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Abstract

We study the controllability of unstable processes, with
emphasis on selection of measurements and manipulated
variables, and the pairing problem for decentralized con-
trol. The well known pairing criteria based on the Nieder-
linski Index and the steady state Relative Gain Array
(RGA) have been generalized to open loop unstable plants.
Right Half Plane (RHP) zeros in individual transfer func-
tion elements may make it practically impossible to stabi-
lize the individual loops, and in such cases these pairing
criteria are not very helpful. We have found RGA ~ I in
the bandwidth region to indicate good pairings also when
paired elements have significant RHP zeros, but have found
the Direct Nyquist Array (DNA) to perform poorly as an
indicator of good pairings. In some cases it is preferable
to avoid pairings giving narrow Gershgorin bands.

1 Introduction

In engineering practice, a system is called controllable if
it is possible to achieve the specified aims of the control,
whatever these may be ([19], p. 171). Unfortunately, in
standard state-space control theory the term “controllabil-
ity” has a rather limited definition in terms of Kalman’s
state controllability, which mainly has to do with realiza-
tion theory. State controllability will only be considered
briefly in this paper, and it will be clear from the context
whenever the term controllability refers to a state and not
to a plant.

For an unstable plant we must use feedback for stabiliza-
tion. Thus, whereas the presence of RHP-zeros put an
upper bound on the the allowed bandwidth, the presence
of RHP-poles put a lower bound. It is also clear that it
may be difficult to stabilize an unstable plant if there are
RHP-zeros or time delays - “the system goes unstable be-
fore we are able to observe what is happening”. This qual-
itative statement is quantifies by the results on sensitivity
relationships below.

In most of the paper we assume that a decentralized con-
troller is used, as such controllers are very common in the
chemical process industry. A significant amount of work
has been done on the choice of pairings for decentralized
control of stable plants, e.g. [1], [4], [13], [18] and [20],
to reference a few. The concept of Decentralized Inte-
gral Controllability (DIC) [20], is not relevant for unstable
plants, as the system must necessarily become unstable
when the controller gains are sufficiently reduced. In the
paper we show how stability based pairing criteria fail or
must be interpreted differently when the number of RHP
poles in G(s) and G(s) differ (G(s) consists of the diagonal
elements of G(s)). In contrast, we demonstrate the success
of the frequency dependent RGA for unstable plants.

Notation. G(s) is the n x n transfer function of the
process, with the ij’th element denoted gi;(s). G(s) is
the transfer function matrix consisting of the diagonal el-
ements of G(s). The controller is denoted C/(s), with indi-
vidual elements c;(s) for the case of decentralized control.
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In the following, the Laplace variable s will be dropped
where it is not needed for clarity. The sensitivity function

is given by S = (I + GC)™" and the complementary sensi-
tivity function by H = I — § = GC(I + GC)™*. Similarly,
for decentralized control the semsitivity functions and com-
plementary sensitivity functions of the individual loops can
be collected in diagonal matrices, giving § = (I + GC)™*
and H=1-8= GC’(I + G’C)"l. The following relation-
ships are also used

(I+GC)
Ex

(I+EgH)(I+GC)
(G-&G™

(1)
2)

2 Controllability measures

In this section we review some proposed controllability
measures, and generalize some of the controllability mea-
sures to unstable plants. In the paper we make use of the
multivariable Nyquist theorem, and we will therefore state
it here

Theorem 1 Let the map of the Nyquist D contour under
det(I+G(3)C(3)) encircle the origin nc times in the clock-
wise direction. Let the number of open loop unstable poles
of G(s)C(s) be ny. Then the closed loop system is stable
if and only if nc = —ny.

Proof: The theorem has been proved several times, see
[12].

2.1 State controllability and observ-
ability.

It is well known (e.g. [11]) that only states that are both
observable and controllable can be stabilized by feedback
control. It is therefore necessary that the selection of ma-
nipulated and measured variables result in all unstable
states being controllable and observable.

