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Abstract

The objective of the paper is to give some insight into the practical use of H-infinity (Hoo)
and mu methods. Mu (or p) is the structured singular value (SSV) introduced by Doyle (1982).
Controller synthesis software using He-methods is now readily available. Mu is a very powerful
tool for analysis of control systems. However, to effectively use this tool one must be able to choose
reasonable performance and uncertainty weights. One of the main topics in this paper is performance
weight selection. Mu may also be used for controller synthesis. However, mu-synthesis is generally
not a convex optimization problem and is presently not straightforward. We will discuss some of
the problems we have encountered.

1 Introduction

This paper is based on the paper on ill-conditioned plants by Skogestad, Morari and Doyle (1988),
and the reader is referred to that paper for notation and background material. We shall use the same
simplified distillation column (the LV-configuration) as our example. In the previous paper the effect
of various uncertainty descriptions was studied, but here we mainly discuss alternative choices for the
performance weight.

Performance is defined using the Heo-norm. For a stable transfer function M (s) the Hoo-norm is given
by
1M ]loo = sup a(M(jw)) (1)

where sup,, denotes the peak value over all frequencies. The Hoo-norm may be viewed as a direct
generalization of the frequency domain performance specifications used in classical control for single-
input single-output (SISO) systems. There are several physical interpretations (Doyle, 1987) of this
norm which give rise to different procedures for selecting performance weights. This is discussed in
detail below.

In many cases it would be more natural to define performance in the time domain (eg., maximum
deviation, maximum overshoot for step response, etc.). However, analysis and design techniques are
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not readily available. Another option is the traditional Hz-norm where good analysis and synthesis
techniques exist (eg., LQG control through solution of Riccati equations). Recently, Doyle et al. (1989)
have shown that also the analysis and design using the Ho,-norm for performance may be solved using
similar methods. This has made the Ho,-approach more reliable and simpler from a computational
point of view.

It is clear from the discussion above that the main reason for using the H-norm is usually not because it
is the most natural framework to define performance. However, other design specifications, specifically
model uncertainty, may be formulated readily within this framework. In particular, this applies to
uncertain or neglected high-frequency dynamics which is always present. Because the uncertainty
usually is structured (stems from specific physical sources), one must use multiple perturbations, A;.
Using weights, each of these may be bounded such that the Hoo-norm, |[Af[, is less than 1. To test
for robust stability the system is rearranged such that Npg (which includes the uncertainty weights)
represents the interconnection matrix from the outputs to the inputs of the uncertainty-blocks, A.
In the following we assume that Ngg is stable. Using the small gain theorem, we know that robust
stability will be satisfied if || Ngs||l < 1, or equivalently

RS if &(Nps)<l; Vw (2)

However, this bound is generally conservative. First, the issue of stability should be independent of
scaling. Thus, an improved robust stability condition is

RS if gl(in)a(DNRsD—l)a; Ve (3)

where D is a real block-diagonal scaling matrix with structure corresponding to that of A, such that
AD = DA. A further refinement of this idea led to the introduction of the structured singular value
(Doyle, 1982, 1987). We have (essentially, this is the defintion of ;)

RS iff u(Nrs)<1l; Vw (4)

Thus minp (DM D~!) is an upper bound on p(M). It is usually very close in magnitude. The largest
deviation reported so far is about 10-15% (Doyle, 1982, 1987). Computationally tractable lower bounds
for p also exist and are in common use.

An additional bonus of using the H,-norm both for performance and uncertainty is that the robust
performance problem may be recast as a robust stability problem (Doyle, 1982), with the performance
specification represented as a fake uncertainty block. To test for robust performance one considers the
interconnection matrix Ngp from the outputs to the inputs of all the A-blocks, including the “full”
Ap-block for performance. Nrp depends on the plant G, the controller C' and on the weights used to
define uncertainty and performance. The condition for robust performance within the H.-framework
is (for stable Nrp)

RP iff u(Nrp)<1l; Vw (5)

Analysis of robust performance for a given controller using p is straightforward, but controller design
using p-synthesis is still rather involved. The present “D K -iteration” uses the upper bound on p, and
involves solving a number of “scaled” Ho,-problems. We will discuss this further in section 6.

One alternative is to use another method (eg., H, or H,,) for controller synthesis and iterate on the
tuning parameters (“weights”) in this method until acceptable y-values are obtained. For H co-Synthesis
one may minimize a “mixed” Ho,-norm for nominal performance and robust stability by considering,
for example

T - Wi(I + GC)™!

T [ WeGC(I + GC)TY (6)



This is the problem discussed by Chiang and Safonov (1988, 1990). A similar mixed objective is
studied by Yue and Postlethwaite (1988). Minimizing the Ho-norm of (6) corresponds to defining
nominal performance in terms of weighted sensitivity and robust stability in terms of unstructured
output uncertainty. For this particular problem minimizing the Ho-norm of T is actually equivalent
to minimizing u(T). However, for many plants, in particular ill-conditioned plants, uncertainty at
the inputs (which is always present) is much more restrictive in terms of performance. The “mixed”
problem with input uncertainty is obtained by using WoCG(I + CG)~! rather than WoGC(I +GC)™!
in the expression for 7. In this case minimizing the Hy,-norm of T yields nominal performance and
robust stability, but the overall system may not satisfy robust performance. This may be the case if
the condition number of the plant and the controller is large (see eq. 32 in Skogestad et al., 1988). For
example, this applies to the example column studied by Skogestad et al. (1988, Fig. 11). In such cases
one would have to use non-physical weights, W; and W5, to get a “good” final controller (with robust
performance) by minimizing the He,-norm of T.

