds. In
[3] it was therefore claimed that independent design can not be performed for this ex-
ample. We will however demonstrate below that independent design can be performed

for this example, by parametrizing the class of possible designs within the framework
of Internal Model Control.

5.2 Independent Design with Decentralized IMC
Controllers

We use the Internal Model Control (IMC) technique [7] to parametrize the individual
controller elements, and select T not as a transfer function, but rather as a parametriza-
tion of the tuning constant ¢ in the IMC controller. Our approach is similar to that
of Lee and Morari [10], but we use ¢; as the parameter rather than the filter f;. The
relationship between the elements ¢i of the IMC controller and the elements ¢; of the
conventional controller is given by

¢i = qi(1 — giici)™ (8)
In the IMC design procedure [15], ¢; has the form
¢ = g5 fi (9)

where g;; is the minimum phase part of g;;, and f; is a low pass filter used to make ¢;
realizable and to detune the system for robustness. In order to simplify the exposition,
we will assume the plant G to be open loop stable, and use a low pass filter of the form

1

fi= (es + 1)

(10)
That is, the f; is taken to be a low pass filter of order ny, consisting of ny tdentical
first order low pass filters in series. For details on IMC design, and on filter form for
unstable systems, the reader is referred to Morari and Zafiriou [15].

Choice of T for Independent Design. After fixing n;, the only thing which re-
mains uncertain in the IMC technique is the value of ¢;. To fulfill performance require-
ments at low frequencies, the closed loop system must be sufficiently fast, which means
that the filter time constant € must be smaller than a certain value. On the other hand,

7



M - - N —
N
F | » OF |
f B e i
-_l \O‘J E L N 4-;
FLO g, Nl
i i
Fi |
| 3!:1 |
L O
i 0 A |

Figure 4: The interconnection matrix M expressed as an LFT of the IMC filter /' and
as an LFT of the “uncertainty” associated with the filter time constants.

the closed loop system must be sufficiently detuned to avoid robustness problems at
higher frequencies, thus requiring € to be larger than a certain value, meaning that
1/€ must be smaller than some value. We will therefore use Thm. 1 to find bounds on

cand ¢; ¥ 1 /€ which can be combined over different frequency ranges. Since we are
using a specific control structure the class of possible designs is much smaller than if we
use Thm. 1 to find bounds on S and H. Bounds on § and H are therefore potentially
much more conservative.

To derive conditions on ¢; and e; that guarantee pa(M) < 1 we will proceed as
follows: First we parametrize the u interconnection matrix M as an LFT of the IMC
filter F' and then as an LFT of the “uncertainty” in-the filter time constant. We refer
the readers to [19] or [15] for details on how to find the LFT’s needed in Fig. 4. Below
we will only elaborate on how to express f; as an LFT of the “uncertainty” associated
with ¢ or e;. We then solve Eq. (6) at each frequency point to find the desired bound.
Note that it is sufficient at each frequency to satisfy the bound either for €; or for
e; = 1/¢;, but we must of course use the same bound for ¢; (and €;) at all frequencies.
Note that although g3' in Eq. (9) will normally not be realizable, its frequency response
is easily calculated. Also note that since we work with the frequency response, we will
have to check a posteriori for the (internal) stability of the x4 interconnection matrix.

First Order Low Pass Filters. Consider first the case n; = 1. We then have
fi =1/(eis +1). The objective is to find the allowable ranges for ¢; and e; = 1/€; that
at each frequency guarantee u(M) < 1. Since we do not allow negative values for ¢



we should not write |¢;| < c,. Instead write
& = %(1 +A) A< (11)
e = %(1 +A)  JAl<1 (12)

and fix ¢c = 1 and ¢, = 1 in Eq. (6). The p interconnection matrix in Eq. (6) then
depends only on €* or e* (depending on whether we try to find bounds on ¢; or ¢;).
Note that all quantities, including A, and A, are real. In order to use Thm. 1 we now
need to write f; as an LFT of A, and A.. For T = A, we have

1
i 13
f S(14+A)s+1 (13)
which may be written as an LFT, f; = F/(N,,A.), with
-1
No=anr—| I T~ (14)
ToHT | s s

Similarly, for T = A., we have

N,,.:ﬁis[j ‘“] (15)
2

2

This shows how to express an individual filter element f; as an LFT of the real “uncer-
tainty” in the filter time constant in that filter element. The LFT for the overall IMC
filter F' = diag{f:} is then just a simple diagonal augmentation of the corresponding
blocks of the LFT for the individual filter elements. For example, let N}, denote the
Ni; block for the LFT of element . The block N;; for the LFT of the overall IMC
filter will then be given by Ny; = diag{N},}.

We use |[A| <1 and |[A.| <1 and correspondingly fix ¢. = 1 and ¢ = 1 in Eq. (6).
The required bounds for ¢; and e; are then found by iterating on the value of €* or e*
(as appropriate) until gz = 1 (the matrix N in Eq. (6) will depend on ¢* when we
iterate on €*, and depend on e* when we iterate on e*). Denote the values of €* and
e* which give pp5,, = 1 € and ej, respectively. For a fixed frequency, we are then
guaranteed that ua(M) < 1 provided

& < € Vi or (16)

1.,
e < Vi &= <=V (17)

€,

Note that although the ¢;’s are independent, we get the same bound for all ¢;.

