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Al~ t rKt - -The  paper presents results on frequency- 
dependent tools for analysis, structure selection and design 
of control systems. This includes relationships between the 
relative gain array (RGA) and right half plane zeros, and the 
use of the RGA as a sensitivity measure with respect to 
individual element uncertainty and diagonal input uncer- 
tainty. It is also shown how frequency-dependent plots of the 
closely related performance relative gains (PRGA) and a 
new proposed disturbance measure, the closed-loop distur- 
bance gains (CLDG), can be used to evaluate the achievable 
performance (controllability) of a plant under decentralized 
control. These controller-independent measures give con- 
straints on the design of the individual loops, which when 
satisfied guarantee that the overall system satisfies perfor- 
mance objectives with respect to setpoint tracking and 
disturbance rejection. 

1. Introduction 
THE RELATIVE GAIN ARRAY (RGA) has found widespread use 
as a measure of interaction and as a tool for control structure 
selection for single-loop controllers. It was first introduced by 
Bristol (1966). It was originally defined at steady-state, but it 
may easily be extended to higher frequencies (Bristol, 1978). 
Shinskey (1967, 198,1) and McAvoy (1983) have dem- 
onstrated practical applications of the RGA. Important 
advantages with the RGA is that it depends on the plant 
model only and that it is scaling independent. It is 
straightforward to generalize the RGA from single-loop 
controllers to block-diagonal controllers by introducing the 
block relative gain (BRG) (Manousiouthakis et aL, 1986), 
and most of the results presented in this paper may be 
generalized in such a manner. However, to simplify the 
presentation, and because single-loop controllers are most 
common in practice, we shall consider only the RGA in this 
paper. 

Our interest in the RGA as a frequency-dependent 
measure was initially focused on its use as a sensitivity 
measure with respect to model uncertainty (Skogestad and 
Morari, 1987b, see Theorem 2 and equations (11) below). 
However, based on its original definition as a steady-state 
interaction measure for single-loop control, it seemed 
reasonable that the frequency-dependent RGA should have 
some use as a performance or stability measure for 
decentralized control. Some interesting relationships and 
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reports of encouraging applications presented by Nett (1987) 
led us to investigate this in more detail. 

Most authors have confined themselves to use the RGA at 
steady state, and a thorough review of the use and 
interpretation of the steady-state RGA is given by 
Grosdidier (1985). A frequency-dependent interaction 
measure Y, which is equivalent to the RGA for 2 × 2  
systems, was introduced by Baichen (1958) and Rijnsdorp 
(1965) and is discussed for n × n systems in Balchen and 
Mumme (1988). Balchen also gives some performance 
interpretation to his measure. Applications of the frequency- 
dependent RGA are given by McAvoy (1981, 1983). 

We use the dynamic RGA as defined by Bristol (1978). 
Other definitions have also been proposed. Witcher and 
McAvoy (1977) proposed a time domain definition of the 
RGA, as did Tung and Edgar (1981). Arkun (1987, 1988) has 
proposed measures (DBRG and Relative Sensitivity) which 
include the controller. Balchen and Mumme (1988) 
generalize the measure Y to include the controller. However, 
one then loses one of the main advantages of the RGA which 
is that it depends on the plant model only. These alternative 
definitions are not considered in this paper. 

In the paper we first consider the RGA as a general 
analysis tool and refer to some of its properties, which we 
believe are significant for engineering applications. However, 
the main part of the paper is devoted to decentralized 
control. We study stability and achievable performance 
("controllability") using simple frequency-dependent meas- 
ures for interactions (PRGA) and disturbances (CLDG). 

One of the main criticisms against the use of the RGA has 
been its "failure" to predict the poor performance one often 
has when using decentralized control for one-way interactive 
systems because the RGA matrix is identity in such cases. 
We propose a new measure, the performance RGA (PRGA) 
which may be used to address also this performance issue. 

2, Definitions 
2.1. Relative gain array (RGA). Consider an n × n plant 

G(s). 
y(s) = G(s)u(s). (I) 

The open loop gain from input u/to output Yi is g~j(s) when 
all other outputs y are uncontrolled. Writing equation (I) as 

u(s) = G-t(s)y(s), (2) 

it can be seen that the gain from u; to y~ is 1/[G-1(s)]/~ when 
all other ys are perfectly controlled (e.g. Grosdidier et al., 
1985). The relative gain is the ratio of these "open-loop" and 
"closed-loop" gains. Thus a matrix of relative gains, the 
RGA matrix, can be computed using the formula 

A(s) = G(s) x (G-~(s)) ", (3) 

where the x symbol denotes element by element 
multiplication (Hadamard or Schur product). The inverse 
G-t(s) may be non-proper or non-causal, and a physical 
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interpretation in terms of perfect control is of course not 
meaningful except at steady-state. This has caused many 
authors to discard use of a dynamic RGA, or to restrict its 
use to plants with no RHP-zeros (Manousiouthakis et al., 
1986). This is unfortunate as the dynamic RGA as defined 
above proves to have a number of useful properties. 
Furthermore, we shall mainly consider the A(s) as a function 
of frequency, s=jto,  and in this case A(jw) may be 
computed for any plant G except for frequencies 
corresponding to #o-axis zeros. 