We believe that in most cases an engineer with a good un-
derstanding of the process will intuitively choose measure-
ments and manipulated variables such that this require-
ment will be fulfilled. Nevertheless, it does make sense
to check that all unstable states are controllable and ob-
servable. Preferably, the controllability and observabil-
ity of the unstable states should not rely on one single
manipulated variable or measurement, as the system will
then necessarily become unstable if this manipulated vari-
able/measurement fails.

2.2 Sensitivity relationships and RHP-
Zeros.

Assume a plant G(s) with a RHP-pole at s = p is stabilized
by feedback control such that S(s) and H(s) are stable.
Then S(s) must have a RHP zero at s = p (follows since
H(s) = G(s)C(s)S(s) is stable while G(s) has a RHP pole
at s = p). This shows that the presence of an RHP-pole
imposes restrictions on the closed-loop system in addition
to the requirement of stabilization. The approach of first
stabilizing the plant with some simple controller, and then



proceed as if the RHP-pole never existed, as is proposed
by some authors (e.g., [15], is therefore flawed.

To quantify the effect of the RHP-poles on the closed-
loop system we shall consider the sensitivity integral rela-
tionships of Freudenberg and Looze [2, 3] which extend the
Bode integral relationship to plants with RHP-poles and
RHP-zeros. Let us first consider Single Input Single Out-
put (SISO) systems, and suppose that G(s)C(s) is rational
and has at least two more poles than zeros. Let G(s)C(s)
have ny poles (including mult1p11c1t1es) in the open right
half plane, at locations p;, ¢=1,2,...,ny. Then, if the
closed loop system is stable, the sens1t1v1ty functlon must
satisfy:

No RHP zero:

/°° In|S(jw)|dw = WZ Re[pi]

0

(3)
One real RHP zero at s = z:

/ In|S(w)|W(z,w)dw = WZ] p. +2 | (4)

=1

2z
22 + w2

pi denotes the complex conjugate of p;. Eq. (3) and Eq.
(4) show that we need |S(jw)| > 1 over some range of fre-
quencies, which means that the effect of disturbances is ac-
tually amplified at these frequencies. A RHP transmission
zero of G(s) limits the achievable bandwidth of the plant
regardless of the type of controller used (e.g, [16]). This
is confirmed by (4) where the shape of the weight W (z,w)
(equals 2/z at low frequencies and falls off with a -2 slope
from w = z) implies that essentially all the positive area
for In |S(jw)| has to be at frequencies lower than the RHP-
zero, and there will have to be a peak |S(jw)| > 1 which
will become increasingly large as the crossover frequency
approaches z.

Since with no RHP poles the integrals in (3) and (4) equal
zero, wee see that the presence of RHP poles increase the
area for which |S| > 1. We also see that the peak of |S]
will approach infinity if p — 2. In practice, this means that
|[pi| must be smaller than |z{ in order to stabilize the plant.
In contrast, in the absence of RHP zeros, RHP poles do
not 1mpose any practical performance limitations (in terms
of peaks in |S|), as the frequency range where |S| > 1 as
required by Eq. (3) may be arbitrarily large and is only
limited by high frequency roll-off considerations.

W(z,w) =

For Multiple Input Multiple Output (MIMO) systems the
situation is not so clear, although some useful insight ex-
ists. For a n x n system with no RHP-zeros we get

Zl:/o Inoi[S(jw)]ldw = rZRe[p;]

The difference compared to SISO systems is that the re-
lationship involves the sum of the log magnitudes of the
singular values, suggesting that it may be possible to trade
off sensitivity properties in different directions. For MIMO
systems with a RHP transmission zero at z, we have

(5)

/°° ln[S(jw)]W(z,w)dw > 0 (6)

Note that this result depends on the presence of RHP-
zeros only, and does not show the combined effects of RHP
poles and zeros similar to (4) for SISO systems. The reason
results for MIMO systems are so much harder to find is the
issue of plant directionality, as illustrated by the following

simple examples

e
f(s)[" T

Gi(s)

G2(8)

|

where f(s) is an arbitrary stable minimum phase rational
transfer function with at least three more poles than zeros.
G; and G; both have one RHP transmission zero and one
RHP pole at the same frequencies. However, in G; the
RHP pole and transmission zero lie in the same direction
and may pose a serious performance if p approaches z (re-
call (4)), whereas in G2 the RHP pole and transmission
zero lie in directions at right angles to each other and only
the RHP zero itself poses a limitation.