The iterations are performed using only positive real values for ¢* and e*. Note
that pz in Eq. (6) is non-decreasing with increasing values of ¢* or e*. This follows
from the fact that we use |A,| < 1 and |A,.| < 1, therefore the set of possible values for
€ = %(1 + A,) for any fixed value of €* contains all the possible values for ¢; for any
smaller ¢* (and similarly for e; and €*). A very simple iteration scheme, e.g. bisection,
can therefore be used.



Higher Order Low Pass Filters. In IMC design, one will often use filters of order
higher than one. We therefore need to be able to express the higher order filters as
LFT’s of A, and A.. For this we can use the rules for series interconnection of linear
dynamical systems. First note that G(s) = C(sI — A)"'B 4 D may be written as an
LFT of 11, with

N =D; Ny= C; Nn=B; Npy=A

The formulae for series interconnection G = GG, of dynamical systems G(s) =
Cl(SI - Al)_lBl + Dl and G2(3) = C2(SI - Ag)—lBg + Dg are (eg [13])

A = Ay 0
_BQC] A2

B = | B
_Bng

C = iDzC] 02]

D = D2D1

The formulae for series interconnection of dynamical systems can be used directly to
express an ng’th order low pass filter as LFT’s of diag{A, - - -, Acn, } and diag{Ag, -,
Acn,}. As we will normally use the same time constant for all first order factors of the
ns’th order filter, we will have Ay = Ay = -+ = Agyand Ay = Dy = -+ = JAVS
and we have repeated scalar, real “uncertainty” associated with the filter in each IMC
controller element.

Note that although we have repeated scalar “uncertainties” for each individual filter
element, the filter time constants may differ in different filter elements, and the “uncer-
tainties” in different filter elements are therefore independent. For a plant of dimension
n X n we therefore end up with n repeated scalar uncertainty blocks for the IMC filter,
each of these blocks being repeated n; times?,

5.3 Independent Design Procedure

With the preliminaries above, we can now propose an independent design algorithm:

1. Find the matrices N., expressing the y interconnection matrix M as an LFT
of A, and the matrix N., expressing M as an LFT of A.. N, will depend on
the value of €*, and N, will depend on the value of e*, and we must therefore
recompute N and N, for every new value of €* and e*, respectively.

2. We get
pM) <1
if
0<e<e Vi (18)

20ne may use low pass filter of different orders in the different filter elements, in which case the
value of ny will differ for different filter elements.
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where €} solves

u(N) =1 (19)
Similarly, let €} solve u(N,) = 1, giving the bound

0<e<e;, Vi << 1l/ei<¢ Vi (20)

. From 2 and Thm. 1 we know that u(M) < 1 for the range of values of € which at

all frequencies is either within the range of values in Eq. (18) or within the range
of values in Eq. (20).

. Choose a value of € within the range of values found in point 3, and verify the

stability of M for this choice of €. 3

If we are successful in Steps 3 and 4, the controller design is completed. Since we have
both real and complex perturbations, Step 2 requires p calculations for mixed real and
complex perturbations [24], which is still a research topic. However, the existing u
software has proved to be acceptable in many cases.

5.4 Examples

5.4.1 Example 1 (continued)

Consider again Example 1 studied above. For this problem we choose a second order
low pass filter in each element of the decentralized IMC controller. Since we have
a 2 x 2 system, this will add two real, repeated scalar perturbations, each repeated
twice. Solving Eq. (6), we obtain the results in Fig. 5. We see that values of € between

Filter time constant bounds

10! T T
- Allowable range for g
e e e SR e R e T e e e e =
100 L I 1 1 PR T S U 1 1 1 T N T N
102 101 100
Frequency

Figure 5: Filter time constant bounds for Example 1. Solid: €; (upper bound). Dashed:
1/e; (lower bound).

3For any value of ¢ within the range found in point 3, the map under the Nyquist D-contour of

det(I — M A) will encircle the origin the same number of times. Thus, if M is found to be unstable in
Step 4, it is “robustly unstable”.
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3.7 and 6.6 are at all frequencies either below the upper bound or above the lower
bound. Choosing € = 5 for both loops, it is easily verified that the system is nominally
(internally) stable. We have thus completed an independent design for this example.

5.4.2 Example 2

Here we consider Example 2 in [3].

0.66 —0.61 —0.005
6.Ts+1 8.45+1 9.06s+1
i 1.11 —2.36 —0.01
G(S) - 3.255+1 58+1 7.09s8+1 (21)
34.7 46.2 0.87(11.61s+1)

8.155+1 10.9s+1 (3.895+1)(18.85+1)

In this example only robust stability is considered, with independent, multiplicative

input uncertainty with uncertainty weight Wy(s) = 0.130;%%. In [3] it is found that

independent design using Thm. 1 with T = H and T = S cannot be used to design a
robust controller for this example. Since the process is stable and only multiplicative
uncertainty is considered, this clearly illustrates the shortcomings of that method.