Software to synthesize H.-controllers has been available for some time, for example, through the
Robust Control toolbox in MATLAB (Chiang and Safonov, 1988). Recently, a u-toolbox for MATLAB
has become available (Balas et al., 1990). This toolbox includes alternative Hq.-software, and p-analysis
and synthesis is included as outlined above. All computations presented in this paper have been done
employing this toolbox.

2 Uncertainty weights

Since uncertainty modelling using the H-framework is a worst-case approach, one should generally
not include too many sources of uncertainty, since it otherwise becomes very unlikely for the worst case
to occur in practice. One should therefore lump various sources of uncertainty into a single perturbation
whenever this may be done in a non-conservative manner. On the other hand, one should be careful
about excluding physically meaningful uncertainty that limit achievable performance. From this it
follows that selecting appropriate uncertainty weights is very problem-dependent, and it is important
that guidelines for specific classes of problems be developed.

Sometimes one might use a smaller uncertainty set for robust performance than for robust stability.
The idea is to guarantee stability for a large set of possible plants, but require performance only for a
subset. This is to avoid very conservative designs with poor nominal performance.

In this paper we only consider input uncertainty. The effect of output uncertainty, time constant
uncertainty and correlated gain uncertainty was studied by Skogestad et al. (1988). They found
that these sources of uncertainty were less important than the input uncertainty for this particular
ill-conditioned plant.

Combining gain uncertainty and time delay uncertainty. Consider input uncertainty in each separate
channel. We want to show how gain uncertainty and time delay uncertainty may be combined in a
single perturbation. Let € denote the allowed steady-state relative gain error on each input, and let 6
be the allowed time delay error (may also represent neglected dynamics corresponding in phase lag to
a time delay of 8). If a time delay e~% is negected, that is, modelled as 1, then a close approximation
on the the magnitude of the relative error (e=%* — 1)/1 is given by 2%3/(1 + £5) (using a first-order
Pade approximation). Adding this to the constant term € and assuming ¢ << 2 yields the following
weight for the overall multiplicative (relative) input uncertainty

8s+1
w[(S) = e-és_-{j (7)
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Figure 1: Uncertainty weight, |w/(jw)| (Eq.7), with €=0.2 and #=1 min.

To obtain the specific weight used in the example choose ¢ = 0.2 (20%) and #=1 min. This weight
is shown graphically as a function of frequency in Fig.1. The asymptote of the weight reaches one
(corresponding to 100% uncertainty) approximately at a frequency 1/6, and then levels off at two
(200% uncertainty). In some cases it may be better to let the weight continue increasing at higher
frequencies, that is, use a weight wy(s) = 6(%3 + 1)/(%3 + 1) where p is a large number. This may
be advantageous for pu-synthesis to avoid that a lot of additional states in the controller are needed
to "take advantage” of the fact that the uncertainty levels off at 200% at high frequencies (of course,
since the uncertainty is over 100% the overall response will only be marginally improved).

3 Performance weights

The are several different physical interpretations of the Ho,-norm (Doyle, 1987, Zhou et al., 1990), and
this gives rise to different methods for weight selection.

A. Since ||M||oo = sup,, (M (jw) (provided M(s) is stable), the H,-norm may be viewed as a direct
generalization of classical frequency-domain bounds on transfer functions (loop-shaping) to the
multivariable case.

B. Alternatively, we may consider M(jw) as the frequency-by-frequency sinusoidal response. That is,
for a unit sinusoidal input to channel j with frequency w, the steady-state ouput in channel ¢ is
equal to m;;(jw). To consider all the channels combined, we use the maximum singular value,
(M (jw)), which gives the worst-case (with respect to choice of direction) amplification of a unit
sinusoidal input of frequency w through the system.

C. The induced norm from bounded power spectrum inputs to bounded power spectrum outputs in
the time domain is equal to the H-norm.

There are also other interpretations of the H,-norm: It is equal to the induced 2-norm (energy) in
the time domain. It is equal to the induced power norm. It is also equal to induced norm in the time
domain from signals of bounded magnitude to outputs of bounded power.
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Figure 2: Block diagram of conventional feedback system.
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Figure 3: General feedback system with weights, a two-degree-of-freedom controller and input uncer-
tainty. It is assumed that the outputs are measured directly. The transfer function £ (with Ay = 0)
is used for general H.,-performance.

The following discussion is mostly relevant to approaches B and C. A block diagram of a conventional
feedback system with disturbances d, setpoints y, and noise n is shown in Fig.2. The most general
way to define performance within the Ho,-framework is to consider the Ho-norm of the closed-loop
transfer function E between the external weighted input vector w (disturbances, setpoints, noise) and
the weighted output vector z (may include y — y,, manipulated inputs v which should be kept small,
etc.). Weights are chosen such that the magnitude (in terms of the 2-norm) of the normalized external
input vector is less than one at all frequencies, ie. |[w(jw)|lc < 1, and such that for acceptable
performance the normalized output vector is less than 1 at all frequencies, ie. lz(jw)lleo < 1. With
z = Fw the performance requirement becomes

IElloo = supa(E(jw)) < 1 (8)

Introducing the weights Wy, W,, W,,, W, and W, into Fig.2 yields the block diagram in Fig.3 where £
is given as shown by the dotted box. We also have introduced an “ideal response” from y, to y (Wy),
and use a “two degree of freedom controller” (C,C,). For the conventional case in Fig. 2, (s = C or
C, = CCy, where Cy is a filter for the setpoints.
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Figure 4: Asymptotic plot of 1/wp = M= s+AM here Tp = 1/Mwp. |S(jw)| should lie below 1/|wp|
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to satisfy classical frequency-domain specifications in terms of A, M and wp.