Jacobsen and Skogestad [7] have studied the combined ef-
fect of RHP zeros (time delays) and RHP poles for distil-
lation columns.

Implications of RHP zeros on the selection of controlled
and manipulated variables. One should attempt to choose
inputs and outputs such that RHP transmission zeros are
avoided. If an RHP transmission zero cannot be avoided,
it should preferably be at as high a frequency as possible,
and lie in a plant direction such that it interferes as little
as possible with the control of any RHP poles.

Similar considerations apply for decentralized control when
a paired element g;; has a RHP zero that is not a trans-
mission zero of the plant. In many cases such RHP zeros
will disappear when the other loops are closed, and there
is then no fundamental bandwidth restriction in channel
t. However, we know that the zeros of 1+ giici will ap-
proach the zeros of g;; for high gain feedback. A choice
will therefore have to be made between individual loop
stability and system performance. This dilemma can only
be avoided if the selection of controlled and manipulated
variables makes it possible to choose a pairing for which
none of the paired elements have RHP zeros within the
desired bandwidth.

2.3 Decentralized fixed modes.

Wang and Davison [22] showed that it may be impossible
to move some modes by decentralized feedback, even if all
states are both controllable from the inputs and observable
from the outputs. Wang and Davison termed such modes
“decentralized fixed modes”. Lunze [11] gives a good ex-
planation of a necessary and sufficient condition for the
existence of decentralized fixed modes. Consider a system
described by

£ =Azx+ Bu; y=Cz+ Du
The simplest way to prove that an eigenvalue of A does not
correspond to a decentralized fixed mode is to try with an
arbitrary constant feedback matrix K with the structure of
the pairing in consideration. A mode which is fixed for any
constant decentralized feedback is also fixed for dynamic
decentralized feedback [22]. When selecting input and out-
puts for decentralized control, one must clearly ensure that
there exists at least one pairing for which all decentralized
fixed modes are stable. This will usually not be difficult,
as it suffices to ensure that the unstable state is both con-
trollable and observable in one individual channel [11].
Example: Consider the plant



which yields

(8)

1 2(s+4)
G(S):[ 2410 s+1(1) 52 ]
0 —

948

We first try the pairing y1 —u1, y2 —u2, which by inspection
of Eq. (8) seems to be a poor choice. This is confirmed
by using K = diag{k1, k2} and computing the closed loop
autotransition matrix

10+ %k Kk k2
0 2 ko
0 0

A+ BKC =

The eigenvalue at 2 is unaffected by feedback, and it is
therefore impossible to stabilize the system with this pair-
ing. With the opposite pairing, y1 — u2, y2 — u1, we have
no decentralized fixed modes, and the system can be sta-
bilized by decentralized feedback.

2.4 The Niederlinski Index
The Niederlinski Index [18] is defined as

__detG(0)
T'™ 2etG(0)

(10)

For stable plants it has been shown that if all the individual
loops are stable and have integral action, a necessary con-
dition for the stability of the overall system is that Ny > 0
[4]. This result also holds for unstable plants if we assume
that the number of RHP poles in G and & are the same,
but this assumption generally does not hold. However, we
present a generalized Niederlinski index criterion for un-
stable plants:

Theorem 2 Assume:

1. The transfer function GC is strictly proper.

2. The controller C i3 diagonal, has integral action in all

channels and is otherwise stable.

8. The number of open loop unstable poles in G is ny.

4. The map of the Nyquist D contour under det(I + GC)

= detS™! encircles the origin fic times in the clockwise

direction.

Then, a necessary condition for the overall system to be

stable is )
sign{ Ny} = sign{(~1)""0 "} (11)

Remark: The individual loops (i.e. §) may or may not be
stable. If we require the individual loops to be stable, then
fic = —#iy, where fiy is the number of open loop unstable
poles in G.

