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Ahatract

The problem of obtaining linear models for efective control is
discussed. First a good model structure is identified by compar-
ing different models. It is demonstrated that the high-frequency
behavior (initial time response) of the model is much more im-
portant for controller design than the steady-state character-
istics. Finally, having determined a good model structure, the
problem of obtaining models from experiments is discussed. It is
shown that hy combining experimental open-loop step responses
with theoretically established structural properties one may ob-
Lain reasonably good models.

1 Introduction

When obtaining dynamic models for process control one is usually in-
terested in simple linear models. In this paper we discuss how such
models may be obtained. We investigate which effects that should be
included in a model to be used for design of feedback controllers, and
subsequenctly discuss how the models may be obtained from experi-
ments.

It is stressed that we are looking for a multivariable model. The
main difference between single-input-single-output (S1SO) models and
multivariable models is the presence of “directions™ or “interactions”
in the latter case. It scems likely that our model should capture these
multivariable cffects in a reasonable way. From the Zicgler-Nichols
tuning rules, which are widely used for SISO control, we know that
the plant behavior at high frequencies (at “crossover” , ie. where
the plant has a phase lag of about 180°) is of primary importance
for feedback control. This fact often seems to be forgotten when de-
veloping multivariable control models, and engineers often emphasize
the steady-state behavior. There are probably two reasons for this: 1)
Steady-state gain data are easily obtained, 2) Up to now most tools for
analyzing directions and interactions, for example the Relative Gain
Array [1], have been used at steady state only. In this paper we want to
demonstrate that also for multivariable plants it is the high-frequency
behavior, and not the steady state, which is of primary importance for
fecdback control. However, we shall see that it is important that the
sign of the plant (experessed by the sign of the determinant or sign of
the RGA-elements) is correct at steady state.

Distillation control is used as a case study throughout the paper.
Composition control of distillation columns (Fig. 1) has proven dif-
ficult to implement in practice. One-point control (one composition
under feedback control and the other uncontrolled) is fairly common,
while two-point control (feedback control of both compositions) is
rarely used. One reason for this is that on-line tuning of two composi-
tion loops on a strongly interacting distillation column is very diflicult
(eg-, [19]). Tt is therefore desirable to obtain controller tunings based
on some model of the column.

The linear model of the plant is written

dyo(é)) _ (dL(J))
(dzg(s) =G0 qv(s) (1)
where G(s) is a 2 x 2 transfer matrix expressing the effect of small

changes in the independent flows on the compositions. Note that we
have assumed that the product flows D and B are used for level control

such that reflux L and boilup V are used for composition control. This
corresponds to the LV -configuration. This may certainly not be the
best configuration for two-point control, but it is the most commonly
used configuration in industry; probably because it works well for one-
point control [17].
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Figure 1. Two-product distillation column with LV-configuration.

The traditional approach for distillation columns has been to ob-
tain the four elements of G(s) independently, for example, by fitting
open loop responses of steps or pulses in reflux and boilup to simple
transfer function models ((8], (18], [19]). This approach might work for
columns that are simple to control. However, as pointed out by Sko-
gestad and Morari (15), for columns with large interactions between
top and bottom, this approach will most probably yield poor models.
The main reason is that it is very difficult to obtain a good model
based on open-loop experiments or simulations unless one explicitly
takes into account the expected couplings between the elements when
formulating the model. In particular, one is not able to obtain a good
model of the low-gain direction of the plant ([15), [1]). However, as
we show in this paper, models obtained from fitting individual step
responses may work if: 1) one uses a reasonable model structure, 2)
fits only the initial part of the response and 3) corrects the obtained
model according to theoretically established model properties.

We start the paper by evaluating what kind of modelling detail
that is needed in a model used for controller design (part I). We then
use the information gained here to fit models from experimental data

(part 1I).
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Part I: Modelling Requirements

2 Nonlinear model

Data for the example column ("column A") are summarized in Table
1. The column has 40 theoretical trays (N-1 trays and a reboiler)
plus a total condenser. The following modelling assnmptions are used:
binary separation, constant relalive volatility, constant molar flows (no
cnergy-balance), negligible vapor holdup, and vapor-liquid equilibrinm
as well as perfect mixing on all stages. Neglecting the vapor holdup
implics immediate vapor flow responses throughout the column. Note
that liquid flow-dynamics are not neglected; a simple linear relation is
assumed between liquid holdup and liquid flow:

Mi= M2+ ri(Li— LY) (2)

where superscript o denotes nominal steady-state value given in Table
1. M?/F° = 0.5 min. for all stages, including reboiler and condenser.
The reboiler and condenser holdups are controlled by bottoms and dis-
tillate rate respectively. Note that the LV -configuration is insensitive
to how tight these loops are tuned. r1;=0.063 min. for all stages,
except for the reboiler and condenser. The variation in liquid holdup
with liquid load yields an effective deadtime 87,=2.46 min. between
a change in liquid flow rate at the top and at the bottom of the col-
umn. These modelling assumptions gives for each tray two nonlinear
differential equations, one for composition and one for liquid holdup,
resulting in a total of 82 states for the column. A linear model, de-
noted "full” linear model in the following, is obtained by linearizing
the nonlinear model around the nominal steady-state.

3 Simple linear models

3.1 Reduced models from physical insight

1t is well known that the composition dynamics in distillation columns
may be well approximated by first order responses. Skogestad and
Morari [15] found that there in general will be two time-constants; one
for the strong direction of the plant (change in external flows) and
one for the weak direction (change in internal flows). We will use this
as a model basis in the following, but will in addition introduce the
flow-dynamics (2):

G ﬁ'l;ll-; (% - 1";’"’l‘) (3
)= (TLU (bt — pfa )) ’

1

- 4
gL(S) (1 T (0[,/1!)8)" ( )
The numerical values used are:
e _ [k kn) _ ( 0.878 —0.864)
GO)=Fk= (k,, k) T \1.082 -1.096 )
1y = 194 min; 72 = 15 min; 8 = 2.46 min; n=25 (6)

The flow-dynamics is described by (4) where n is the number of
trays in the column. n should equal N — 1, but is troughout this pa-
per chosen to be 5 do aveid models of unnecessary high order. The
steady-state gains k;j and 1 were obtained from the full linear model.
17 is taken from [15] and were obtained from fiiting a model with-
out flow dynamics. When flow dynamics are included in the model,
the dynamics for changes in internal flows becomes somewhat more

Table 1. Steady-state data for distillation column example (Column
A). Feed is liquid.

zp. a N Np l-yp zp DJ/F LJ/F V/F

05 15 40 21 0.01 0.01 0.500 2.706 3.206

complicated, and there should be two poles in addition to a minimum
phase zero close to the imaginary axis. This is caused by the fact that
there will be a temporary change in the external flows when I and
V are changes equally, and there will be a marked overshoot in the
response of the bottom composition.

To study what level of modelling detail that is necded for a good
model to be used for control we will study the following models:

N1: r, = =194 min, 8, = 0. Simplest model with only the domi-
nant time constant 7y and neglected flow dynamics.

F1: r, = =194 min. One time-constant model with flow dynamics.

F2: Two time-constant model (Eq.3) with 7y, 72 and 8.

F1X: Same as F1, but with gains and time-constant reduced by a
factor of 10.

Here "N” denotes no flow-dynamics, "F” denotes flow-dynamics, and
"1 and "2” denotes one- and two-time-constant model respectively.
Note that all these models, except F1X, are identical to the full lincar
model at steady-state, but the high-frequency dynamics differ. Model
F1X will be identical to F1 at high frequencies, but the steady-state
gains are incorrect. Also note that none of the models have multivari-
able zeros in the right half plane.

3.2 Mathematical model reduction

There exists many methods for reducing the order of a linear dynamic
model. Most of the methods are based on computing the Hankel singu-
lar values', and then removing states corresponding to relatively small
singular values. States with relatively small Hankel singular values cor-
responds to states having little effect on the input/output behavior of
the system. In this work we applied 4 different methods to the full
linear model of column A. All the methods are implemented in one of
the MATLAB toolboxes:

B1: Balanced Truncation Approximation [9]. (Robust Control Tool-
box (3}).

B2: Balanced Truncated Approximation without balanced minimal
realization [10]. (Robust Control Toolbox).

H1: Hankel Norm Approximation {5]. (p-Toolbox [2]).

H2: Optimal Ilankel Approximation without balancing [11]. (Robust
Control Toolbox).

Method 1, 2 and 4 posess the same infinity-norm error bound for a
reduced model of order k of and n-th order system, while method 3
guarantees half of this error. Method 1 and 2 are quite similar, as are
3 and 4, but method 1 and 3 use a balanced realization of the original
model while method 2 and 4 do not.