3.1 Performance approach A. Weights on transfer functions (Loop shaping)

In many cases it is simple and instructive to translate the desired performance specifications into an
upper bound 1/|wp| on the frequency plot of the magnitude of the sensitivity function § = (I+GC)~L.

3(5(jw)) < 1/|wp(jw)l, Yw (9)

This is equivalent to (8) with E = wpS (weighted sensitivity). The concept of bandwidth, which is
here defined as the frequency wp where the asymptote of (5) first crosses one, is closely related to this
kind of performance specification, and most classical frequency domain specifications may be captured
by this approach.

Classical frequency domain specifications. For example, assume that the following specifications are
given in the frequency domain

1. Steady-state offset less than A.

2. Closed-loop bandwidth higher than wp.

3. Amplification of high-frequency noise less than a factor M.

These specifications may be reformulated in terms of Eq.9 using

1 mps+1 .
= — = 1
wp(s) Mps + AJM’ with 7p = 1/ (Mwp) (10)
and the resulting bound 1/|wp(jw)| is shown graphically in Fig.4.

General case. In the multivariable case the generalized weighted sensitivity is Wp1 SWp,. For example,
one may use different bounds on the sensitivity function for various outputs. Assume we want the



response in channel 1 to be about 10 times faster than that in channel 2. Then we might use the
performance specification

. _{wpnn 0
||WPS||00 <1 Wp = ( 0 me) (11)

with wg1; = 10wp22. We shall study the effect of introducing similar weights for the distillation example
later.

Introducing matrix valued weights on the inputs or outputs is necessary in some cases, in particular,
if the disturbances have strong directionality. However, the direct implications for the shape of the
sensitivity function then become less clear, and it is probably better to shift to the more general
signal-oriented approach discussed next.

3.2 Performance approach B. Frequency by frequency sinusoidal signals

This approach is used, for example, in the space shuttle application study by Doyle et al. (1987).

In this approach we consider the effect of persistent sinusoidal input signals of a given frequency.
The weights Wy, W, and W, will be diagonal matrices which give the expected magnitude of each
input signal at each frequency. Typically, the disturbance weight, Wy, and the setpoint weight, Wi,
do not vary very much with frequency !, while the noise weight, W,, usually has its peak value at
high frequency. W, is a diagonal matrix which at each frequency specifies the inverse of the allowed
magnitude of a specific output error. If we want no steady-state offset the weight should include an
integrator such that its magnitude is infinite at steady-state (we require offset-free response to slow-
varying sinusoids) 2. Typically, we let the weight level off at high frequencies at a value 1 /M, where M
is approximately equal to maximum allowed error (overshoot) in the time response. Often the value
of M is about 2 times the allowed magnitude of the noise at high frequency (or of the setpoints if no
measurement noise is included). The corner frequency for the weight (where it levels off) should be
approximately 1/7p, where 7pe/M is the maximum allowed closed-loop time constant for that output.
The actuator penalty weight, Wy, is usually small or zero at steady-state 3. W, may be close to a pure
differentiator (s) if we want to penalize fast changes in the inputs. In many cases the weights W, and
Wi (for input uncertainty weight) have similar effects on the resulting design and only one of them is
used.

It is important to check that the various performance requirements are consistent. This may be done
by evaluating their influence of the required loop shapes (approach A), in particular, at low and high
frequencies. Alternatively, one may test if it is possible to get u < 1 for NP by performing a H.-
synthesis with no uncertainty.

Combining performance weights. It is preferable to have as few and simple weights as possible. To
illustrate how specifications on setpoints and disturbance rejection (approach B) may be reformulated
as bounds on the weighted sensitivity (approach A) consider Fig.3 and evaluate the transfer function

1That is, in this approach B we should not add a integrator (1/s) to the weight even if step changes in disturbances
or setpoints are expected (however, in approach C below this is correct). The reason is that in approach B we consider
the response frequency-by-frequency and a step change cannot really be modelled very well, and certainly not as a slow-
varying sinusoid of infinite magnitude. A more reasonable approach is to consider a range of sinusoids and use a nearly
constant weight with the same magnitude as of the step.

2Note that we may not require offset-free response for y — y, if the measurement noise is nonzero at steady-state
(w = 0). Therefore, to get a controller with integral action we may select W, to be zero at w = 0. Alternatively, we may
require no offset for ym — y., where y» = y + n is the measurement.