Proof: Let the map of the Nyquist D contour under
det(I + Egﬁ) encircle the origin ng times in the clock-
wise direction. Thus, from Eq. (1) we have n¢ = fic +ng
and we get from Thm. 1 that the overall system is stable if
and only if ng = —nu—#c. EgH is strictly proper, as GC
is strictly proper. H(0) = I because of the requirement for
integral action in all channels, regardless of whether H(s)

is stable. We therefore have (see Corollary 1.1 in [5])

lim (I + B (s)H(s)) = I (12)

lim (1 + Ex(s)A(s)) = lim G(8)G™(s) (13)
Then the map of det(I + E'Hﬁ) starts at Ny (for 3 = 0)
and ends at 1 (for s = 00). For stability this map must
have ng = —ny — iic encirclements of the origin, and we
must require Nt to be positive if ng is even and Ny to be
negative if ng is odd.

2.5 The Relative Gain Array

The Relative Gain Array (RGA) was first introduced by
Bristol [1]. It is defined at any frequency as

A=Gx[G™T (14)
where the sign X denotes element by element multipli-
cation (Hadamard product). The ¢5’th element of A is
denoted® A;;.

To simplify notation, we will in the following consider loop
1, without loss of generality (the generalization to loop &
is trivial). Introduce G’ = diag{gi1,G"'}, where G'! is
obtained from G by removing row 1 and column 1. Let
G’ have nj; RHP poles. Note that ny; may be different for
different loops.

Corollary 1 Under assumptions 1-3 of Thm. 2, a neces-
sary condition for simultaneously obtaining

a) Stability of the closed loop system

b) Stability of loop 1 by itself

c) Stability of the system with loop 1 removed

is that

sign{11(0)} = sign{(—1) 7" *"0} (15)

Proof: Follows by substituting G’ for G in the proof of
Thm. 2, and noting that detGG’~" = 1/A11. This corollary
generalizes the widely used RGA pairing criteria ([1], [4])
to unstable plants.

For 2x 2 plants Ny = 1/X11(0) but for larger systems these
measures contain different information.

2.6 The Direct Nyquist Array

The Direct Nyquist Array (DNA) [19] is simply an array of
polar plots of the elements g;;(s) of the plant transfer func-
tion matrix G(s). The usefulness of the DNA technique
stems from Gershgorins theorem, which states that the
eigenvalues A; of a matrix G(s) must lie within the union of
circles |A; — gii(9)] < ri(s) where r;(s) = Z:;Li# lgs;(3)].
The circles ;(s) are superimposed on the plots of the diag-
onal elements of G. As the frequency changes, the circles
will move (and their radius will change), thus forming »
bands of circles, known as Gershgorin bands. Jensen et al.
[8] suggest to use the DNA also to obtain pairings for de-
centralized control, preferring pairings giving Gershgorin
bands which are narrow compared to the magnitude of the
diagonal elements.

The following derivation shows why a plot of the Ger-
shgorin bands of G(S) is useful for closed loop stability:
Consider first the eigenvalues of (I + GC), which are lo-
cated within the Gershgorin bands of (I + GC). Since
det(I+GC) = H'. Ai(I+ GC) it follows from Thm. 1 that
if the number of encirclements of the Gershgorin bands of
(I4+GC) equals the number of unstable poles, ny, and none
of these bands include the origin, the closed loop system is
stable. For decentralized control, the centers of the cir-
cles which make up the Gershgorin bands of (I 4+ GC) are

given by (I + G'C). When G and G have different num-
bers of RHP poles and the individual loops are stable, the
numbers of encirclement of the origin of the Nyquist D
contours under det(I + GC) and det(I + GC) must dif-
fer. Since the centers of the Gershgorin bands of I 4+ GC
are given by (I + GC), some of the Gershgorin bands of
(I + GC) must include the origin for the overall system to
be stable. Furthermore, it will then be undesirable that the
Gershgorin bands of G are narrow, as this will make the
stability margins for the individual loops and the overall
system small.