The RGA matrix as defined above has some interesting 
algebraic properties (e.g. Grosdidier et al., 1985): 

(a) It is scaling independent (e.g. independent of units 
chosen for u and y). Mathematically, A(DIGD2)=A(G) 
where D1 and D2 are diagonal matrices. 
(b) All row and column sums equal one. 
(c) Any permutation of rows or columns in G results in the 
same permutation in the RGA. 
(d) If G(s) is triangular (and hence also if it is diagonal), 
A(G) = t. 
(e) Relative perturbations in elements of G and in its inverse 
are related by d[G-1]]i/[G-l]]i = -).qdgq/gij. 

These properties are easily proven from the following 
expression for the individual elements of A 

~,i1.(8) = ( _ l )  I +J gq(s) det (Gq(s)) ( 4 )  
det (G(s)) " 

Here G q denotes the matrix G with subsystem i] removed, 
that is, row i and column j is deleted. 

2.2. Performance relative gain array (PRGA). One 
inadequacy of the RGA (e.g. McAvoy, 1983) is that it, 
because of property d, may indicate that interaction is no 
problem, but significant one-way coupling may exist. To 
overcome this problem we introduce the performance 
relative gain array (PRGA). The PRGA-matrix is defined as 

r(s) = ~ ( s )G(s ) - ' ,  (5) 

where (~(s) is the matrix consisting of only the diagonal 
elements of G(s), i.e. G =diag {gii}. The matrix F was 
originally introduced at steady-state by Grosdidier (1990) in 
order to understand the effect of directions under 
decentralized control. The elements of F are given by 

yq(s) = gii(s)[G l(s)]ij = gii(s) " " " gj,(s---~ ̂ jits~. (6) 

Note that the diagonal elements of RGA and PRGA are 
identical, but otherwise PRGA does not have all the 
algebraic properties of the RGA. PRGA must be 
recomputed whenever G is rearranged, whereas RGA only 
needs to be rearranged in the same way as G. PRGA is 
independent of input scaling, that is, F(GD2) = F(G), but it 
depends on output scaling. This is reasonable since 
performance is defined in terms of the magnitude of the 
outputs. 

The measures above may be extended to non-square 
systems by introducing the pseudoinverse. However, the 
usefulness of the measures, at least for analyzing 
decentralized control, then seems limited. In the following 
G(s) is assumed square. 

3. The RGA as a general analysis tool 
In this section we present some relationships involving the 

RGA of G(s) which do not assume a decentralized control 
system. The results are based on the general definition of the 
RGA given by equation (3), and the physical interpretation 
preceding equation (3) is of limited interest in this case. 

3.1. The RGA and right half plane zeros. Consider a 
transfer matrix G(s). Bristol (1966) claimed in his original 
paper and later (Bristol, 1978,1981) that there is a 
relationship between RHP-zeros and negative values of 
).u(O), but Grosdidier et al. (1985) showed with a 
counter-example that this is not true. However, there proves 
to be a relationship if ).~i(0) and Zli(~) have different signs. 

Theorem 1. Assume l i m s ~  )~q(s) is finite and different from 
zero. Consider a transfer matrix with stable elements and no 
zeros or poles at s = 0. If Zo(jo~) and Zq(0) have different 
signs then at least one of the following must be true: 
(a) gij(s) has a RHP zero. 
(b) G(s) has a RHP transmission zero. 
(c) G'J(s) (i,e. the subsystem with input j and output i 
removed) has a RHP transmission zero. 

Proof. Consider phase changes in Zij(#o ) as o) goes from 0 
to 0% see details in Skogestad and Hovd (1990). 

Thus, different signs of 3.q(j~) and ).q(0) is a sufficient 
condition for the existence of RHP zeros or RHP 
transmission zeros. Any such zeros may be detrimental for 
control of the system. However, it is not a necessary 
condition, and there may be RHP-zeros present even if the 
RGA elements do not change sign. For example, adding a 
time delay or RHP-zero to an individual input or output 
channel will not affect the RGA as it may simply be viewed 
as a kind of scaling.t In most cases the pairings are chosen 
such that Z~i(o0) is positive and this confirms Bristols claim 
that negative RGA-elements imply presence of RHP-zeros. 

3.2. The RGA and the optimally scaled condition number. 
Consider any complex matrix G. Bristol (1966) pointed out 
the formal resemblance between the RGA and the condition 
number y(G)=O(G)/_(r(G)=O(G)O(G -1) However, the 
condition number depends on scaling, whereas the RGA 
does not. Minimizing the condition number with respect to 
all input and output scalings yields the optimal condition 
number 

y*(G) = min y(D~GD2). (7) 
OI,O2 

It is commonly conjectured that there is a close relationship 
between y*(G) and the magnitude of the elements in the 
RGA as is illustrated by the following lower and conjectured 
upper bounds on y*(G): 

1 
][AI[,, y.(G)-~y*(G)<--llA[lt+k(n). (8) 

where IIAII,, = 2max {]lAl]il, IIAI[i®} and IlAlh = Zq I).ij[, 
and k(n) is a constant. The lower bound is proven by Nett 
and Manousiouthakis (1987). The upper bound is proven for 
2 × 2 matrices with k(2) = 0 (Grosdidier et al., 1985), but it is 
only conjectured for the general case with k(3)= 1 and 
k(4) = 2 (Skogestad and Morari, 1987b). 

3.3. RGA and individual element uncertainty. 

Theorem 2. The (complex) matrix G becomes singular if we 
make a relative change -1/~. 0 in its ijth element, that is, if a 
single element in G is perturbed from gq to gmj= 
gq(1 - I/~q). 