3The use of actuators inputs of a certain magnitude is often unavoidable (independent of the controller) in order to
reject slow-varying disturbances, and penalizing the inputs at low frequencies makes little sense in such cases.



from normalized disturbances and setpoints to normalized errors. We have

z:é:E(fl):Ew (12)
Ys
With conventional feedback control with no setpoint filtering (Cs = C; Wy = I') and with no uncertainty
(Ar = 0) we have

E=(W.5GsWy; W.S5W,). (13)

The performance specification is ||E|lc < 1 and we want to find a weight wp(jw) such that at
each frequncy &(wpS) = d(E). For the SISO (scalar) case we get 5(wpS) = |wpS| and G(E) =
|W.8|/[GaWalZ + [W,[?, and we have at each frequency

wp| = [Wel\/IGaWal? + W, |2 (14)

Consider the following special SISO case where we assume: i) G4 has been scaled such that disturbances
d are less than 1 in magnitude, and Wy = 1; ii) Disturbance model G4 = kq/(1 4 74s); iii) G has been
scaled such that for setpoints W, = 1; iv) The errors, é, should be less than M in magnitude at high
frequencies, and we want integral action and require a response time better than about 7p./M. Then
We = (Tpes + 1)/MTpes.

With the exception of at most a factor v/2 (at frequencies where |G4] ~ 1) we may then use the
following approximation for Eq.(14):

kal+1
- |kal )_3+1/TPeS+L?I,}-—
wp(s) & We(s) (1+'rds+1 T Ms  s+1/mg (15)

Obviously, if the scaled disturbance gain, |kq|, is small compared to 1, then wp(s) = We(s), and the
disturbance does not affect the bound on $(jw). However, in general the requirement of disturbance
rejection may require a faster response than the response time, 7p, required by the weight W.. The
most important feature of the performance weight, wp(s), is it’s bandwidth requirement, wg, which
we define as the frequency where the asymptote of wp(s) crosses 1. Introduce the performance time

constant imposed by disturbances
Td

P T 1

A closer analysis of (15) shows that Mwp = max{1/7p.,1/7pa}. That is, for 7pg < Tpe the bandwidth
requirement is determined by disturbance rejection. For 7p, < 74 (“slow disturbances”) the weight in
(15) has a region at low frequencies where |wp(jw)| has a slope of -2 on a log|wp|-logw plot. This is
illustrated in Fig.5 where we show the bound 1/|wp| on |S| as a function of frequency for the three
cases: 1) Tpg < TPe, 2) TPd = TpPe, 3) TPd > TPe. It is important to notice that any significant
disturbance (|kq| > 1) will require a tighter bound on §(jw) at low frequencies.

(16)

In the multivariable case we must use matrix-valued weights, and it is not possible to transform
approach B into a scalar bound on §. Specifically, 5(SG4(jw)) may be significantly smaller than
7(S(jw))a(Ga(jw)) when Gy is in the “good” direction corresponding to the large plant gains (see
Skogestad et al., 1988).

3.3 Performance approach C. Power signals - Power spectrum weights

This is not a frequency-by-frequency approach. Rather one must consider the entire frequency spec-
trum. One may think of the weights W, W,, and W, as upper bounds on the power spectral density
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Figure 5: Asymptotic plot of 1/wp (Eq.15) for cases where Tp, < 74 (rpe = 10 and 74 = 100 is used in
the plot).

of the input signals, whereas W, and W, are equal to the inverse of the upper bounds on the power
spectral density of the output signals. For example, if we allow for step changes of the setpoints, we
may choose a weight W, = 1/s (but we will also allow a lot of other signals bounded by this spectral
density). We will not discuss this approach any further, but just note that it compared to approach B
in many cases corresponds to shifting integrators from the output weights to the input weights.

4 Fixed or adjustable weights

One advantage with H, or p-optimal control is that it is relatively well-defined what an objective
function with a value close to 1 means: The worst-case response will satisfy our performance objective.
If 4 at a given frequency is different from 1 then the interpretation is that at this frequency we can
tolerate 1/ times more uncertainty and still satisfy our performance objective with a margin of 1/pu.

Controller synthesis almost always consists of a series of steps where the designer iterates between
mathematical formulation of the control problem, synthesis and analysis. In p-synthesis the designer
will usually redefine the control problem by adjusting some performance or uncertainty weight until
the final optimal u-value is reasonably close to 1. In most cases this is done in an more or less ad
hoc fashion, but it may also be done systematically. One attractive option is to keep the uncertainty
weight fixed (of course, it must be possible to satisfy RS) and evaluate the achievable performance with
this level of uncertainty, that is, adjust some performance weight to make p(Ngrp) = 1. There are two
obvious options to adjust the performance weight:

1) Scale the performance frequency-by-frequency such that u(Ngp) = 1 at all frequencies, that is, at
each frequency find a k(w) which solves

Nrpy, Nrpy, )
=1 17
s (kNRPﬂ kNRp,, (n

This option is most attractive for analysis with a given controller. The numerical search for k is
straightforward since p increases monotonically with k, and since a solution always exists provided we

9



have RS.

2) Adjust some parameter in the performance weight such that the peak value of w(Ngp), denoted
INrP||., is 1. This option is most reasonable for p-synthesis, that is, if the controller is not given.
For example, with the performance weight (10) we may adjust the time constant 7p such that the
optimization problem becomes

min | min | Nap(C, el - 1 (18)

Different plants may then be compared based on their maximum achievable bandwidth. Two disadvan-
tages with this approach are: 1) It introduces a rather time-consuming outer loop in the y-synthesis. 2)
It may be impossible to achieve u(Nrp) = 1 by adjusting 7p in the performance weight if, for example,
the high-frequency specification (value of M) is limiting. Skogestad and Lundstrém (1990) have used
this approach to compare alternative control structures for a distillation column example. One might
consider keeping 7p and M in the weight (10) fixed, and rather adjust the weight at all frequencies with
the same constant. This would avoid problem 2, but generally does not make sense from a physical
point of view since we cannot adjust the weight very much at high frequencies (since § ~ I at high
frequencies). This approach would therefore in most cases be very similar to adjusting M.