Due to their similarities in guaranteed maximum error one might
expect that all methods yields similar reduced models. However, when
reducing the model of column A from 82 to 2 states? we found that
the methods yielded very different models. Method 2 and 4 (though
quite different) gave significantly better models than method 1 and 3.
(see section 5 on controller design.)

The main reason why method 2 and 4 yield the best results is
probably that they do not use the numerically ill-conditioned minimal

realization step [11] which is used by method 1 and 3. The results we
find here may of course be case dependent, but at least they demon-

strate that model reduction methods should be chosen with caution.

Reducing the full nonlinear model of column A from 82 to 2 states
with the algorithm described in [11] (method 4) yields the model
H2(s)=

1 (0.871(2.17s+1) ~0.861(0.721s + 1)\ .
(1.61s + 1)(104s + 1) \ 1.089(0.455+ 1) —1.101(3.48s + 1) @)

1The Hankel Singular Values are square roots of eigenvalues of PQ, where P
and Q are the controllability and reachability grammians of the system.
1At least two states are needed to describe the decoupling at high frequencies.
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We see that the gains and the dominant titne-constant are simitar
to the full linear model, but the model structure is quite different
from those obtained from physical insight. The decoupling at high-
frequencics due to the flow-dynamics is described by making the zeros
in the off-diagonal elements larger than in the diagonal elements.

4 Analysis of the models

In order to evaluate the quality of the above five reduced models
(N1,F1,F1X,F2,112) we will consider: 1) Open-loop simulations, 2)
The Relative Gain Array, and 3) Robust Controller design.

In the two first cases we use the model as a plant and analyze the
behavior of the model. In the last case we use the reduced models
for controller design and analyze how the resulting controller works on
the full-order model. Since the goal is to find a model that is good for
controller design, case 3 is of primary importance.

4.1 Open-loop simulations

4.1.1 Small changes in external flows

Open-loop responses in yp and zp to a step change in L (external
flows) using the five linear models are shown in Fig.2. We sec that the
models N1, F1, F2 and H2 are almost indistinguishable from the full
lincar model. The "wrong” model F1X have a correct initial response,
but the steady state gains are too low. The response for a step change
in V is not shown, but would yield the same conclusion. The fact that
the simple model N1 gives such a good fit implies that the responses
are essentially 1.order with a time-constant of 194 min.

Most engineers would use these responses to compare the modets,
and would thus have concluded that only F1X is a poor model.
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Figure 2. Open-loop linear responses of various models to a
0.1% increase in reflux.

4.1.2 Small changes in internal flows

Figure 3 shows reponses in yp and zg to simultanous and equal
changes in L and V (internal flows). We note that there are significant
difforences between the models. Model 2 and H2 seems to be closest
to the full model, especially for the initial response. Note that the
steady-state gain for changes in internal flows is about one hundreth
of that for external flows. This is the reason for the ill-conditioning
(high interactions) of the plant. In a real plant operating open-loop,
the effect of external flows will dominate and it will not be possible
to observe effects of changes in internal flows alone. However, under
feedback control the effect of internal flows may be observed also in
practice. The reason is that the controller in order to keep the compo-
sitions constant may have to make large changes in internal flows and
thereby amplify the importance of the low-gain direction.

We rank the models from these simulations F2, H2 > F1 > F1X >
N1,
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Figure 3. Open-loop linear responses of various models to a
simultanous increase in L and V. AL = AV = 0.0027.

4.2 Relative Gain Array
The 1,1 element of the RGA for 2x2 systems is given by

o= (1- guz(jw)gniw) ™'
An(jw) = (1 yu(jw)yn(j‘")) )

The RGA has traditionally been evaluated at steady-state only [4],
but more recently the usefulness of the RGA plotted as a function of
frequency has become clear. For example, Skogestad and Morari [13]
argue that the value of the RGA at frequencies close to the expected
closed-loop bandwidth is a good indicator of expected control perfor-
mance and that large values indicate a plant that is fundamentally
difficult to control. One important property of the RGA is that it
is scaling independent. This means that that the RGA-elements are
unchanged if actuator (valve) or measurement dynamics are included.
For example, the RGA would be unchanged if we added the same time
delay to each column or row of G(s).