Proof. Let Gp(s) denote G(s) with gpq substituted for gq. 
Using (4), we find by expanding the determinant of Gp(s) by 
row i or column j that 

det (G) ( -1 )  i+j det (G q) = 0. det (Ge) = det (G) (_l)i+idet(Gq) 

(9) 

Theorem 2 provides necessary and sufficient condition for 
singularity of a matrix with element uncertainty. It is actually 
a quite amazing algebraic property of the RGA which seems 
to be little known. The theorem was originally presented by 
Yu and Luyben (1987), but the proof above is much simpler. 
Theorem 2 has some important control implications. 

(1) Element uncertainty. Consider a plant with transfer 
matrix G(s). If the relative uncertainty in an element at a 
given frequency is larger than ]l/).i~(jw)l then the plant may 

t Adding a time delay 0 i to each output i yields the plant 
D1G where Dl=diag{e-°~) ,  but the RGA-matrix is 
unchanged since A(D 1 G) = A(G). 
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have rio-axis zeros and RHP-zeros at this frequency. 
However, the assumption of element-by-element uncertainty 
is often poor from a physical point of view because the 
elements are usually always coupled in some way. 

(2) Process identification. Models of multivariable plants, 
G(s), are often obtained by identifying one element at the 
time, for example, by using step or impulse responses. From 
Theorem 2 it is clear this method will most likely give 
meaningless results (e.g. wrong sign of det(G(0)) or 
non-existing RHP-zeros) if there are large RGA-elements 
within the bandwidth where the model is intended to be 
used. Consequently, identification must be combined with 
physical knowledge if a good multivariable model is desired 
in such cases. 

(3) Uncertainty in state matrix. Consider a stable linear 
system written on state variable form; dx/dt = A x  + . . . .  
Then changing the i]th element in A from alj to 
%(1 - 1/;ti/(A)) yields one eigenvalue of A equal to zero. 
Thus, we may conclude that systems with large RGA- 
elements of A, will become unstable for small relative 
changes in the elements of A. 

3.4. RGA and diagonal input uncertainty. One kind of 
uncertainty that is always present is input uncertainty. Let 
the nominal plant model be G(s), and the true (perturbed) 
plant be G e = G(I + A). A = diag {Ai} is a diagonal matrix 
consisting of the relative uncertainty (error) in the gain of 
each input channel. If an "inverse-based" controller 
(decoupler) is used, C(s)=G-t (s )K(s ) ,  where K(s) is a 
diagonal matrix, then the true open loop gain GpC is 

GpC = (I + GAG-~)K. (10) 

Result. The diagonal elements of GAG -l  are directly given 
by the RGA (Skogestad and Morari, 1987b) 

( G A G - ' ) ,  = XT=t;to(G)A j. (11) 

Thus, if the plant has large RGA elements and an 
inverse-based controller is used, the overall system will be 
extremely sensitive to input uncertainty. 

3.5. RGA and decentralized integral controllability (DIC). 

Definition of  DIC. A plant G(s) (corresponding to a given 
pairing) is DIC if there exists a stabilizing decentralized 
controller with integral action such that each individual loop 
may be detuned independently by a factor E i (0-<Ei-<l) 
without introducing instability. DIC is a property of the plant 
and the chosen pairings. Unstable plants are not DIC. 

Theorem 3. Assume C(s) is diagonal and that G(s)C(s) is 
stable and proper. Then ).~i(0) < 0 for any i ~ not DIC. 

Proof. Follows from Theorem 6 in Grosdidier et al. (1985). 
This condition is tight for 2 x 2 systems since in this case 
(Skogestad and Morari, 1988)DICC~;ql(O)= ;t22(0)>0. For 
3 x 3 systems with ~ii>O the necessary and sufficient 
condition is DICC~A~H(O) + Z~22(0) + V'~3(0) > 1 (Yu and 
Fan, 1900). 

3.6. RGA and stability of  decentralized control systems. 
Apart from the relationships between RGA and DIC 
presented above, we have not found any strong relationships 
between the RGA and overall nominal stability (NS) of a 
decentralized control system. However the following 
theorem holds. 

Theorem 4. I f  A ( G ) =  I Yto then stability of the individual 
loops imply stability of the entire system. 

The proof is straightforward. We find from equation (3) 
that A(G)=  I can only arise from triangular G(s) (with 
diagonal G(s) as a special case) or from G(s)-matrices that 
can be made triangular by interchanging rows and columns in 
such a way that the diagonal elements remain the same but in 
a different order (the pairings remain the same). A plant 
with a triangularizable transfer matrix (as described above) 
controlled by a diagonal controller has only "one-way 
coupling" and will always be stable provided the individual 
loops are stable. 

For plants that cannot be made triangular by row and 
column interchanges Theorem 4 is of little use as it does not 
tell what deviations from A(G) = 1 can be tolerated without 
impairing stability. Care should be taken to distinguish 
Theorem 4 from what may be termed the conventional 
pairing rule. 

Conventional pairing "rule". Prefer pairings i] with Aii(jto) 
close to 1 (e.g. Bristol, 1966; Seborg et al., 1989) 

We emphasize that the conventional pairing rule is an 
engineering rule of thumb, and is not based on any proof. 
Indeed, pairing in accordance with the conventional pairing 
rule may result in unstable systems even if the individual 
loops are tuned to be stable (for systems of dimension larger 
than 2 × 2). 