1The i5’th relative gain ); j should not be confused with A;
which denotes the ¢’th eigenvalue.



To derive the relationship between the Gershgorin bands
of (I + GC) and G normalize the elements in G with the
diagonal elements, and get

12 Qa

922
421

G= g1 933 diag{gii}

(16)

This should be compared to

(I+GC)=I+EgHYI+GO) = (17)
1 ﬁzm ha 422

922 . 933
hl q21 1 ham
933

diag{1 + giici}

We see that the width of the Gershgorin bands (relative to
the magnitude of the diagonal elements) will be the same
for G and (I + GC) at frequencies below the bandwidth
(where ki =~ 1). At frequencies beyond the bandwidth
(where hi < 1) (I + GC) will have narrower Gershgorin
bands than G. Only in the bandwidth region, where peaks
in ki may occur, can the Gershgorin bands of (I + GC) be
wider than the Gershgorin bands of G. Thus, the widths
of the Gershgorin bands of G (relative to the magnitude
of the diagonal elements) can be used as estimates of the
widths of the Gershgorin bands of (I +GC). In this paper,
we use the diagonal similarity transform of Mees [14] in
order to reduce the conservativeness associated with the
location of the eigenvalues of G. The diagonal elements
of this transformation matrix are the elements of the left
eigenvalue corresponding to the Perron root of GG,

2.7 The SSV Interaction Measure.

The Structured Singular Value Interaction Measure (SSV-
IM)[5] is the structured singular value (u) of Ex with
respect to a stable perturbation matrix with the same
structure as fI. The map of det(I + ExH) cannot en-
circle the origin if p(EgH) < 1 Yw, which is satisfied if
#(H)p(Fr) <1 VYw. The last relationship follows since
the least conservative way to “split up” p(ExH) is to use
the structured singular value. Since these relationships are
useful only when we require that det(7 + E u g ) should not
encircle the origin (i.e. —ny — fic = 0), we see that they
generally apply only when the individual loops are stable

and G and G have the same number of RHP poles.

2.8 The Performance RGA

The Performance Relative Gain Array (PRGA) has re-
cently been introduced [21, 6]. It is derived from simple
manipulations with the transfer function from setpoints r
to offset e = y — r = —Sr: At low frequencies (w < wpg)
where H =~ I, we have

(I+EgH)~I+Eg=GG ' =T7";
and we derive from Eq. (1) that

w < WwB

er —STr; w< wp

(18)
where the PRGA matrix is

I =GG™! (19)
Despite their different use this definition points to the sim-
ilarity between the PRGA and the Inverse Nyquist Array.
The PRGA 1is dependent on scaling of the outputs, and
must be recomputed for new pairings. Note, however, that
the diagonal elements of the PRGA matrix are equal to the
diagonal elements of the RGA matrix, and are hence inde-
pendent of scaling. If G is scaled such that the maximum

acceptable magnitude of the individual offsets e; is unity,
the PRGA matrix gives approximate bandwidth require-
ments and loop gain requirements at frequencies below the
bandwidth, as the loop gain in loop ¢ should be larger in
magnitude than the magnitude of any element in row ¢ of
the PRGA matrix, and small PRGA elements are there-
fore preferred. The use and the limitations of the PRGA
is discussed more thoroughly in [6].

2.9 High frequency RGA and stability

The encirclements of the origin of det(] + GC) caused by
the RHP poles of G, will occur in the frequency region cor-
responding to the RHP poles of G. For practical systems
the bandwidth region will lie at frequencies significantly
higher than the RHP poles of G, and we therefore do not
want any additional encirclements in the bandwidth re-
gion. The poles of G lie at the same locations as the poles

of G, and we therefore want det(I + GC) also to avoid
encirclements of the origin in the bandwidth region. We
thus want det(I + GC) and det(I + GC) to behave sim-
ilarly in the bandwidth region. If G is triangular then
det(I+ ExA) =1 and det(I + GC) = det(I + GC), and in
this case we also have that the RGA matrix A = I and the
PRGA matrix T is triangular with diagonal elements equal
to 1. We therefore prefer pairings which give A = I in the
bandwidth region. This agrees with the results of Nett
and coworkers ([17]). In summary, we want the PRGA
elements to be small at low frequencies, and in the band-
width region we desire the PRGA close to triangular with
diagonal elements close to 1.