The magnitude of Ay is shown as a function of frequency in Figure
4. At low frequenies the correct value is 35, and it falls down to 1 at
high frequency where the responses becomes decoupled due to the flow-
dynamics. Models N1, F1, F1X and F2 yields a correct steady-state
value, Ay1(0) = 35, while model H2 yields a steady-state value of 43.
Model N1 has a constant value of 35 at all frequencies which clearly
is incorrect. Model H2, while being incorrect at steady-state, yields
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a reasonably correct value of the RGA at high [frequencies. Models
F1, F1X and F?2 gives a reasonably correct value of the RGA at all
frequencies. Note that F1 and F1.X yields identical RGA-values as
they only differ by a scaling.

We rank the models based on the RGA-plot: F2,112 > I'l, I X >
Nl
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Figure 4. \y; as a function of frequency for various models.

5 Controller design

Here we shall use the various models to design single-loop PPID cou-
trollers, that is, top composition yp controlled by reflux L and bottom
composition zg controlled by boilup V. Single loop controllers arc a
preferred choice in the industry, and seems to be a good one for the
LV -configuration if tuned properly [16].

To allow for differences also between the full linear model and the
true plant we shall include model uncertainty in the controller design.
The structured singular value, s, is then a reasonable performance in-
dex. Robust performance (worst case response acceptable) is satisfied
if upp is less than 1, and designs with low jipp-values are preferable.
Uncertainty and performance are defined as in [14). The uncertainty
corresponds to 1 minute deadtime and 20 % uncertainty in each in-
put. The performance requirement corresponds to a maximum peak
of 2 on the sensitivity function and a closed-loop time-constant of 20
min. Single-loop PID’s were tuned for the various models by mini-
mizing pipp. The results are summarized in Table 2. Comparing the
results for model N1, F1 and F2 we sce that the optimal ypp-value
becomes lower as flow dynamics (81) and internal flow dynamics (r2)

" are included. This may be explained in terms of lower RGA-values at
high frequency which makes control easier.

Table 2. pupp-optimal PID-tunings for various column models.

CFID(S) = kl 1[’.‘ l-:-O.flf;a'

Model ppp &k, k: Try Tir TDy TD=

min min min min

Nt 1.32 438 130 178.86 1.87 0.32 0.23
F1 091 85 38 7.77 3.61 081 1.11
FI1X 112 96 93 248 223 0.68 1.10
F2 0.80 38 36 6.49 580 1.13 091
H1 095 2.2 108 073 092 1.20 4.98
B1 123 6.0 13.9 208 253 126 0.23
112 078 32 M4 439 4.14 1.03 041
B2 080 36 35 548 4.52 1.45 0.40
Full 086 22 32 351 4.71 1.22 0.61

However, it is of course of no practical significance how well the
models may be controlled; the interesting point is how well the con-
trollers tuned based on the simplified model performs on the full-order
model. This is summarized in Table 3. We see that the cantrollers
based on the models F1, F2 and H2 peform well, with H2 and "2 giv-
ing the best design. Model N 1 gives a poor controller for the full plant;
it will in fact give an unstable system. We see that model F1.X" which
is close to the full model only the initial 10 minutes of the open-loop
rosponse yiclds a far better controller than N1.

Table 3. jipp-values for PID-controllers of Table 2 when applied o
original simplified model and to full linear model.

Controller

IRP IRpP
(Table 2) Original Full model

N1 1.32 2.37
F1 0.91 1.16
F1X 1.12 1.44
F2 0.80 0.95
H1 0.95 1.24
B1 1.23 1.28
H2 0.78 0.94
B2 0.80 0.98
Full 0.86 0.86

To compare the four different mathematical methods for model re-
duction discussed in section 3.2, we also designed controllers for models
reduced from 82 to 2 states with each method. The results are given
in Table 3 and 4. The results confirm that the methods not using
the minimal balanced realization step (B2 and H2) yield controllers
performing well on the full plant. The two other methods (B1 and
H1) yield controllers that perform reasonably well on the full plant,
but significantly poorer than B2 and 112. For the methods Bl and 111
one would have to include more states in the reduced models Lo get
satisfactory results.

6 Conclusions on modelling requirements

From the analysis presented above we conclude that models F2 and
[{2 seems to be the best models to be used for controller design. Most
engineers would have considered mainly the open-loop responses for
changes in external flows (see Fig.2), and would then conclude that
N1 seemed to be a reasonable model. However, as the RGA analysis
demonstrated, model N1 is incorrect at high-frequencies and therefor
useless for controller design. Model F1X which is correct at high
frequencies but incorrect at steady-state is in fact a much better molel
for controller design. These results simply support the well known
fact that the high-frequency behavior is much more important than
the steady-state properties for control. An important conclusion is
that the flow-dynamics should be included in a model to be used for
controller design.