Example 1. Counterexample to the conventional pairing 
rule. 

Consider the plant 

( !  - 4 . 1 9 - 2 5 . 9 6 )  
(1 - S) .19 1 -2~.96 

G ( s )  = ~ 1 • (12) 

The corresponding RGA matrix is at all frequencies 

A ( G )  = - 5  1 . (13) 

5 - 5  

If we use the pairing indicated by equation (12) and tune 
individual PI controllers according to the Ziegler-Nichols 
tuning rules we obtain controllers G(s)=4.46((7.58s+ 
1)/7.58s). However, the overall system becomes unstable 
even though the individual loops are stable. In order to 
obtain overall stability we have to detune the controller gains 
by a factor of 125. 

4. Performance relationships .for decentralized control 
In this section we consider the implications of overall 

performance requirements (nominal performance--NP) on 
the single-loop designs. We derive bounds on the designs of 
the individual loops 

[giici(#O)[ > bi(to); co < ~os, (14) 

which when satisfied yield performance (NP) of the overall 
system (with all loops closed). Note that the relationships for 
performance derived below require stability of the overall 
system (NS) as a prerequisite, that is, NS must be tested 
separately. 

4.1. Notation. The controller C(s) is diagonal with entries 
q(s) (see Fig. 1). This implies that after the variable pairing 
has been determined, the order of the elements in y and u 
has been arranged so that the plant transfer matrix G(s) has 
the elements corresponding to the paired variables on the 
main diagonal. Let y(s) denote the output response for the 
overall system when all loops are closed and let 
e(s) = y ( s ) -  r(s) denote the output error. Then 

e(s) = -S(s)r(s)  + S(s)Gd(s)z(s); S = (I+ GC) -l. (15) 

Here z denotes the disturbances. G is assumed to be a n x n 
square matrix, but Gd may be nonsquare. The bandwidth of 

cl C2" } 
"'cn I 

U 

FIG. 1. Block diagram of decentralized control structure. 
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the system, ton, is defined as the frequency where 
o(GC(jto)) (or the asymptote of O(S(jto))) crosses one. This 
frequency range is also called called the "crossover region". 

The matrix consisting of only the diagonal elements of 
G(s) is denoted G(s), y(s) denotes the response of the 
individual subsystems, that is, y~(s) is the response when loop 
i is closed and the other  loops are open. The closed-loop 
sensitivity functions for the individual loops may be collected 
in the diagonal matrix S: 

~(s) = -S(s)r(s )  + S(s)Ga(s)z(s). (16) 

S = ( I + ( ~ C )  ~=diag{gii}; g , = ( l + g i i c i )  -~. (17) 

Note that the elements in S are not equal to the diagonal 
elements of S. 

4.2. Performance requirements (definition of  NP). Assume 
that G and Gd have been scaled such that at each frequency 
(1) the expected disturbances, Izk(jo~)l, are less than one, 
and (2) the outputs,  y~, are such that  the expected setpoint 
changes, Irj(./to)l are less than one. As a NP performance 
specification we shall require for any setpoint change, rj, that 
the offset e i is bounded: 

Je~(jto)/ri(jto)( = [S0(flo)l < 1/Iw,~(jto)l; Vw, Vi, Vj. (18) 

Here w~(s) is a scalar performance weight. For any 
disturbance z k we require that 

lei(jto)/z~(jto)l = I[SGd]ik(jto)l < l/IWdi(Jto)l; Vto, Vi, Vk. 

(19) 

Typically, both weights Iwai(jto)l and Iw~i(jto)l are large at 
low frequencies where small offset is desired. Iw~il is often 
about 0.5 at high frequencies to guarantee an amplification of 
high-frequency noise of 2 or less. Thus we have a number  of 
performance specifications we want satisfied simultaneously. 

4.3. Bounds on single-loop designs. In this section we shall 
use the above definition of performance to obtain bounds on 
the individual transfer functions g,ci at low frequencies. The 
Laplace variable s is omit ted to simplify notation. For 
to < o~ n we may usually assume 

S = ( I + G C )  ' -~(GC)  ~, (20) 
We thus have: 

e = - S r  +SGaz ~ - C - l G - t r  + C 1G-IGaz. (21) 

= - (OC)- IC ,  G lr + (OC)-iCJG-1Gaz; to < ton, (22) 

where F = (~G t is the P R G A  matrix, and GG-IGd  = FGd is 
known as the closed loop disturbance gain (CLDG)  matrix 
(Skogestad and Hovd, 1990). The elements of F are denoted 
by y~j and those of FG d are denoted by 6ij. The step from 
(21) to (22) requires that  the diagonal elements of G are 
nonzero. We have proven the following theorem. 

