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Abstract

Dynamic process models are useful for a number of pur-
poses during design and operation of chemical processes.
In this paper the general principles for model development
are outlined, and these principles are applied to a simple
flash tank (which appears to be a lot more interesting than
one might believe at first sight) and to a distillation col-
umn example. Detailed numerical simulation is discussed
only briefly, and it is shown that one in some cases may get
an ”index” problem which may pose problems for standard
integration methods.

The emphasis of the paper is to demonstrate how one
by linearization and simplifications can obtain simple low-
order models. For example, we derive simple analytical
expressions for the time constants of the pressure and con-
centration response for the flash tank and distillation col-
umn. Such simple models may yield invaluable process
insight. In addition, simple models are often needed for
process control or for simplified simulation studies (eg.,
training simulators).

!These notes are an updated version of a paper originally presented at
Kursdagene, NTH in Jan. 1990



1 Introduction

A model is a quantification of a physical process that enables
prediction of process behavior. Denn (1986) gives the following
definition:

A mathematical model of a process is a system of equations
whose solution, given specified input data, is representative of the
response of the process to a corresponding set of inputs.

In this paper we consider dynamic process models obtained
using fundamental principles (eg. based on the conservation
laws); possibly combined with parameter fitting to match obser-
vations of the real process. Empirical (black box) models may be
obtained from observations only (process identification, spectral
analysis). Such models may generally only be nsed for smoothen-
ing of data and may not safely be used to predict the behavior
of the system at other operating conditions.

Within chemical engineering models may be used for several
purposes. Some of these are:

1. Process (equipment) design

2. Process (setpoint) optimization (off- and on-line)
3. Troubleshooting (off-line)

4. Process monitoring (on-line)

5. Operator training

6. Establish procedures for startup, shutdown, or for handling
failures

7. Process control

In Case 1 the process parameters (setpoints) are fixed and the
size of equipment is to be calculated. Steady-state models usually
suffice. There are some exceptions, for example, batch processes
which are inherently dynamic and the design of safety and relief
systems. Steady-state models usually are sufficient also in case 2.
Steady-state models may also often be used also in cases 3 and
4. In fact, models may not be needed at all in case 4 (process
monitoring). For example, to monitor the possible runaway of
a chemical reactor, a simple trend analysis using temperature
measurements may be sufficient. Dynamic models are clearly
needed for operator training (case 5) and for simulating special
dynamic transients (case 6), and it is here important to have
a good model of the dominating (“slow”) dynamics and of the
steady-state effects.

For controller design (case 7) simple black-box models de-
scribing the “fast” dynamics (in particular dead times) are often
sufficient. A good fit of the steady-state is generally not needed
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- the reason is that feedback control brings the system back to
its original steady-state. As an illustration consider the Ziegler-
Nichols rules for tuning of PID controllers which use information
about the process when it is oscillating, and which use no infor-
mation about the steady-state. The models used for controller
design are usually linear, but nonlinear simulations are often used
to verify that the control system will work in practice.

This paper is concerned with fundamental dynamic models.
From the list above we see that there are only few cases where
such a model actually may be necded. This probably explains
why there has been relatively little emphasis put on dynamic
modelling within chemical engineering. However, dynamic mod-
els are very helpful for obtaining insight and understanding about
the process. For example, insight about the dynamic couplings
in a process may be very useful for the engineer to establish the
structure of the control system (pairing of variables, control spec-
ifications, etc.), although the design of the individual controllers
may not require a very sophisticated model. The benefits of
improved operation caused by operators who have been trained
using dynamic simulation are quite obvious.

In many cases the development of a dynamic model for a
process goes through the following steps

1. Establish a2 model using fundamental balance equations
for mass, energy etc. (Accumulation = In - Out). Com-
bine this with, for example, thermodynamic relationships
for vapor-liquid equilibrium (VLE) and equations of state
(p= f(My, W, T)).

2. Obtain fundamental parameters for model, for example,
equilibrium constants and physical data

3. Solve equations numerically

4. Obtain additional parameters by matching response of ac-
tual process (or verify the model if all parameters are known)

In general, the steps in this procedure may be iterative and
in a different order from that outlined above.