Part II: Model identification from experi-
ments

In this section we discuss how good and simple models may be ob-
tained from open-loop experiments. From part I. we concluded that F2
and H2 were the best models. However, estimating in model F2 will
be difficult experimentally. Furthermore, the structure of model H2 is
not physically motivated, and will be difficult to fit from experiments.
However, model F'1 seemed to be a reasonably good model structure,
and should be well suited to fit from open-loop experiments. We will
therefor use an F1-type model structure in the model identification.

All experiments are based on open-loop responses from the non-
linear model doing step changes in one input at the time. This may
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scem a risky way to obtain a model as the plant is ill-conditioned and
small errors in the gains may yicld an erronous model. On this back-
ground Andersen et.al. [1] suggested using multivariable experiments.
However, step responses are clearly the easicst way to obtain a model,
and as we shall sce, they may yield a good model if used together
with theoretically established structural properties. The approach we
suggest to use when obtaining the model is:

1. Fit only the initial part of the responses. This is motivated by
the fact that we are mostly interested in capturing the high-
frequency hehavior correct. Furthermore, the initial part of the
response is less affected by nonlincarities than the reponse to-
wards steady-state [15].

2. Make sure that the flow-dynamics are captured in the model. 1T
there are several other deadtimes/tags in the process, one should
make sure that the sum of lags in the ofl-diagonal elements are
larger (actually 84 larger) than the sum in the diagonal clements.
#; may be obtained individually by measuring the time it takes
for a change in liquid flow from the top to reach the bottom of
the column.

&

Check the sign of the model at steady-state. It is important that
the sign is correct also at steady-state. This may be checked by
computing Ay1(0) which should be greater than 1 for almost any
column with the LV -configuration. Due to the ill-conditioning
at steady-state, only small errors in the individual steady-state
gains may yield an incorrect sign in the gain of the weak direc-
tion (corresponding to internal flows). If the steady-state sign of
the model is incorrect (A1(0) < 1), change one of the individ-
ual steady-state gains so that the sign becomes correct. Correct
also the corresponding time-constant so that the high-frequency
dynamics are unchanged. Due to the flow-dynamics, the column
will not be ill-conditioned at high frequencies, and it is therefor
likely that the high-frequency directions will be correctly cap-
tured.

We will demonstrate this approach by obtaining step responses
from the nonlinear model.

Experiment 1. In this experiment we use the LV-configuration
and do step responses in reflux and boilup separately. We do a per-
tubation of 0.1 % in each input. This is of course an unrealistic small
step change from a practical point of view, but as we shall see, even
in this ideal case one may easily end up with an erronous model. As
we are mostly interested in the high-frequency behavior of the column
we fit only the initial 60 minutes of the responses. The model thereby
obtained is

R 0.728 —0.903
6oy = o | TEE) 0 =26min ()
T+i54:9L T+iaas

Note that we have used four different time-constants. This was done
.to get the best fit of the responses. Figure 5 shows the responses of the
nonlinear model together with the responses of the fitted model. Note
that the step changes where made so that the compositions increased
in both experiments, ie. we increased L and decreased V. From the
figure we see that the initial 60 minutes are well fitted by the model,
while there are quite large deviations at steady-state. The fitted model
predicts a larger steady-state gain for top composition yp than found
for the nonlincar response. This may be explained by the fact that the
gain in the process decreases with increased purity (yp) (e.g., [15]) ,
and this is reflected in the nonlinear response. The steady-state gain
from L to yp found in the nonlinear simulation is approximately 0.682,
the fitted gain is 0.728 and the true linear gain is 0.87. For responses in
bottom composition we see the same effect, but in this case the purily
decreases (zg increases) and the gain increases. This shows that even
for these very small step changes, the reponses becomes significantly
affected by the nonlinearities. The change in gain due to change in
purity is the main nonlinearity in distillation [15].