3 Examples.

3.1 Example 1.
Consider the system G(s) = C(sI — A)™'B + D, with

1 0 0 5 -8
A= 0 -1 0 4 10

0 0 2 -8
-1 -1 0 0 0
] ; D= [ 0 0 ] (20)

1 0 -1
The transfer function matrix G has one unstable pole at
frequency 1 [rad/min], and we must therefore expect the
closed loop bandwidth to be at least 1 [rad/min]. Note

that G has two unstable poles for both pairings, because
the RHP pole appears in all four elements of G. Neither
G(s) nor any of its elements have RHP zeros. G(0) is given

by
Y1 _ 1 —18 (51

[nl=l- llul o
The pairing (y1 — u1, y2 — v2) indicated by Eq. (21) we
term “pairing 17, and the opposite pairing we term “pair-
ing 2”. The Niederlinski Index is —8 for pairing 1 and 0.89
for pairing 2. Thm. 2 tells us that a negative Niederlinski
Index is necessary if we require both loops in addition to
the overall system being stable and we therefore have to
choose pairing 1. If we use the steady state RGA in accor-
dance with Cor. 1, we would arrive at the same conclusion.

- |

The DNA of pairing 1 and pairing 2 are shown in Fig. 1,
with Gershgorin bands superimposed on the 1,1 and 2,2
elements for pairing 1, and on elements 1,2 and 2,1 for
pairing 2. We see that all the Gershgorin bands include the
origin. However, pairing 1 gives much wider Gershgorin
bands relative to the magnitude of the diagonal elements
than pairing 2. We explained above that when G and G
have different number of RHP poles and stability of the
individual loops is desired, narrow Gershgorin bands are
undesirable. The DNA thus gives a weak indication that
pairing 1 is preferable to pairing 2.
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Figure 1: DNA with Gershgorin bands for Example 1.
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Figure 2: PRGA for Example 1. Solid lines denote
pairing 1, and dashed lines and labels in parenthesis
denote pairing 2

The PRGA for pairing 1 and pairing 2 are shown in Fig.
22, With a closed loop bandwidth in the region 1 — 30
[rad/min] (approximately) the PRGA indicate that pairing
1 is preferable (The PRGA is close to triangular and the
RGA= I). For pairing 1, using the controllers ¢;(s) =

—=tl eo(s) = —L%%%%:f—)l)- we find that both loops and
the overall system is stable, and the predictions using the
Niederlinski Index and the PRGA are shown to hold. This
example also demonstrates that for unstable systems there
is no reason to avoid pairings corresponding to negative
steady state RGA values.

3.2 Example 2: Polypropylene reactor.

This example illustrates the problems encountered when
we are not able to stabilize the individual loops. We con-
sider the polypropylene reactor control example studied by
Lie [9, 10]. A schematic outline of the process is shown in
Fig. 3. The monomer feed enters into a stirred tank reac-
tor containing a slurry of monomer, catalyst, cocatalyst,
polymer and some impurities. The reaction is exothermic,
causing some of the slurry components to vaporize. The
vapor leaving the reactor is transferred to an accumulator

2We assume the outputs in Eq. (20) to be properly scaled.
For the PRGA plot for pairing 2, G(s) has been rearranged to
bring the paired elements on the diagonal.

Compressor

Condenser

Figure 3: Schematic outline of the process in Example
2, with pairing 1 selected for control.

vessel. Heat is removed from the system by condensing
parts of the vapor leaving the reactor, before it enters the
accumulator. Heat removal is adjusted by adjusting a split
range valve which determines what fraction of the vapor
leaving the reactor is passed through the condenser. The
liquid in the accumulator is returned to the reactor, and
the vapor from the accumulator is compressed and bub-
bled through the reactor slurry. This results in a 3 x 3
plant model G(s) with seven states as given in [9, 10]. The
inputs and outputs are

¥ - reactor slurry level (0 —1)

2 - reactor pressure (gauge pressure in atmospheres)
ys - accumulator liquid level (0 — 1).

u; - monomer feed flowrate (kg/h).

uz - split range valve position (0 — 1),

ua - accumulator to reactor liquid flowrate (kg/h).