As for Example 1, a second order low pass filter is used in each diagonal element
of the IMC controller. This will add three real, repeated scalar perturbations, each
repeated twice. From Step 2 in the independent design procedure we obtain the results

100 - T T rTTTTTT L T LI ] LB A T ¥ T Trryn T T T TTrTrTrTrT T T LI A i |

2 F__Allowable range for g; f .
- P S s :
.8 L / ‘“\\ -
b= /

g / \\\ B
17} ~ /

g 101k AN e g =
8 = / A ~ =
qE) C e / Ny \\\ N
Ef N
— e
3 -
"u: 10.2 1 Lob Ly 1 Lt 0o iaiig 1 L 44t L Lt 1 tat1 1 T O i

10-3 102 10! 100 101 102

Frequency

Figure 6: Lower bound on filter time constant (1/e?) for Example 2.

in Fig. 6. From Fig. 6 we see that any value of ¢ larger than 0.55 will be acceptable.
Choosing € = 1 for all loops, we find that the system is stable. We thus find that the
system will be robustly stable for any value of ¢; > 0.55. In general we want € to be
small for a faster nominal response.

For both Example 1 and Example 2, Chiu and Arkun [3] were unable to perform an in-
dependent design, using the procedure of Skogestad and Morari [20]. This demonstrates
the importance of introducing as little conservatism as possible in the description of the
uncertainty associated with the controllers when performing an independent design.
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5.4.3 Robust Decentralized Detunability in the IMC Framework

In the IMC framework, controllers are detuned by increasing the filter time constants.
We have thus found for Example 2 above that the loops can be detuned independently
of each other, without endangering robust stability, provided all loops have ¢; > 0.55.
Thus the closed loop system in Example 2 with ¢; > 0.55 in all loops is found to be
robust decentralized detunable according to Definition 1. After removing the perfor-
mance requirement from Example 1 and redoing the calculations for robust stability,
we find that it is robust decentralized detunable provided ¢; > 0.16 for both loops.

A requirement for Robust Decentralized Detunability is that the individual loops are
stable. A decentralized IMC controller as parametrized in Eq. (9) will make the indi-
vidual loops stable, which in most cases is an advantage. However, integral action is
inherent in IMC controllers, and integral action and stability of the individual loops
is known to be incompatible with stability of the overall system for certain plants.
We would like to emphasize Step 4 in the Independent design procedure, that nom-
inal stability must be checked explicitly for one value of € within the bounds found.
The Niederlinski Index criterion [17] gives a necessary condition for obtaining stability
both of the individual loops and the overall system when there is integral action in
all channels. The Niederlinski Index criterion has recently been generalized to open
loop unstable plants [9]. Let the number of Right Half Plane (RHP) poles in G be
ny (including multiplicities), and the number of RHP poles in G be #iy. Note that in
general fiy # ny. If all the individual loops are stable, a necessary condition for the
stability of the overall system is that
detG(0)

sign{ N} = Sign{m} = sign{(—1)""0*"} (22)

Thus, before attempting to perform an independent design, one should check that
overall stability can be achieved with integral action in all channels and having stable
individual loops.

5.4.4 Example 3

Consider the process

5 8
G(s): 2Oa2+612a+1 2032+212a+1 (23)

4082412541  40s2+412s+1

with independent actuator uncertainty with uncertainty weight W;(s) = 0.212—}"1'—112.
Since this plant is stable and the Niederlinski Index is negative, N; = —3.8, we know
that we cannot have the individual loops stable and at the same time achieve overall
system stability. Nevertheless, we proceed with independent design, and choose third
order low pass filters for both loops. We find that Step 3 in the independent design
procedure indicates that any value of ¢ > 4 (approximately) will give robust stability
(figure omitted). Calculating u for € = 5 for both loops, we do indeed obtain a value
of 4 < 1 at all frequencies. The reason, which we find in Step 4 in the independent

design procedure, is that the overall system is nominally unstable. The u test merely
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tells us that this instability is a robust property. For other cases, it may not be this
easy to tell & priori that the overall system will be unstable with the individual loops
stable.

5.5 Conclusions on Independent Design

We have proposed a parametrization of the class of allowable decentralized designs
which is based on the following four key steps:

1. Use an IMC controller design for each loop.
2. Select the filter time constant ¢; as the “uncertain” parameter.
3. Parametrize ¢; and e; = 1/¢; such that only positive values are allowed.

4. Obtain bounds on both ¢; and e; that guarantee robust stability/performance.

We have found that:

e The result of considering only decentralized IMC controllers with a specified filter
structure, is that the set of possible controller designs considered is much smaller
than the set of possible controller designs when trying to find bounds on S and
H, and the resulting bound are therefore less conservative.

e One can derive a bound on the IMC filter time constants which ensures that the
system is robust decentralized detunable.

e It is critical that real perturbations are used for the parametrization of ¢; and e;.
p software capable of handling real perturbations is therefore needed.

The bounds obtained are common to all the filter elements, and it is not obvious how to
take advantage of the possibility of having differing filter time constants in the different
filter elements. However, one may easily use constant ratios between the filter time
constants in the independent design procedure (e.g. choosing €; = €, ¢ = 10¢*, etc.).