From (9) we easily see that the sign of the gain for the weak di-
rection of the plant is wrong. The steady-state gains tells us that
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Figure 5. Open-loop responses for 0.1 % increase in reflux L
and 0.1% decrease in boilup V. Responses are scaled so that it '
corresponds to AL = —AV =1. Solid line: nonlinear response.
Dashed line: fitted response.

an increase in internal flows (dL = dV) will decrease purity in both
ends, while we from theory know that this gain always will be posi-
tive in distillation, i.e., internal flows increases the separation in the
column. This is also seen when computing A;1(0) which yields a value
of -3.8 which we know should be larger than 1. Computing the trans-
mission zeros we also find that there is a multivariable RIIP z¢ro at
0.0072min~" which is closely linked to the negative A1;(0) [7].

1t is obvious that the fitted model, as is, is useless for designing
controllers to be used on the plant. As we should always pair on posi-
tive RGA-elements, the model suggest the reverse pairing as compared
to the correct model, i.e., L with zg and V with yp. Designing a con-
troller with integral action for this pairing would yield an unstable
system when applied to the true plant [6]. If we paired the usual way,
je. L with yp and V with zg, we would not obtain a stabilizing con-
troller with the model. However, we have fitted only the initial part
of the responses and know that these are less affected by nonlinear-
ities than the steady-state responses. In addition the process is not
ill-conditioned at high frequencies (|A11(joo)| = 1). We may therefor
assume that the initial responses of the model are reasonably correct.
Furthermore, we know that except for getting the correct sign of the
plant at steady-state, the low-frequency behavior of the plant (and
model) is of little importance for the control properties. We therefor
propose to simply fix the sign of the model at low-frequency. This may
be done by correcting one of the individual steady-state gains so that
A11(0) is greater than one. To get a reasonably correct value of A;;(0)
we use the simple expression [12]:

Ay (0) = 1 1L+F
u()—B-"-'B+D(1_!ID) N F

(10)

Ingerting the nominal values in (10) we find A11(0)=50 (the correct
value is 35). We choose to correct the off-diagonal element 2,1 to obtain
X11(0)=50, and the new steady-state gain becomes kz;=0.737. Note
that we scale the corresponding time constant accordingly so that the
initial response is unchanged. This yields gn(s) = 0.737/(1 + 120s).
The corrected model has no RHP zeros. Figure 6 shows the RGA
plotted as a function of frequency for the corrected model, F1fitl. We
see that we have a resonably good fit of the RGA for the full linear
model at high frequencies.

To check the quality of the obtained model, we use it for controller
design as described in section 5, and apply the controller to the full
plant. The results are given in Table 5. We see that the model yields a
controller that performs reasonably well on the full plant. Comparing
with the results in Table 4, we see that we obtain a controller with
a performance similar to what was obtained with the "correct” F1-
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model. This is of course the best wo canld expect since we used a
F1-type model structure.
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Figure 6. Ay as a function of frequency [or the fitted models
F1fit1 and F1At2.

Table 4. ppp-optimal PID-tunings for fitted models F16it] and F16(2
and sipp-values when applied to fitted model and to full lincar

model.
Model k, k. 1y 11, TDy Tps pnp - Original ppp — Full
Flfitl 37 44 3.53 4.00 1.54 0.94 0.87 1.05
F1fit2 53 41 4.00 3.11 1.31 0.89 0.91 1.11

Experiment 2. In experiment 1 we saw that even a 0.1 % pertu-
bation in the inputs gave nonlinear cffects in the responses. In prac-
tice one will of course have to make significantly larger changes in the
inputs, and nonlinearities will aflect the responses even more. One
should be careful about trying to fit the nonlinearities into a linear
model. To demonstrate this consider Fig.7 which shows the response
in bottom composition g to a 1 % change in reflux L. The response
now seems to be 2.order. However, as discussed above the gain will in-
crease as zpg increases, and this explains the seemingly 2. order of the
response. We know the linear responses in distillation columns should
be almost pure 1.order. Trying to fit the response to a second order
model would yield a poor model. However, as Skogestad and Morari
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Figure 7. Open-loop response in zg to a 1 % increase in re-
ftux. 1) Nonlinear response. 2) Nonlinear logarithmic response
(Alog(zp)/100). 3) Linear response.

[15] show, the nonlinearities may be partly counteracted by using the
logarithm of the compositions as measurements, i.e. log(l — yp) and
log(zg). As they show, especially the initial responses will be lin-
earized by the logarithm. This is illustrated in Fig.7 which shows the
nonlinear response in zg with and without logarithmic measurements
together with the linear response. The figure clearly demonstrates that
the logarithm linearizes the initial response of the column.