In this paper we do not employ these approaches, but use fixed weights only.

5 Skogestad et al. (1988) example revisited

We shall use the same plant as studied previously by Skogestad et al. (1988). The plant model is

1 (0.878 —0.864)

G(s)= =7\ 1.082 —1.096 (19)

The unit for time is minutes. This is a very crude model of a distillation column, but it is an excellent
example for demonstrating the problems with ill-conditioned plants. Freudenberg (1989) and Yaniv
and Barlev (1990) used this model to demonstrate design methods for robust control of ill-conditioned
plants.

In Skogestad et al. (1988) the following specifications were used: 1) The relative magnitude of the
uncertainty in each of the two input channels is given by wy(s) = 0.2(5s +1)/(0.5s + 1). Thus the
uncertainty is 20% at low frequencies and reaches 1 at a frequency of approximately 1 rad/min. Note
that the corresponding uncertainty matrix, Aj, is a diagonal matrix since we assume that uncertainty
does not “spread” from one channel to another (for example, we assume that a large input signal in
channel 1 does not affect the signal in channel 2).

2) RP-specification (using performance approach A): The worst case (in terms of uncertainty) Heo-
norm of wpS should be less than 1. Here wp(s) = 0.5(10s + 1)/10s. This requires integral action, a
bandwidth of approximately 0.05 rad/min and a maximum peak for a(5) of 2.

In the following we shall keep the uncertainty description fixed, but consider alternative performance
specifications.

In the time domain this problem specification may be formulated approzimately as follows: Let the
plant be

—01s
kle 1 0 ) (20)

GP(S) = G(S) ( 0 kze—()gs
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Figure 6: u-plots for Cyney (s0lid curves) and Cyiq (dashed curves).

where G(s) is given in (19). Let 0.8 < k; < 1.2, 0.8 < kg < 12,0 < 6 <1,and 0 < 4, < 1*
The response to a step change in setpoint should have a closed-loop time constant less than about 20
minutes. Specifically, the error of each output to a unit setpoint change should be less than 0.37 after
20 minutes, less than 0.13 after 40 minutes, and less than 0.02 after 80 minutes, and with no large
overshoot or oscillations in the response.

5.1 Original problem formulation (Performance approach A)

Skogestad et al. (1988) used a software package based on the H.,-minimization in Doyle (1985) (denoted
“the 1984-approch” in Doyle et al., 1989) to design a “p-optimal” controller. Their controller has six
states and gives urp = || Nrp||,=1.067 for both structured and unstructured Ay, We will denote this
controller C;,1q. Freudenberg (1989) used another design method and achieved a controller with five
states giving urp=1.054 for unstructured A;. Yaniv and Barlev (1990) do not present a p value for
their design, but show some time responses®.

New optimal design. With the new H . -software (Balas et al., 1990) based on the state-space solution
of Doyle et al. (1989), also the u-synthesis performs better than with the 1984-approach. We were able
to design a controller which, compared to Clotd, lowered prp from 1.067 to 0.978. The new controller
will be denoted C,;¢y,. It has 22 states and a state space representation is given in Appendix 1.

Fig.6 shows u for RP, NP and RS as a function of frequency for Cpey, (solid curves) and Cuotd (dashed
curves). u(Ngrp) for the new controller is extremely flat and the peak value, urp, is substantially lower
than for the old controller. The nominal performance is generally worse for the new controller, while
robust stability is improved for some frequencies.

Fig.7 shows the time response to a setpoint change in top composition for controller Clnew (solid

“The uncertainty given in terms if wr(s) does not quite allow this uncertainty at high frequency. This follows since we
do not really have € = 0.2 much less than M = 2 as required when deriving the weight (7)). On the other hand, w;(s)
allows for a lot of other possible uncertainties which are not included in the gain-timedelay-uncertainty described above.

®Based on the data in Yaniv and Barlev (1990) we obtained prp = 1.97 for their design. However, our time responses
did not quite match those presented in their paper.
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Figure 7: Simulation of setpoint change in yp using controller Cynew (solid curves) and Cpoid (dashed

curves). The setpoint change is a step at t = 0 acting through the filter 1/(5s + 1). Input uncertainty
(Eq.21) is used in the simulations.

curves) and C,o1a (dashed curves). The setpoint change is a step going through the filter 3514_—1 In the
simulations we use in each channel +20% gain error and a time delay § = 1 minute (using a second
order Pade approximation), that is for each input

6%s? — 60s + 12

21
7T o6s 4 12 (21)
(actually, as discussed below this is not quite covered by the uncertainty description, wi(s)). We see

from the time response that the new design has better robustness properties, but otherwise the response
with this specific uncertainty is only marginally improved.

u(s) = 1.2

5.2 Uncertainty sets and worst perturbations

As mentioned earlier, there is not a one-to-one map between the parametric (time-domain) uncertainty
in £q.20 and the frequency-domain set G(s)({ + Ajwi(s)). Tt is interesting to compare these two sets
frequency-by-frequency. Since the uncertainty is structured (scalar) we can use the complex plane.
Fig.8 shows the two sets

ke=%v. 08<k<1.2;0<6<1.0 (22)
and Biw 4 1
R Jw .
22T | <
1+A0@W2&ww+ﬂ,mowﬂ_l (23)

at w = 1 rad/min and at w — co. Note that the allowed set defined by wy (Eq.23) is larger than
what is required from Eq.22, but still there are elements of ke=%% that are not quite covered by the
uncertainty set. Also note that +20% gain error and —180° phase error is not covered by the allowed
uncertainy set at any frequency.