Theorem 5. For plants with nonzero diagonal elements in 
G(s), and at frequencies to < toa where (20) holds, the N P  
specifications (18) and (19) are satisfied iff 

[glici(]'to)[ > Iyqw~i(jto)l; Vto < ton, Vi, Vj, (23) 

[g.c~(jto)l > 16,kWdi(jto)l; Vto < ton, Vi, Vk. (24) 

For a given choice of pairings Theorem 5 provides lower 
bounds on the individual loop gains to achieve NP. We get 
one bound on the loop gain g,  ci for each setpoint j and each 
disturbance k. The bounds may be difficult to satisfy if Yij or 
6~ are large. A plot of Iy0(jto)l as a function of frequency 
will give useful information about for which inpu t -ou tpu t  
pairs ij we may expect interactions. A plot of 16~(jto)l will 
give useful information about which disturbances k are 
difficult to reject. 
Comparison with all loops open. To get a bet ter  physical 
interpretation of the P R G A  and C L D G  consider the 
response e i to a setpoint change r i and a disturbance z k when 
all the other loops are open. We get 

e i = - ( 1  + g,ci)-tr, + (1 + giici) - ~gaikZk. (25) 

When all loops are closed simultaneously and we assume 
--~ ((~C) -1 we get from (22) 

e ~- - S F r  + SFGdz; to < ton, (26) 
o r  

e i ~ - ( l + g l i c i )  lyi jrj+(l+gllci)  161kZk; ~O<to~. (27) 

Comparing (25) and (27) we see for a setpoint change r~ in 
loop i that the performance relative gain, y,, gives the 
approximate change in offset caused by closing all the loops. 
In addition, Y0 gives the effect of setpoint change rj on output  
e~ when the other loops are closed. That  is, for to < toa we 
have so/g #~Yo ,  and we see that  y,  is a measure of 
performance degradation at low and intermediate fre- 
quencies. Similarly, for loop i and disturbance zk we see that 
ga~k in (25) is replaced by 6~k in (27), which explains why the 
name closed loop disturbance gain is chosen for 6~k. Also 
note that the ratio 6~,/gag , is the Relative Disturbance Gain 
(RDG)  introduced by Stanley et al. (1985). 

4.4. Limitations o f  Theorem 5. 
(1) The main limitation with the bounds in Theorem 5 is that 
they apply only to lower and intermediate frequencies. 

(2) Furthermore,  they only address performance,  and 
stability must be considered separately. For example, for 
input disturbances, i.e. Ga = G, we get the closed-loop 
disturbance gains 61k(S)=gii(S ). Thus, it seems from 
performance considerations with respect to input distur- 
bances that large diagonal elements in G (when appropri- 
ately scaled for disturbances) should be avoided. This is 
opposite of the conventional pairing rule of selecting inputs 
that have large effects on the controlled variables (i.e. 
Ig.(jw)l should be large), e.g. Balchen and Mumme (1988) 
and Seborg et al. (1989). The reason for the apparent  
discrepancy is stability issues and even more importantly 
input constraints which generally favor pairing on large 
elements. 

(3) Theorem 5 requires that the approximation S-~ (GC) 1 
holds for individual elements in S. It may appear that this 
approximation is poor for elements in S corresponding to 
elements in G - t  equal to zero. However,  we show in 
Appendix 1 that if F i and G j* have zero gain in the same 
direction, the approximation in (20) holds also for this 
element. Thus, in most cases Theorem 5 will hold 
(structurally) also for the zero elements in G -1 provided 
g,  4:0. For example, it holds for all elements when G is 
triangular. 

(4) Another  limitation with Theorem 5 is the assumption 
that gii 4: 0, Vi. However,  we may derive alternative bounds 
when gi, = 0 as shown below for the 2 × 2 case. 

2 x 2 plant with diagonal element zero. Without  loss of 
generality assume gu  ---0. In this case the previously derived 
performance bounds (23) apply neither to loop 1 nor to loop 
2. To derive a~propriate bounds consider the elements st./of 
S = (! + GC)-  directly, and assume 

g22 Igz2c2l >> 1; Jc)l >> ~ , (28) 

such that  det (! + GC)  = d e t  (GC). The performance re- 
quirements for setpoint tracking to replace (23) then become 

g2z 
wrx ; Ic11> 1 WrZ ; ICd > 

g~2g21 gZl (29) 
I w Ig22c21 > gg~:l~ w'z ; Iclc2[ > gl-z~2t ,2 . 

The last bound puts a requirement  on the product of the 
controller gains. This is reasonable since with g u  = 0 input u l 
can only affect output  y~ by the indirect action of control 
loop 2. For disturbance rejection, closed loop disturbance 
gains can be calculated for loop 2 as if gtl  is non-zero. For 
loop 1, bounds on the controller gain c~ for disturbance 
rejection are found from the elements in the first row of 
[C-'G~]. 
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4.5. Comparison with previous work. Mathematically, the 
performance specification (18) and (19) used above may be 
written 

II[W,S WaSGa](jto)lle < 1, Vto, (30) 

where the e-norm used spatially (channels) is the spatial 
~-norm, which is the largest modulus of the elements in the 
matrix. W~ = diag {w~i) and Wa = diag {Wdi} are diagonal 
matrices specifying the desired performance in each output. 
This performance specification is very similar to the 
H~-norm, but in the latter case the induced 2-norm is used 
spatially. Consider the special case where W, = Wd = We and 
we have for the H~-performance specification 

O(WF[S sad](#o)) < 1, Vw <=~ II Wp[S Sad]ll~ < 1. (31) 

Skogestad and Morari (1989) have shown how one from the 
NP-condition (31) may derive the tightest possible bounds on 
the individual loops, for example, in terms of bounds on Ih~t, 
Isi[ or Ig, c~[. These results are very powerful, but 
unfortunately the same bound is used for all loops, and this 
may be conservative. It is possible to derive less conservative 
bounds by introducing additional adjustable parameters 
("weights"), but it is not all obvious how this should be done 
a priori (see Nett and Uhtgenannt ,  1988, for an example on 
how difficult it is even for a very simple case). However,  
using the spatial ~-norm for the matrix as in (18), (19) and 
(30) makes it is much simpler to derive tight bounds on the 
individual loops. 