If independent design fails in the first step with our improved independent design
procedure, the “uncertainty” associated with the filter time constants can be reduced
even further by assuming all filter time constants to have fixed values relative to each
other (e.g. assuming all filter time constants in all filter elements to be equal). This may
be termed “simultaneous design”. For a plant of size n x n and low pass filters of order
ny, this will reduce the “uncertainty” associated with the filter time constants from
n real scalar uncertainties repeated n; times, to one real scalar uncertainty repeated
n X ny times.

The independent design procedure proposed here can also be applied to other types
of controllers, for example, one can find bounds on the ratio of gain to integral time
(k/T;) for PID controllers. However, decentralized IMC controllers have only one
tuning parameter, and are therefore preferable for our independent design procedure.

One can easily use parameter optimization to find the filter time constants ¢; that
minimize u(M). Independent design has the advantage of providing a range of values
for which robust stability/performance is fulfilled, and can also guarantee that the
system is robust decentralized detunable.
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6 Sequential Design

Sequential design of decentralized controllers was introduced in the control literature by
Mayne [14], but it is probably fair to say that it has always been the most common way
of designing decentralized controllers in industry. Sequential design involves closing and
tuning one loop at the time. This is the advantage of sequential design: each step in
the design procedure may be considered as a single-input single-output (SISO) control
problem. The loops that have already been designed are (assumed to be) kept in service
when closing and tuning subsequent loops. However, if the subsequent closing of other
loops makes a loop perform badly, the engineer must go back and redesign a loop that
has been closed earlier. Thus sequential design may involve iteration.

If the loops of a decentralized control system have been designed in the order
1,2,---,k, k+1,---,n without having to redesign any controller element, and stability
has been achieved after the design of each loop, sequential design will automatically
ensure a limited degree of failure tolerance: The system will remain stable if all the
loops k+1,---,n are to fail or be taken out of service simultaneously. Similarly, during
startup the system will be stable if the loops are brought into service in the same order
as they have been designed.

Sequential design of decentralized controllers has been addressed by several authors
(e-g. [2, 3, 14, 16, 23]). However, the only published procedure for robust (in terms of
p) sequential design of decentralized controllers appear to be the one due to Chiu and
Arkun {3, 4].

6.1 The Robust Sequential Design Procedure of Chiu and
Arkun

The sequential design procedure of Chiu and Arkun (3, 4] involves performing the
independent design procedure of Skogestad and Morari [20] at each step in the design.
One loop is then closed with tuning parameters in accordance with the bounds obtained
from independent design. A new independent design is then performed with this loop
closed, and so on. If the independent design procedure fails (the bounds conflict and
Eq. (5) cannot be satisfied) in the first step, Chiu and Arkun propose to close a sufficient
number of loops to enable independent design to be performed. No guidelines are given
for how to choose tuning parameters for these loops that have to be closed prior to the
application of independent design.

Another weakness with their design method is that the controller design for loop
k is done by finding bounds for all remaining loops k — n, which guarantee robust
stability or performance if the controllers in all loops k — n fulfill the bounds. Closing
only loop k with a controller fulfilling the bounds found, will not necessarily mean that
the subsystem consisting of loops 1 — & is stable.

The improved independent design procedure presented in Section 5 can readily be
incorporated into the sequential design procedure of Chiu and Arkun. However, even
with this improvement we may encounter all the problems mentioned above. There is
therefore a need for a robust sequential design procedure starting from one single loop
rather than a procedure involving a large number of loops simultaneously.
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6.2 Problems Unique to Sequential Design

In sequential design, three problems arise which are not encountered using independent
design or parametric optimization:

1. The final controller design, and thus the control quality achieved, may depend
on the order in which the controller in the individual loops are designed.

2. The optimal design for the controller in loop k depends on the design of the
controllers in all the other loops, some of which are still not designed.

3. The individual elements of the plant transfer function G may contain right half
plane (RHP) zeros that do not correspond to RHP transmission zeros of G

The conventional rule for dealing with problem 1 is to close the fast loops first, the
reason being that the loop gain and phase in the bandwidth region of the fast loops
is relatively insensitive to the tuning of the slower loops. While this argument is
reasonable for loop k, output k may still be sensitive to the tuning of the controller in
a slower loop I, if u; has a large effect on yj.

We will attempt to reduce the severity of problem 2 by using simple estimates of
how the undesigned loops will affect the output of the loop to be designed.

We require the system to be stable after the closing of each loop, but it may not be
possible to close the fast loop (k) first, if the corresponding transfer function element
has a significant RHP zero that is not a transmission zero of the plant G. However,
such RHP zeros in the individual elements of G may disappear when the other loops
are closed (as the RHP zero is not an transmission zero), and it may therefore be
possible to achieve fast control in loop k if the controller for this loop is designed at a
later stage. This is illustrated in Example 4 below.