Controller Cpney is used in the following. It is interesting to study the worst perturbation Ajwr(jw) 6

6We obtained A} by selecting the appropriate elements (upper left corner) of the unitary perturbation matrix, U,
which is obtained from the lower bound p(NrpU) on u(Nrp).
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Figure 8: Graphic representation of the uncertainty sets in Eq.22 and Eq.23 for w = 1 rad/min (solid
curves) and w — oo (dotted curves).

, which at each frequency gives the worst case amplication through the system. That is, subsitituting

* into the block diagram gives at each frequency #(wpS,) = u(Nrp) where S, denotes the perturbed
sensitivity function with the uncertainty A%. The worst perturbation in each channel at w = 1 rad /min
is marked with an “x” in Fig.8. The distance from (1,0) to each “x” is equal to 1/u(Ngp). Note that
at this frequency the worst case frequency domain uncertainty in one of the two channels is included
in the time domain set, while the uncertainty in the other channel is not.

&(Sp) for the four corner values for the gain in Eq.20 with a constant delay of 1 minute, is shown as
function of frequency in Fig.9. The worst perturbation at low frequencies is if both gains are reduced
to 0.8, and at high frequencies with both gains equal to 1.2. It is clear also from this figure that the
controller will not quite achieve RP for 4+20% gain uncertainty and 1 minute delay. The curves also
demonstrate that none of these four perturbations is very severe at w = 0.5 rad/min. However, since
i(Ngp) = 0.978 at w = 0.5 there is some perturbation allowed by Arwy that gives G(wpSp(0.5)) =
0.978. Written on the gain-timedelay form (Eq.20) one such perturbation is 1.017e~107% in channel 1
and 0.636€%9% in channel 2. Note that the phase-error in channel 2 corresponds to a prediction. This
is allowed by the frequency-set (wy) but is not included in time-domain set in Eq.20.

5.3 Other performance weights (Approach A)

Here we use the same problem formulation as in section 5.1, except for using different performance
weights in each output channel.

1 rps+1

24
M r1ps (24)

wp 0
W = 1 . A =
p@= ("0 )i e
Intuitively, we may reduce the “interactions” (this is a term which is relevant for single-loop control) in
the system by having one channel with a fast response, and one channel with a slow response. Optimal
p-values for different choices of 7p, and 7p, are shown in Table 1. We keep the “avarage” response time
constant by holding 7p, Tp, constant. We see that the interactions are less and the p-values somewhat

lower when we allow different response times in the two channels. Of course, this is only true to a
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Figure 9: The maximum singular value of S for four specific perturbations (Eq.20) compared to the
performance requirement (1/wp, solid curve). All perturbations include a 1 minute delay.

Table 1: Optimal p-values obtained by Table 2: Optimal PID tuning parameters obtained by mini-
u-synthesis for different performance mizing prp for different performance weights, Eq.24.
weights, FEq.24.

TP TP2  IRP TP1 TPz pRP K1 k2 ™ T2 TD1 TD2

min min min min min min min  min

10 10 0.9777 10 10 1.32 162 -39.1 41.2 0.836 0.382 0.286
20 5 09703 20 5 1.21 93.9 -52.2 53.3 236 0.333 0.195
40 2.5 0.9372 40 2.5 1.16 62.6 —-60.8 82.8 2.66 0.527 0.273
10 5 1.0982 10 5 133 164 -37.4 394 0.661 0.381 0.285

limited extent, since the response time of the fast channel is limited by the allowed time delay of about
1 minute. The last entry in the table does not have the same “average” response time, but is included
to illlustrate that the prp-value increases markedly if we require that only one loop is made faster.

As expected, the reduced interaction becomes even clearer if we study single loop (decentralized) control
using two PID-controllers of the form below.

_ CPIDl(S) 0 ) . _ .1+TI.-S 14 1p;s
C(s) = ( 0 cpID,(s) )’ cpIpi(s) = ki ;s 14 0.1mp;s (25)

The tuning parameters and pugp for different choices of performance weights are given in Table 2. The
PID-controllers were obtained using a general-purpose optimization algorithm to minimize pgp with
respect to the six parameters. The last entry in the table shows that for the PID-controller we can
increase the speed of one channel at almost no cost in terms of ugpp.
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Figure 10: Frequency plot of the weights used in Approach B (Eq.27-29).
5.4 Performance approach B

Consider the block diagram in Fig. 3. We shall desfgn a two degree-of-freedom controller using
approach B. The plant G is given in Eq.19. G4 describes the effect of disturbances (feed flow, F', and
feed composition, zr) on the two controlled variables (top and bottom composition, yp and zp).