In the paper we have shown that ~,~ = ~,  is a measure of 
performance degradation in terms of the diagonal elements 
in the sensitivity function, S. These results apply at small 
frequencies below crossover, but for control purposes the 
most important frequency region is close to crossover. Nett 
(e.g. Minto and Nett, 1989) has presented results which 
relate ( A - l )  and performance degradation in terms of 
H = 1 -  S. These bounds are most useful at frequencies 
beyond crossover, but this frequency region by itself is not 
too interesting. However,  our results complement each other 
and indicate that we should have A ~ 1 at crossover in order 
to avoid degradation in performance when other loops are 
opened or closed. This provides a performance justification 
for the conventional pairing "rule".  However,  this 
justification only applies if we have a design objective to 
maintain the same performance for the overall system as for 
the individual loops. However,  we may want to sacrifice the 
latter in order to meet some other design objective, as 
demonstrated in example 3 below. 

5. Examples 
5.1. Example 1 continued. We return to Example 1 in 

Section 3.6 to illustrate that pairing according to ).i~ = lVi 
may be undesirable from the point of  view of performance. 
We consider the two alternative pairings corresponding to 
positive R G A  values. For the pairing corresponding to ~,  = 1 
the transfer function matrix G(s) is given by (12), whereas 
for the pairing corresponding to ).~ = 5 the transfer function 
matrix is rearranged to give 

G'(s) = ~  -25.96 .19 . (32) 

1 

The control problem is formulated as follows: With a 
diagonal performance weight Wp(s) with all diagonal 
elements equal 

Wp(s)i,i = 0.5 I~cLS + 1 ,  (33)  
~cLS 

minimize rCL subject to an upper bound on the weighted 
sensitivity 

II WpSII® -< 1. (34) 

This means that we allow a maximum peak in the sensitivity 
function at high frequencies of 2, and seek the controller 
which minimizes the closed loop time constant in the slowest 
direction. Only PI controllers were considered, and the 

TABLE 1. PI CONTROLLER PARAMETERS FOR 
EXAMPLE 1 (Ci(S) = ki((ris + 1)Iris)) 

k 1 -0 .6840 0.1230 
r I 24.15 32.40 
k 2 -0.02425 0.1443 
r 2 7.270 34.54 
k 3 0.007685 0.002940 
r3 0.3688 3.988 

"rCL 220 1160 

tunings were obtained by a numerical search. The results 
demonstrate that it is advantageous to choose the pairing 
corresponding to ~i = 5 rather than ~.~ = 1. For  the pairing 
corresponding to 2it = 5 we were able to fulfill (34) with 
rCL = 220 whereas for the pairing corresponding to ~., = 1 we 
had to increase ZCL to 1160 in order  to be able to fulfill (34). 
Although the resulting closed loop systems are quite slow for 
both pairings (relative to the RHP zero at s = 1) the pairing 
corresponding to 2~i = 5 is significantly better.  The controller 
parameters are given in Table 1. 

5.2. Example 2: distillation column control. In order to 
demonstrate the use of  the frequency dependent  P R G A  and 
CLDG for evaluation of expected control performance and 
control structure selection, a binary distillation column with 
40 theoretical trays plus a total condenser is considered. This 
is the same example as studied by Skogestad et al. (1988), 
but we use a more rigorous model which includes liquid 
dynamics in addition to the composition dynamics. Using 
model reduction, the number of states in the model was 
reduced from 82 to 5. Disturbances in feed flowrate F(zO 
and feed composition ZF(Z2), are included in the model. The 
LV configuration is used, that is, the manipulated inputs are 
reflux L(ul) and boilup V(u2). Outputs are the product 
compositions Yo(Yl) and xB(y2). The model then becomes 

(dy~ 
dyz] = G(s)( ddu;) + Ga(s)( ddZz: ). (35) 

A state space description is given in Appendix 2. The 
disturbances and outputs have been scaled such that a 
magnitude of 1 corresponds to a change in F of 30%, a 
change in zF of 20%, and a change in xB and Yo of 0.01 mole 
fraction units. 
Pairings. We choose u~ to control Yl and u 2 to control Yz, as 
indicated by (35), in order to have positive steady state 
relative gains. This is in agreement with industrial practice. 
Analysis of the model. Figure 2 shows the open-loop 
disturbance gains, gaik, as a function of  frequency. These 
gains are quite similar in magnitude and rejecting 
disturbances z~ and z 2 seems to be equally difficult. However,  
this conclusion is incorrect. The reason is that the direction of 
these two disturbances is quite different, that is, disturbance 
2 is well aligned with G and is easy to reject,  while 
disturbance I is not (Skogestad and Morari, 1987a). This is 
seen from Fig. 3 where the closed-loop disturbance gains, 
~i2, for z 2 are seen to be much smaller than 6il for z 1. The 
diagonal relative gains for the loops are also included in Fig. 
3 (note that )'11 = ~,H and Y11 = ~22 for 2 x 2 plants). We see 
that rejection of disturbance I (as indicated by 16~d ) and 
setpoint following (as indicated by I)'~1) put similar bounds 