We scale the outputs such that a magnitude of 1 for the
scaled outputs correspond to deviations: y; = 0.05, y2 =
1.0atm and y3 = 0.10. The plant G has a pair of RHP poles
at s = 0.68520.6885, one pure integrator (the accumulator
level) and no RHP transmission zeros. The reactor holdup
becomes unstable because of the overhead condensation
loop. All elements of G except g11 have RHP zeros at
frequencies close to the RHP poles (e.g. g1 has a RHP
zero at 2.16, g»2 have a pair of complex RHP zeros at
0.10 =+ 0.90).

As we are considering the use of low-order controllers (typ-
ically PI or PID controllers), we cannot expect loops with
a RHP zero at frequencies around or lower than the fre-
quency of the RHP pole to be stable. This makes it diffi-
cult to apply the Niederlinski Index (Thm. 2) or the steady
state RGA (Cor. 1) for this example. Although six differ-
ent pairings is possible for a 3 x 3 system, we will here only
consider the two pairings that pair y; with u;.® There is a
strong incentive for pairing y: and u1; as gi11 has no RHP
zero we are able to stabilize the system with only this loop
closed. Readers are referred to [9] for a more thorough dis-
cussion of all possible pairings. Thus, for this example, the

3For this example the steady state RGA is positive and close
to I for another pairing, y1 — u2, ¥2 — 43, ¥3 — ¢1. Lhis pairing
defies common sense. For example, it means controlling the ac-
cumulator level with the monomer feed flowrate to the reactor.
However, the desired bandwidth is about 10rad/h, and in this
frequency range the RGA indicates that pairing 1 is preferable.



pairing y1 —u1, Y2 —u2, y3 —u3 is termed pairing 1, and the
pairing y1 — %1, Y2 — 43, y3 — U2 is termed pairing 2. Pairing
1 is shown in Fig. 3. The RGA plot is not shown here,
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Figure 4: PRGA for Example 2. Solid lines denote
pairing 1, and dashed lines and labels in parenthesis
denote pairing 2.

but the diagonal elements equal the diagonal elements of
the PRGA shown in Fig. 4. The figure clearly shows that
pairing 1 is preferable, as the PRGA values for the paired
elements are closer to one in the bandwidth region for pair-
ing 1 than for pairing 2*. The PRGA also shows that for
both pairings, the interaction leads to increased loop gain
requirements at low frequencies for loops 2 and 3.

For this problem, we can only expect loop 1 to be stable
by itself, the map of the Nyquist D contour under 1+4g11¢1
will therefore encircle the origin twice in the anticlockwise
direction. For pairing 1, g22 and gaa both have two RHP
poles and two RHP zeros within the desired bandwidth.
The two RHP zeros will most likely result in two unstable
poles of 14+g22¢2 and 14g33c3. 14g22¢2 and 14 gazca must
therefore be expected to add no net encirclements of the
origin, and therefore we would prefer narrow Gershgorin
bands for pairing 1. For pairing 2, g23 and gsz both have
two RHP poles and one RHP zero within the desired band-
width. 14g23¢2 and 14 g32c¢3 must therefore be expected to
each add one anticlockwise encirclement of the origin. For
pairing 2, narrow Gershgorin bands are therefore not de-
sirable. The DNA plot is not shown for this example due
to space limitations, but the Gershgorin bands are very
wide for both pairings. The DNA is therefore inconclusive
for both pairings.

Based on the plots of the frequency-dependent RGA, we

4For pairing 2 G(s) has been rearranged to bring the paired
elements for pairing 2 on the diagonal.

choose pairing 1. This conclusion is consistent with the
simulations of Lie [10] and with industrial practice.
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