6.3 Preliminaries

In the following, we will assume without loss of generality that the loops are closed
(and controllers designed) in the order 1,2,---,k,k 4+ 1,---, and that the loop to be
designed is k. Let Gy denote the subma.trlx of dlmenswn k x k in the upper left corner
of G. Introduce Gy = dlag{Gk,g,.}, i=k+1,k+2---,n & = (I+ GkC) and
Ho=1-5 = GkC(I+ G’kC) ~1, We then have

S = S’k(l + Ekﬂk)_l (24)

where E = (G—Gr)G5!. When performing sequential design, one should keep in mind
that the effective transfer function from u; to yx can change when subsequent loops
are closed. This is due to the interaction between the loops. We see that rows 1 to k
of (I + Eka) expresses how interaction affects loops 1 to k, and can be considered
as an input weight to Sy = (I + GxCi)™?

For the special case k = 1 we have G, = G S =8 and 0 =H (see Notation).
Recall that S and H consist of the closed loop transfer functlons of the individual
loops.

16



6.3.1 Loop Gain Requirements for Setpoint Following and Disturbance
Rejection

Consider the feedback system in Fig. la. Assume that the plant transfer function
G and the disturbance transfer function Gy are scaled such that the largest tolerable
offset in any controlled variable has magnitude 1 and the largest individual disturbance
expected has magnitude 1 at any frequency. Prior to designing the first loop we have
k=land &, =G = diag{g:;} in Eq. 24. Eventually all the loops will be closed and
at low frequencies we will have h; ~ 1Vi. We use this information to predict the overall
response in terms of the individual loop responses. Consider only frequenaes below

the bandwidths of all the loops (h; ~ 1Vi and (I + E;H)™! ~ GG™!) and find
e=y—r=—8r+5Gud~ —8Tr+ 8TGud; w<wg (25)

where [' = GG~ = {,;} is known as the Performance Relative Gain Array (PRGA)
[8] and I'Gy = {éix} is known as the Closed Loop Disturbance Gain (CLDG). Thus
[7:;(jw)| gives the loop gain requirement at frequency w for a change in setpoint j
to cause an acceptably small offset in output :. Likewise, |6;x(jw)]| gives the loop gain
requirement in loop ¢ for rejecting disturbance k. The PRGA and CLDG are introduced
in [8, 22], and a more detailed explanation of their uses can be found therein. Here we
will use the PRGA for two purposes:

1. Determine the order of loop closing (closing first loops that are required to be
fast).

2. Estimate loop gain requirements for counteracting interactions and disturbances,
thereby finding an estimate of the complementary sensitivity functions (4;’s) for
the loops that are not closed.

6.4 Sequential Design Procedure

The proposed sequential design procedure is outlined here. We assume that the design
specifications include a performance requirement of the type

5(W,S[I G4)) < 1 Ve

1.e. we want to optimize robust performance (for some specified model uncertainty) both
with respect to setpoint changes and disturbances®. Note that S can be expressed
in terms of S; as shown in Eq. (24). Obviously, we can only have a performance
requirement for an output where we have a controller. For this reason, define W, as
the matrix of dimension k X k consisting of the upper left corner of W,. Likewise,
define Wy, as the matrix consisting of the first k rows of (I + ExHy)~[] Gl4], using an
estimate of Hk

Our sequential design procedure is then for step k to design a SISO controller that min-
imizes sup,, 0 (WprSkWik). If model uncertainty is included the problem is to minimize

4If disturbances are not considered, an empty matrix can be substituted for Gy.
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the structured singular value of some matriz, in which Wy, is used as an input weight
for performance.

Comments to the Sequential Design Method:

~

Step 1. When designing loop 1, we have G = G = diag{gi:}; ¢ =1,---,n. An
estimate of H = diag{h;} is needed for calculating (I + ExH)™'. The loop
gain requirements given above in terms of the PRGA and CLDG are helpful for
this purpose, as will be demonstrated in the examples. W,; consists of the first
element on the main diagonal of W}, and W, is the first row of (I+EH)™[I Gy).
For a plant of dimension n x n and with ny disturbances, the perturbation block
for performance will thus be of dimension (n + ng) X 1.

Step k. Here G, = diag{Gk,gii}; t =k +1,---,n}. Controllers for loops 1, - -- Jk—1
have now been found, and H, is estimated to be H, = diag{ Hi_1,ki}; 1 =
k,---,n, where k; is the original estimate of the complementary sensitivity func-
tions for loop ¢. Here W;; consists of the k first rows of (I+ EH)'[I G4], and
the perturbation block for performance is of dimension (n+ny) x k.

Step n. The controllers in all the other loops have been designed, and we therefore
have Wy, = [I Gy], and the perturbation block for performance is of dimension
(n + n4) X n.

6.4.1 Design Method for the Controllers in the Individual Loops

A choice has to be made as to what design method should be used for designing
the controllers in the individual loops. We will consider p-synthesis and parametric
optimization.

p synthesis is relatively fast, but it results in controllers with a high number of states.
The number of states in controller element ¢; will be equal to the number of
states in the y interconnection matrix for the design problem, plus the number of
states in the D-scaling matrices that are used to scale the interconnection matrix.
Controller element ¢; will become a part of the interconnection matrix when
designing subsequent loops, and the number of states will therefore accumulate.
Model reduction for the reduction of the number of states in the controller is
therefore necessary. In our experience, performance may suffer severely when
the number of states in each controller element is reduced to a number normally
considered acceptable for process control (typically three states or less).