10° I 

, , , 

10i20~'~ l0 4 10 -3 l0 "2 10" 10 ° 10" 10 2 

FIG. 2. Open loop disturbance gains, ]g,til, J, for example 2. 
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FIG. 3. Bounds on loop gains for example 2. NP at low 
frequencies (to < tos) requires Ig,cil/lYiil > Iw, i[ and 
Igi:il/16ik[ > Iwail. Performance weights w,~ and Wdi are not 
shown, but these are generally large at low frequencies and 

approach 1 at to ~ toB- 

on the loop gain Igiicd. Assuming that the performance 
requirement around crossover corresponds to performance 
weights IWd(jtoB)I ~ Iw~(jt%)l ~-1 we find that the minimum 
bandwidth requirement for both loops is about 0.5 rad 
rain -~. Note that interactions become severe and perfor- 
mance will deteriorate drastically if the loops are detuned 
much below this value. 
Observed control performance. To check the validity of the 
above results we designed single-loop PI controllers by 
optimizing robust performance with a one minute time delay 
using (31) as the performance specification. The controllers 
obtained are: 

Cl(S) = 0.261 1 + 3.76s 3.76s c2(s) = -0.375 1 + 3.31s (36) 
' 3.31s 

The loop gains, Ig~:il, with these controllers are also 
shown in Fig. 3. The loop gains are seen to be larger than the 
closed-loop disturbance gains, 16akl, at all frequencies up to 
crossover. Closed-loop simulations with these controllers are 
shown in Fig. 4. The simulations confirm that disturbance 2 is 
much easier rejected than disturbance 1. In summary, there 
is an excellent correlation between the analysis based on ItSak I 
in Fig. 3 and the simulations. This is not surprising when one 
considers Fig. 5 which shows the accuracy of the 
approximation [S(s)Gd($)]ik-~[SFGd]ik which formed the 
basis for the analysis in Fig. 3. The approximation is very 
good at low frequencies, but as expected is poorer at 
frequencies around the closed loop bandwidth, The most 
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-0.2[ , , 
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Fro. 4. Responses for example 2 to a unit step disturbance in 
zl (top) and in z2 (bottom). 
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FIG. 5. Check of approximation SGd ~ SFGd for example 2. 
The figure shows the magnitude of [SGelM[SFGeI~k. 

significant deviation occurs for i = 1, k = 2 at frequencies 
around 0.1radmin-1,  where we see that the actual 
disturbance rejection is poorer than the approximation. This 
explains why the effect of z 2 on Yl in Fig. 4 is somewhat 
poorer than might be expected from Fig. 3. 

5.3. Example 3: pairing corresponding to A a = 0. In order 
to demonstrate that acceptable performance may be achieved 
even with pairings corresponding to ~ = 0, consider control 
of the top part of a distillation column. It is desired to 
control the top product composition (Y0 and the level in the 
condenser (Y2)- The manipulated inputs are the distillate 
flowrate (ul) and the reflux flowrate (u2). The vapor flowrate 
entering the top of the column is considered to be the only 
disturbance (z0. The achievable bandwidth is limited by 
unmodeled measurement delay in ya of one minute and valve 
dynamics in u2 equivalent to a time delay of 0.1 minute. 
After scaling, the resulting transfer functions are 

lOO \ / - i®  \ 
(dyl~ = 0 1+ lOOs|:dui'~ + [ 1 +  lOOS|d z 
\dy2] -I ]\du2] ~ I ] '" (37) 

S I \ S I 

This pairing corresponds to Zll = A22= 0 at all frequencies. 
This pairing may be preferred in some cases, for example, if 
the reflux is large such that constraints on the distillate 
flowrate make level control with this input difficult. The 
chosen controllers are 

1+10s  
Cl(S ) = - 0 . 5 - ~ - - - ;  c2(s ) = -5 .  (38) 
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FIG. 6. Bounds on controller and loop gains for example 3. 
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FIG. 7. Responses for example 3 to unit step changes in r~ at 
t = 0, in r 2 at t = 40, and in z~ at t = 80. 

To check NP, the controllers and the bounds (29) for the 
case with zero diagonal elements are shown in Fig. 6. The 
bounds in Fig. 6 indicate that interactions put no serious 
limitations on achievable performance. In Fig. 7 we show 
responses to changes in setpoints r t and r 2 and in disturbance 
z~. In the simulations a first order filter with a time constant 
of one minute is used for both setpoints, and a one minute 
time delay in the measurement of y~ and a 0,1 minute time 
delay in manipulated variable u 2 are approximated with first 
order Pad6 approximations. The observed control perfor- 
mance is satisfactory, although there is an undesirable 
interaction from setpoint r2 to output y~. This interaction 
cannot be predicted from Fig. 6, as equation (20) does not 
hold in the crossover region where the interactions occur. 

6. Conclusions on decentralized control 
In the paper we have derived bounds on the designs of the 

individual loops which when satisfied yield performance (NP) 
of the overall system (with all loops closed). For setpoint 
tracking the bounds are given by the performance relative 
gains, I~'ii] (equation (23), and for disturbance rejection by 
the closed-loop disturbance gains, 16ikl (equation (24)). The 
bounds are tight (necessary and sufficient) at low frequencies 

1 where S ( G C ) - .  It is desirable that the bounds are as 
small as possible because a large bound requires a large 
bandwidth in loop i. Since stability of the individual loops is 
desired this may be impossible if g~i(s) contains time delays, 
neglected or uncertain dynamics, or RHP-zeros. 