In this case we therefor fit the logarithmic responses, and again we
fit only the initial 60 minutes. This yiclds the model

0.456 —0.423

G(s) = ( Lyoss T499s ),HL = 2.5min. (11)
1+1iss.9L(") T?-Ta%

For this model we find Ay1(0) = —21 which is clearly incorrect. Using
the same procedure as above (change k2; to yield A;,(0)=50) we find
the new g2, = 0.954/(1 + 157s). The RGA of the corrected model,
F1fit2, is shown in Fig.5, and we see that we get a similar fit as obtained
in Experiment 1.

The results obtained when using this model for controller design
is given in Table 5. Again we see that we get a model which yields
a controller with a relatively good performance, and comparable to
what was obtained with the F1-model.

7 Discussion

Other control configurations We have in this paper only dicussed the
LV -configuration, i.e., L and V as independent variables. However,
other configurations are possible, and the model determined for one
configuration may easily be transformed to another configuration by
using simple algebraic relations (e.g., [17}). For the DV -configuration
the input D will correspond to external flows and input V' to internal
flows. One might think that it should be relatively easy to obtain the
weak direction of the plant from a step change in V. This is however
not necessarily true: Because of the flow-dynamics there will be a
temporary change in external flows when changing V. This results
in a large overshoot in bottom composition, and the transfer-function
should contain a minimum phase zero close to the imaginary axis in
addition to two poles. Furthermore, the DV -configuration depends on
the tuning of the level controllers, and one will observe that this aflects
the responses. There will for instance be a small inverse response in
yp for a change in V because of nonperfect level control. Due to these
complications we found it difficult to obtain a good model using the
DV -configuration. Using the LV -configuration (which is independent
of the level controllers) and correcting the model as discussed above
yielded far better models.

Effect of dcadtimes. We have assumed an input deadtime of 1
minute when designing controllers. This implies that we are able to
have a relatively small closed loop time-constant (20 min.). However,
if the deadtime in the system is significantly larger, the closed-loop
constint will have to be reduced accordingly. In this case it will be
necessary to have a good fit of the model also at lower frequencies, and
the models we have obtained from open-loop experiments may not be
sufficient. In cases with large deadtimes it will be difficult to obtain a
good model from single step response experiments.

Measurement noise. We have not included any measurement noise
in our simulations. However, when fitting the reponses to 1.order
transfer-functions with only two parameters, it is unlikely that ran-
domly distributed noise will affect the results significantly.

Multivariable controllers. One might argue that when true multi-
variable controllers are to be applied to the plant one needs a better fit
of the individual elements in the model. This may certainly be true.
However, it is also clear that due to uncertainty in the inputs, a mul-
tivariable controller that tends to decouple the process will perform
poorly on an ill-conditioned plant [13].

8 Conclusions

1. The most important model characteristic for controller tuning is
the high-frequency dynamics (initial response) corresponding to

6



_ Decause of the importance of the high-frequency behavior,

the time-constant of the closed-loop system.

the

flow-dynamics should be included in the model.

_ An accurate model of the steady-state behavior is not very ini-

portant for controller design. However, it is important to know
the sign of the plant, that is, one must know the sign of the
sLemer-stn‘Le RGA. For almost any column with the LV-configurat ion
A11(0) should be larger than 1.

 Models obtained simply from fitting individual transfer-functions

from open-loop experiments may prove entirely useless for con-
troller design. Tlowever, if the obtained model is corrected ac-
cording to established structural properties, the resulting model
will most likely be good.

. One may ecasily enter the nonlinear region when doing open-loop

experiments. The nonlinearities may effectively be counteracted
by using logarithmic measurements.
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NOMENCLATURE (also see Fig. 1} .

G(3) - linear model of column

K = G(0) - steady-state gain matrix

k;; - steady state gains for column

RG A - Relative Gain Array, elements are A;;

zp - mole fraction of light component in bottom product

yp - mole fraction of light component in distillate (top product)
zF - mole fraction of light component in feed

Greek symbols

a =

h/ Ti

et relative volatility

1-w

Mi(jw) = (1 — fzbiedonliad)=1 - 1 I-element in RGA.
w - frequency (min~!)

71 - dominant time constant for external flows (min)
9 - time constant for internal flows (min)

1, = (OM;/0L)y - hydraulic time constant (min)

8 = (N — 1)1y, - overall lag for liquid response (min)
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