Parameter optimization is relatively slow on the computer. The controller has to
be parametrized & priori, e.g. using a PID structure, and the achievable control
quality is dependent on the controller parametrization. However, the number of
states in the controller is fixed, and no model reduction is necessary. In this work
parametric optimization is therefore chosen for the design of the individual loops.
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6.4.2 TIteration

Iteration (redesigning loops) is in general undesirable, both because it is time consum-
ing and because one is no longer guaranteed the limited degree of failure tolerance
normally associated with sequential design when one has to resort to iteration. One
objective with our procedure is that the estimate of Wy (using the estimate of )
should reduce the need for iteration. However, it will of course be possible to reduce
the value of u further using iteration, but the improvement has been small for the
examples we have considered.

6.5 Examples

The sequential design procedure outlined above will be demonstrated in two examples.

6.5.1 Example 2 (continued)

Consider again Example 2 from [3], and add the performance requirement a(W,S) < 1.
This should be satisfied for all possible plants allowed by the input uncertainty. We
choose the performance weight

748 + 1
Tel

Wo(s) = wp(s)I; wy(s) = 0.4

The objective is to make the system as fast as possible in a robust sense, by minimizing
7 subject to upp < 1 (rp meaning p for robust performance).

We choose to pair on the diagonal elements of G as done previously. The PRGA for
this example is shown in Fig. 7, together with the uncertainty weight. PRGA elements
larger than 1 imply interactions, and the figure shows that there is severe interaction
from loops 1 and 2 into loop 3. The loop gain in loop 3 must consequently be high
at the frequencies where the feedback in loops 1 and 2 is effective. This means that
the bandwidth in loop 3 has to be higher than the bandwidths in loops 1 and 2. The
bandwidth in loop 3 will be limited by the input uncertainty. When attempting to
minimize 7y, we must therefore minimize the difference in bandwidths between loop 3
and the two other loops. From Fig. 7 and Eq. (24) (with H substituted for Hy) we also
see that we want &y and ks to roll off quickly at frequencies beyond their respective
loop bandwidths, as this will reduce the interactions from loops 1 and 2 into loop 3 in
the frequency range above the bandwidths of loops 1 and 2. The initial estimates for
the complementary sensitivity functions for the individual loops are therefore chosen
to be of the form i

hi(s) = =T (26)
Estimating h; to be a first order low pass filter would imply that loops 1 and 2 would
roll off more slowly beyond their respective bandwidths, and the interactions from loops
1 and 2 into loop 3 would therefore make it necessary to have a larger difference in
bandwidths between loop 3 and loops 1 and 2. The approach taken here to minimize
Ti may be considered somewhat naive: 7. is minimized (subject to ¢ < 1) during
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Figure 7: Performance relative gain array and uncertainty weight for Example 2. Ele-
ment 13 is smaller than 102 at all frequencies.

the controller design for each loop. However, as the same 7 in the end will apply

for all outputs, we choose w; in Eq. (26) to be consistent with 7, that is, we specify

a h; = 1 — 3§ such that |wy(jw)3;(jw)| < 1Vw. We thus choose w, = 1/7y. From

the PRGA’s in Fig. 7 we see that |vys;| & 5|y32| at frequencies around 1 and assuming

the magnitude of the loop gain in loop 3 to have a slope of —2 on a log-log plot this

indicates wy/w;y = 2.2. Loop 3 is the fast loop, and considering the uncertainty weight
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we therefore fix w3 = lrad/min. It is clear from Fig. 7 that loop 3 must be closed
first, and probably loop 2 second as there is some interaction from loop 1 to loop 2,
especially at high frequencies.

The controller parametrization is chosen to be

T18 + 1 T28 + 1
T]S 10T2S + 1

c;(s) =k (27)
Note that this is not on the PID form since the pole in the last term is at a lower
frequency (s = 0.1/T3) than the zero. This controller parametrization allows loops 1
and 2 to roll off quickly beyond their respective bandwidths, whereas the loop gain in

loop 3 can increase rapidly over one decade at frequencies slightly lower than the loop
bandwidth.

Step 1: Loop 3. Wiy is the third row of (I + Ekf{k)“, and there is one 1 x 1 per-
turbation block for the input uncertainty, and one 3 x 1 perturbation block for
the performance specification. Iterating on 7, (and changing w; and w; corre-
spondingly, as explained above) p = 0.992 is obtained for 7, = 8.5, and the
corresponding controller is

4.70s +14.01s +1

= 84.
es(s) = 89— o = T+ 1

(28)

Step 2: Loop 2. hg is updated in Hi, and Wy, is the second and third rows of (I +
Ekflk)‘l. There is one diagonal perturbation block of dimension 2 x 2 for the
input uncertainty, and a 3 x 2 perturbation block for performance. y = 0.998 is
obtained for 14 = 11, and we find

1.325s +10.186s + 1
- _o. 29
ers) = =001 ——=o =T (29)

Step 3: Loop 1. Now all loops are included in the design problem (and there are no
disturbances present), consequently W;3 = I, and there is one diagonal 3 x 3
perturbation block for the input uncertainty and a full 3 x 3 perturbation block
for performance. g = 1.000 is obtained for 74 = 18 and

0.385s +10.898s + 1
0.385s 8.98s +1

ci(s) = 0.04 (30)

In comparison, the best decentralized controller found using simultaneous parametric
optimization with the same controller parametrization gave u =1 for 74 = 16.