1 0.394 0.881
Ga(s) = 7577 (0.586 1.119) (26)
We use the following weights to define the problem.

o= (% %) Wm0k W =001 ke (2D

0 02/ ’ =0 " s+1°7

1 ds+1
= M = uU. '—_—I 2
Wf(s) Bs 1 112,;2 ) WI(S) 0 20‘53_*_ 1 2z2 ( 8)
10010s + 1 50s + 1

We(s) = 9 10s L2 Wu(s) - 0'010.0053 + 1I2"’2 (29)

These weights are plotted in Fig.10.

G and Gy were found by linearizing a non-linear model at an operating point where yp = 0.99,2p =
0.01,F = 1.0 and zr = 0.5 (Skogestad and Morari, 1987). Wy shows that we are expecting up to
0.3/1=30% variation in F and 0.2/0.5=40% in zp. Similarly, W, specifies the setpoint variations,
0.98 < ypsp < 1.00 and 0.00 < zgs, < 0.02. These weights reflect the relative importance of the
external inputs, i.e. we consider 30% variation in F to be comparable to a setpoint variation of 0.01
kmol/kmol. The noise at high frequency is allowed to be of magnitude 0.01. The factors 0.01 and 100
in the weights for W, W,, and W, correspond to an output scaling, and could alternatively have been
accomplished by multiplying the elements in G and G4 by 100.

The optimal controller, C, g, gives a ugp value for this problem definition of 1.05, whereas the controller
Cunew (With C; = C) gives a peak value of about 1800 at high frequencies. The reason to this extremely
high value is that Cpney is tuned without any direct penalty on the manipulated inputs, while in the new
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Figure 11: Simulation of a disturbance in F (+30%) at time t = 0 and in zp (+40%) at ¢t = 50 min
using controller C e,y (solid curves) and C,p (dashed curves). The input error in Eq.21 is used in the
simulations.

formultion such a penalty (W,) is included. At low frequencies Cpnew gives prp = 1.75. Conversely,
when applied to the original problem definition, C,p, gives prp = 1.19, whereas Cl ey gives 0.978.

Recall the analysis of Eq.14 where we analyzed the relative importance of disturbance and setpoint
tracking on performance. If we in this example look at the disturbance rejection from a scalar point of
view, the performance time constants, 7pg in Eq.16, for the effect of the two disturbances in F and zp
on zg are about 75/(0.3-58.6 + 1) = 4.0 min and 75/(0.2-111.9 + 1) = 3.2 min, respectively, whereas
7pe for setpoints is 10 min. However, this does not take into account the direction of the disturbances.
In our cases the disturbance condition number (Skogestad et al., 1988) for the two disturbances are 11.5
and 1.8, respectively, whereas the “disturbance” condition number for the two setpoints are 111 and 89
(Skogestad and Morari, 1987). Thus, the disturbances are in the “good” directions of the plant, and
the bandwidth requirements imposed by the disturbances are not as hard as computed above. However,
the disturbances do put tighter restrictions at lower frequencies (the “slope two” requirement) than
the setpoint requirement. This is also clear from the simulations discussed next.

Fig.11 shows the response to a disturbance in F (+30%) at time ¢t = 0 and in zr (+40%) at ¢ = 50 min.
Solid curves show the response for controller C\pe,, and dashed curves are for controller C,g. We note
that controller Cppew gives a rather sluggish return to the setpoint. This dominant (low-frequency) part
of the response is significantly improved with the controller C\,g. The controller, Cynew for approach
A, could have been improved by using a performance weight, wp, with slope two at intermediate
frequencies. Also, note that the disturbance in zp is simpler to reject because it is almost exclusively
in the “good” direction.

6 Mu-synthesis

The p-synthesis procedure employed today makes use of the upper bound of p, trying to “solve”

: -1
min || DNRp(C)D™ leo (30)
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The algorithm, often called ”D-K iteration”, is as follows:

1 Scale the problem with a stable and minimum-phase transfer matrix D with appropriate structure.
2 Find a controller C by minimizing the H,-norm of DNRP(C’)D‘I.

3 Compute u(Ngp(C)) and obtain at each frequency the optimal “D-scales” from minp G(DNgrpD~').
4 Fit the magnitude of each element of D(w) to a stable and minimum phase transfer function.

5 Test a stop criterion. Stop or go to 1.

The major problem with u-synthesis is that the D-K iteration is not guaranteed to find the global
optimum of Eq.30 (Doyle and Chu, 1985). A second problem is the difficulty to define a stop criterion
for the optimization.

Good initial D-scales in step 1 of the algorithm, reduces the number of iterations, and may even, because
of local minimas, affect the final minimal g-value. For our example problem with the original problem
definition, we observed that a natural physical scaling of the problem (using “logarithmic compositions”
as discussed by Skogestad and Morari, 1988), that corresponds to multiplying all elements in G(s) by a
factor 100, gave very good initial D-scales. With this simple scaling the u-value after the first iteration
was reduced from 14.9 to 1.2.

The D-K iteration depends heavily on optimal D-scales. If the D-scales are not optimal, then the
controller C is not optimal either. The y software in the toolbox do not seem to compute a sufficiently
tight upper bound of . Thereby the D-scales are not optimal, and the D-K iteration suffers. We
have experienced cases where, for some frequencies, the computed p-value has been larger than the
maximum singular value. When this occurs the D-K iteration often starts diverging.