Importantly, these bounds depend on the model of the 
process only, that is, are independent of the controller. This 
means that frequency-dependent plots of "r~ and 6~g may be 
used to evaluate the achievable closed-loop performance 
(controllability) under decentralized control. Plants with 
small values of these measures are preferred. Furthermore, 
the values of 6~k may tell the engineer which disturbance k 
will be most difficult to handle using feedback control. This 
may pinpoint the need for using feedforward control, or for 
modifying the process. For example, in process control 
adding a feed buffer tank will dampen the effect of 
disturbances in flowrate, temperature or composition. Plots 
of tSik may be used to tell if a tank is necessary and what 
holdup (residence time) would be needed. 

The bounds may also be used to obtain a first guess of the 
controller parameters. However, as the derivation of the 
bounds depends on approximations which are valid at low 
frequencies only, undesirable effects may occur at fre- 
quencies around the closed loop bandwidth. Thus the 
behavior of the closed-loop system must be checked using 
other methods, and the controllers possibly redesigned. 
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Nomenclature. (See also Section 4.1.) 
D~, D2--Diagonal matrices 
e = y - r--Vector  of offsets 
gi/= [G]q--i/'th element of G 
gaik = [Gd]i~ ---ikth element of G d 
G--Plant  transfer matrix 
t~--Matrix consisting of diagonal elements of G 
G°--G with row i and column/' removed 
r--Vector of reference outputs (setpoints) 

u--Vector of manipulated inputs 
wall--Performance weight for disturbance rejection in loop i. 
wri--Performance weight for setpoint following in loop i. 
y--Vector  of outputs 
Y=g12g21/gug22--Rijnsdorp or Balchen interaction me- 
asure for 2 × 2 system 
z--Vector of disturbances 

Greek letters 
6ik = gii[G- IGd]ik = [GG- tGd]ik----flosed loop disturbance 
gain (CLDG) 
y( G ) = O( G ) /_o( G )---Condition number 
y*(G) = minolo 2 Y(D1GDz)--Optimal (minimized) condition 
number 
Yij = gii[ G 1]ij = [GG-t]i/-Perf°rmance relative gain 
F--Matrix of performance relative gains (PRGA) 
2i(G)--ith eigenvalue of matrix G 
,~j(G) = gq[G-~]/f--i/'th element in RGA-matrix A 
A - - R G A  matrix 
to--frequency 
t0n---closed loop bandwidth 

Norms 
p(A) = max/I)./(A)]--Spectral radius 
O(A)--Maximum singular value or spectral norm (= IIA 1li2-- 
induced 2-norm) 
g(A) = 1/O(A-l )~minimum singular value 
IIA[h = Zij lai/[--1-norm 
IIAII2 = (~,q laq]2)°5--2-norm (Euclidean norm) 
[]AI]e = max//]aql--e-norm (magnitude of largest element in 
A) 
Ilall® -- sup,o O(G)---H~-norm of G(/'to) 
IIA]/~I = max/Z~ laql--induced 1-norm ("largest column 
sum") 
I]A ]li~ = maxi Z/laql--induced ~-norm ("largest row sum") 
IIAI],, = 2 max{llA[lil, IIAIII=} 

Subscripts 
/--Index for outputs or loops 
/ '--Index for manipulated inputs or setpoints 
k--Index for disturbances 
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Appendix 1 
Consider a non-singular plant transfer function matrix G, 

and assume that neither G nor the diagonal controller C has 

a pole on the imaginary axis at the frequency in question. We 
have [G-Xli/= ( -1 )  i+/det (GJi)/det (G) where G/i denotes 
the matrix G with row j and column i removed. 
Correspondingly, S/i = ( -1 )  i+/det (1 + G C )Ji / det (I + G C ). 
Proposition. 

[G-l]ij =0 and (I ji and G/i have zero gain in the same 
input direction)) ~ S 0 = [(I + GC)-t]ij = O. 
Proof. 

If 1 ji and G ji have zero gain in the same input direction, 
(GC) j~ will have zero gain in the same direction, as C is 
diagonal. Thus, det (1/i + ( GC) j~) = det (1 + GC) ii = O ~ S o = 
0, 

Appendix 2 
Transfer function matrices for distillation column in 

Example 2. The transfer function matrices G(s) and Gd(S) 
can be calculated from the formulae 

G(s) = C(sl - A)-1B + D, 

and 

Gd(S) = C(sl - A)-IBd + D d. 

- 5.161e - 3 0 0 

-7.366e - 2 0 

A = [ 0 0 - 1.829e - 1 

0 0 

0 0 o o) 
0 0 

0 0 , 

-4.620e - 1 9.895e - 

- 9 . 8 9 5 e -  1 -4.620e 

-6.290e - 2 

5.481e 3 

B = /  3.041e 3 

~ -1.856e 2 

\ - 1.229e 1 

6.236e - 2 

-1.719e - 2 / 

- 1.078e - 2 / '  

- 1.393e - 2 / 

-5.608e - 3 ] 

/ -7 .223 -5.170 3.836 - 1 . 6 3 3 e -  1 1.121] 
C = [-8.913 4.728 9.876 8.425 2.186]' 

n d 

-9.364e - 3 

1.960e - 2 

3.266e - 3 

-2.827e - 2 

-6.784e - 3 

- 1.333e - 2 \ 

8.018e - 3 

- 2 . 1 1 6 e - 2  , 

5.319e - 3 

2.719e - 3 

(39) 

(40) 

(41) 

(42) 

(43) 