6.5.2 Example 4

We consider the polypropylene reactor studied by Lie and Balchen [11, 12] and Hovd
and Skogestad [9]. A schematic outline of the process is shown in Fig. 8. There are
three inputs, three outputs and four disturbances. The process has a complex pair
of RHP poles, but no RHP transmission zeros. However, there are RHP zeros in all
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Figure 8: Schematic outline of the process in Example 4.

elements of G except in ¢;; at frequencies close to the frequency corresponding to the
RHP poles. A more detailed description of the process and details on the scalings used
are given in the appendix, together with a state space description of the process. Only
input uncertainty is considered, and the uncertainty weight is
1

Wi(s) = wy(s)I; wy(s) = 0.2;:3—-:_11
which reflects a steady state uncertainty of 20% and a maximum neglected time delay
of 0.5 minute. The performance requirement, in terms of the scaled outputs and
disturbances, is (W,S[I G4) < 1 at all frequencies and for all uncertainties allowed
by the uncertainty weight. The performance weight is given by

02s+1
0.2s

We will use decentralized control with pairings as indicated in Fig. 8. This pairing was
found to be preferable in [11, 9], and corresponds to industrial practice. The PRGA
and CLDG for this process are shown in Fig. 9 and Fig. 10 respectively, together
with the uncertainty and performance weights. Fig. 9 shows that the interaction is
relatively modest in the bandwidth region, except for loop 3 where the interaction
between the loops causes increased loop gain requirement at low frequencies. From
Fig. 10 we see that loop 3 is also most severely affected by the disturbances. Loop

Wi(s) = wy(s)I;  wy(s) = 0.4
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Figure 9: Performance relative gain array, uncertainty weight and performance weight
for Example 4.

3 must therefore be the fastest loop, and loop 1 is chosen as the second fastest loop
as 1t is somewhat more affected by disturbances than loop 2 at frequencies around 2
[rad/min]. The uncertainty and performance weights give upper and lower bounds for
the bandwidths of the individual loops. We choose to spread out the bandwidths of
the individual loops between these bounds, and choose the following initial estimated
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Figure 10: Closed loop disturbance gains, uncertainty weight and performance weight
for Example 4. Elements of the CLDG not shown are smaller than 10~2 at all frequen-

cles,

for the complementary sensitivity functions for the individual loops:

. 1 . 1 . 1
b= ———— b= —t o= ——
YT 004s+1" PT 025410 T 0015541

PI controllers, c;(s) = kZL are used for all loops. Because of RHP zeros in individual
elements and subsystems, the design sequence for this example must be 1-2-3, i.e., we

24



are required to design the fastest loop last. In contrast to Example 2, the performance
weight for this example is fixed, and we therefore minimize u at each stage in the
design.

Step 1: Loop 1. Wj; is the first row of (I + ngI)'l[I G4, and there is one 1 x 1
perturbation block for the input uncertainty and a 7 x 1 perturbation block for

performance. The minimum value of u found is 0.6363, and the corresponding

(unscaled) controller ¢;(s) = 2.31 - 105 . 229241,

Step 2: Loop 2. H, is updated, using the controller found for loop 1. Wi consists of
the first two rows of (I + E;H,) ™[I G,], there is one diagonal 2 x 2 perturbation
block for the input uncertainty and a full 7x2 perturbation block for performance.

The minimum value of y found is 1.09, and the corresponding controller is cz(s) =

- 0.148s
4.99 1072 . Lld8etl

Step 3: Loop 3. Now all loops are included in the design problem, consequently
G3 = G and Wy = [I G4). There is a diagonal 3 x 3 perturbation block for
the input uncertainty and a full 7 x 3 perturbation block for performance. The

minimum value of g found is 0.89, and the corresponding controller is c3(s) =

0.131s+1
—1.27-10% . 013letl,

In comparison, with the best decentralized PI controller found using simultaneous
parametric optimization p improved only marginally, from 0.89 to 0.86. The best
multivariable controller found using p-synthesis gave u = 0.65.

The fact that a lower value of u is achieved after closing all loops that when closing
loops 1 and 2 only, illustrates that the design problem may become easier as more
loops are brought into service, and that the estimates of W;, used may be conservative.
However, it appears that the controller found using sequential design is relatively close
to the optimal for a decentralized PI controller.

6.6 Discussion on Sequential Design

1. Sequential design using parameter optimization consists of much smaller opti-
mization problems than designing all loops simultaneously by parameter opti-
mization, and designing one loop at the time is therefore preferable. Also, pa-
rameter optimization for all loops simultaneously does not guarantee the limited
degree of failure tolerance that is associated with sequential design. For the ex-
amples studied in this paper, the sequential design procedure presented in this
paper achieved a quality of control that is not significantly poorer than that
achieved using parameter optimization for all loops simultaneously.