An other critical factor is the fitting of the D-scales. It is important to get a good fit, preferably by a
transfer function of low order. The software for D-scale fitting in the p-toolbox requires that the user
specifies the order of the transfer function and decides if the fit is good enought. The optimal order
of the tranfer function D varies as the D-K iteration progress. It is sometimes better to increase the
order, and sometimes the order should be decreased.

The final problem is to determine when to stop the iteration. Two reasonable candidates for criterion
for terminating the iteration are: 1) An iteration criterion

Hk-1 — Pk < €1 (31)

and, 2) A “flatness” criterion
m‘_?‘x(/"peak - #(w)) <€ (32)

1) In Eq.31 the subscript denotes the k — 1'" and the k' iteration respectively. This is a standard
criterion, the iteration terminates if the objective function (u) does not improve. There are two
problems with this criterion. First, we may have found a local minimum, which means it is possible to
improve p by using a different D. Second, this criterion would terminate the iteration if p increases.
That may sound reasonable, but we have experienced situations where y increases for a number of
iterations and then start to decrease again. 2) Eq.32 relies on the optimal controller giving a flat
p versus frequency plot. However, this is not always true. The optimal solution to the problem in
Skogestad et al. (1988) does not give a flat p-plot, instead p always goes to 0.5 at high frequencies
(since S goes to I, and wp goes to 0.5 I). As the number of iterations are increased one is able to extend
the frequency where p starts dropping down to 0.5, but the curve never becomes flat at all frequencies.
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APPENDIX 1:

State space description of Cupew(s) = C(sI — A)~'B + D. The controller has 22 states, 2 inputs and

2 outputs. The A matrix is given in tridiagonal form with the complex conjugate roots in real two by
two form, i.e. A is a bandmatrix with all non-zero elements on the main diagonal and the two adjacent
diagonals. The D matrix is a zero 2 by 2 matrix.

A:

19

ow diagonal main diagonal
number below main diagonal above main
1 —1.0000e — 07 0
2 0 —1.0000e - 07 0
3 0 —5.3681e — 04 0
4 0 —6.8364e — 04 0
5 0 —3.4883e - 03 0
6 0 —5.5976e — 02 0
7 0 —5.7017e — 02 0
8 0 —2.0050e — 01 0
9 0 —2.6267¢ — 01 —1.1744e - 01
10 1.1744e — 01 —2.6267¢ — 01 0
11 0 —4.8527¢ — 01 0
12 0 -3.1117¢ 4+ 00 —6.9774e - 01
13 6.9774e — 01 —3.1117e+ 00 0
14 0 —1.9255¢ + 01 0
15 0 —4.1007¢ + 01 0
16 0 —1.1341e + 02 0
17 0 —~1.2966e + 02 —8.7070e + 01
18 8.7070e + 01 —1.2966e + 02 0
19 0 —1.3042¢ + 02 —8.6556¢ + 01
20 8.6556e + 01 —1.3042¢ + 02 0
21 0 —1.8112¢ 4+ 02 0
22 0 -6.3929¢ + 05
B and CT:

B B C C
column one column two oW one row two
8.5088¢ — 01 1.0625¢ + 00  9.6138e— 01 —9.6366e — 01
1.6792¢ 4+ 00 —1.3426e+00 1.5210e+00  1.5194e+ 00
9.6054e — 02 —2.0838¢ — 02 —2.3158¢ — 02 —2.3122¢— 02
1.1099¢ — 01 1.3877e — 01 1.1712¢e - 01 —1.1731e-01

—7.407Te — 02 —9.2619¢ — 02 7.4475e— 02 —7.4592¢ — 02
1.1255¢ 4+ 00  1.4072¢+00  1.2294e+ 00 —1.2313e+ 00
6.1913¢ — 01 —4.9518¢ —01 5.1127e— 01  5.1046e — 01

—1.4905¢ + 00 —1.8635¢+00 —1.6054e+ 00 1.6079e + 00

—~6.5002¢ + 00 5.1989e+ 00 —5.6709¢+ 00 —5.6620e + 00
7.4959¢ + 00 —5.9952e + 00 —2.4034e+00 —2.3997e + 00

—1.0500e + 00 —1.3128e¢ 4+ 00 —7.4675¢—01 7.4792¢ — 01
8.4252e — 01 1.0534e+ 00 —6.4611e - 01 6.4712e - 01

—3.0556e 4+ 00 —3.8204e+ 00 —1.9699¢—01 1.9730e — 01

—8.0530e + 01  6.4408¢+ 01  5.4282e+ 01  5.4197e+01
4.1453¢ + 01 —3.3154e+ 01 —-3.3348e4 01 —3.3296e + 01
7.7061e + 02 0.6349¢ + 02 —1.7348e+ 02 1.7375e + 02

—2.4073e 401 1.9254e+01 —1.8973e+ 02 —1.8944e+ 02
3.3649¢ + 02 —2.6913e+ 02 2.4277e+01  2.423%¢ + 01

—5.1808¢e + 02 —6.4776e+4 02 -5.7626e+ 01 5.7717e+ 01
—3.854le + 02 -—4.8188¢+402 3.3056e+ 02 —3.3108e + 02
1.3625¢ + 03 1.7036e 4+ 03  2.8059¢+ 02 —2.8103¢ + 02

—1.2773¢ + 04 —1.5970e + 04 —1.4449¢+ 04 1.447le+ 04