2. The idea of using a simplified estimate of the effect of closing the other loops is
not new. Balchen and Mummé ([1], Appendix C) derive an estimate the transfer
function between input u; and output y; when all the other loops are closed, using
an estimate of the complementary sensitivity function for the other loops. In [1]
this is used to find pairings for decentralized control.
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Other uses can also be considered using the estimated transfer function from wu; to
yi when the other loops are closed. For example, one may use the Ziegler-Nichols
tuning rules using this estimate of the transfer function. Since the Ziegler-Nichols
tuning rules are very simple, the loops can be redesigned with little effort, thus
reducing the problem that the initial estimate of the complementary sensitivity
function for the other loops may well be poor in the bandwidth region.

3. It 1s easier to estimate the complementary sensitivity function for the individual
loops than to estimate the controller in the individual loops. This holds especially
at low frequency, where control is almost perfect, and we know that A; ~ 1.

4. The idea of using an estimate of the effect of closing the other loops is not confined
to the Ho, or u framework, it may also be used with other norms, e.g. H,.

5. Many multivariable controllers consist of simple pre- and/or post-compensator
and have the main dynamics in a diagonal matrix. The compensators are often
designed to counteract interactions at a given frequency (e.g. steady-state decou-
pling), and there will be interactions at other frequencies. Both the independent
design and the sequential design procedures in this paper may be used for design-
ing the diagonal matrix of such multivariable controllers. Note that decentralized
controllers are known to be relatively robust (but the performance may be poor
even nominally), when using non-diagonal compensators the issue of robustness
is more important [18].

6.7 Conclusions on Sequential Design

Sequential design should not be based on independent design, but rather on considering
one loop at the time.

We propose a sequential design procedure, starting from the individual loops. It is
shown that including the appropriate rows of (I + ExHy) Y[I Gy, using an estimate of
f]k, has the effect of including an estimate of the effect that the loops that are still open
will have on the closed loops and the loop that is closed at step k in the procedure.

Acknowledgement The authors wish to tank M. P. Newlin and P. M. Young of the
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Appendix. Description of the Process in Example 4

The monomer feed enters into a stirred tank reactor containing a slurry of monomer,
catalyst, cocatalyst, polymer and some impurities. The reaction is exothermic, causing
some of the slurry components to vaporize. The vapor leaving the reactor is transferred
to an accumulator vessel. Heat is removed from the system by condensing parts of the
vapor leaving the reactor, before it enters the accumulator. Heat removal is adjusted
by adjusting a split range valve which determines what fraction of the vapor leaving
the reactor is passed through the condenser. The liquid in the accumulator is returned
to the reactor, and the vapor from the accumulator is compressed and bubbled through
the reactor slurry. This results in a 3 x 3 plant model G(s) with seven states. The
inputs and outputs are

Y1 - reactor slurry level (0 — 1)

y2 - reactor pressure (gauge pressure in atmospheres)
y3 - accumulator liquid level (0 — 1).

u; - monomer feed flowrate (kg/h).

ug - split range valve position (0 — 1).

u3 - accumulator to reactor liquid flowrate (kg/h).

Four disturbances are considered:

dy - monomer feed temperature (°C)

dz - cooling water flowrate through heat exchanger (kg/h)
dj - catalyst mass feed flowrate (kg/h)

dy - recycle flow of unreacted monomer (kg/h)
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We scale the outputs such that a magnitude of 1 for the scaled outputs correspond to
offsets: y; = 0.05, y, = 1.0atm and y3 = 0.10. Likewise, the disturbances are scaled
such that a magnitude of 1 for the scaled disturbances correspond to: d; = 20°C,

dy = 10000kg/h, d3 = 3kg/h and d, = 1000kg/h.

State space description of the plant in Example 4.

The description is given as y(s) = G(s)u(s)+Ga(s)d(s) = [C(s] — A)~ B+ D]u(s)+

[C(SI - A)_le + Dd]d(s)

0 0 0 —3.08¢ + 03
4.30e — 04 —4.Tle —01 0 0
3.49¢ — 01 0 ~4.71e — 01 0
A = 0 0 0 —7.50e + 00
0 0 0 3.08¢ + 03
0 0 0 3.57¢ + 01
0 —3.81¢ + 02 0 —3.53¢ + 02
0 317¢+03 1.00e+00 |
0 0 0
0 0 ~1.00e + 00
0 849¢+00 —1.96e — 02
0 —3.17¢ + 03 0
0 —6.77¢ + 01 0
0 0 —1.00e + 00 |
[ 1.00e + 00 0 1.00e + 00 |
0 0 0
0 0 0
B = —1.45¢ — 03 0 —4.79¢ — 04
0 .0 —1.00e + 00
0 2.73¢ + 03 0
0 0 0 |
0 0 0 —1.00€ + 00 |
0 0 1.00e + 00 —9.15¢ — 04
0 0 0 ~7.40e — 01
By = | 2.99¢ — 05 0 0 0
0 0 0 0
0 —2.02¢ — 04 0 0
0 0 0 0
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[ 7.49¢ —05 0 3.29¢ — 05 1.23¢ — 02 0 0 0

0 0 0 4.86¢ — 01 0 0 0
0 0 0 0 5.39¢ — 04 5.75¢ — 03 0
[0 0 0 0000
000|; Di=|00 0 0
00 0 0000
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