Step 1 and 2 is usually the same for both steady-state and dy-
namic models with the exception that the Accumulation term is
set to zero in the steady-state case. However, the dynamic model
has additional parameters which may make step 4 significantly
more difficult. These additional parameters include the nominal
(steady-state) values of the accumulation terms (holdups) and
information on how these holdups vary with load (eg., time con-
stants for self regulation of holdups). Preferably these parametrs
should be obtained from fundamental knowledge or indepen-
dent experiments, rather than trying to match simulations of
the model with experimental responses.



Consider the case of establishing a simulation model for an
existing distillation column. Step 1 involves setting up mass and
energy balances for each individual tray. In step 2 vapor-liquid
equilibrium (VLE) relations and enthalpy data are introduced.
Such data is generally obtained from an independent source and
are not adjusted later. Step 4: In the steady-state case the only
remaining parameter is now the tray efficiency in the various
sections of the column. Since the methods for estimating tray
efficiency are generally unreliable, these are usually obtained by
matching steady-state plant data. This is usually done for a given
feed by specifying the product compositions and then adjusting
the tray efficiency in order to match the experimental data (flows
and temperature profiles) as well as possible. Fundamental mod-
els of distillation columns are usually very accurate if the VLE
data is accurate. Deviations between calculated and experimen-
tal data are usually caused by errors in the experimantal data.
For example, the column may not be operating at steady state, or
the reported values for flows or compositions may be erroneous.
In the dynamic case values for the holdups of liquid on the trays
must be obtained in addition. The number of parameters should
be reduced by assuming, for example, the trays to be identical.

The numerical solution (step 3) is sometimes the most time
consuming, but hopefully will become less of a burden in the fu-
ture as more powerful software and computers become available.

The level of modelling detail is an important issue. There
are a number of reasons why one should try to keep a model as
simple as possible. Using a simple model makes it easier to un-
derstand and correct, avoids errors and saves time. In addition,
there are two even more fundamental reasons: 1) If the model
is too complex then it may be unsolvable with the current com-
puting power. 2) It may require a large number of parameters
which are not avaialable from independent sources. Although the
art of modelling may be formalized to some degree, the results
will nevertheless depend strongly on the experience and intuition
of the engineer. The art is to make a simple yet sound model
by making the appopriate simplifications and assumptions using
incomplete data.

2 Dynamic modelling using the Conser-
vation Principle

2.1 Degrees of freedom

Before we start with the actual modelling some comments about
independent variables and degrees of freedom seems appropriate.
A mathematical model consists of a set of equations and vari-
ables. This model will have a given number of degrees of freedom
and the corresponding number of variables may be specified. In



principle, any variable may be specified although a physical solu-
tion may not be guaranteed for any specification. However, note
that if we consider a dynamic model for a given process, then
the “true” independent variables, from a physical point of view,
will almost always correspond to valves (flow rates). Additional
independent variables associated with streams entering the sys-
tem (eg., feed composition) are usually denoted disturbances. In
most cases the engineer does not have too much trouble making
Judgements on the number of degrees of freedom based on phys-
ical insight and the issue should not be overemphasized. Some
textbooks count equations and variables to establish the number
of degrees of freedom. However, a better approach is to establish
the degrees of freedoms first from physical insight and then pos-
sibly do the counting afterwards to make sure one has not missed
some equations.

2.2 The conservation principle

The basis for most dynamic models is the principle of conserva-
tion. For mass this simply says

The rate of change of mass within a spectfied region of space
(control volume), equals the rate of which mass enters that region,
minus the rate at which mass leaves.

Identical statements may be made for other conserved quanti-
ties such as component mass or mole (provided chemical reactions
are taken properly into account), energy, momentum (mv) and
electric charge. The last two are not considered any further in
this paper. It should be noted right away that enthalpy is not a
conserved quantity except in the special case of constant pressure
and volumne, for liquids (only approximately), or if we consider
steady state.

In mathematical terms consider the quantity § which may be
mass, m, moles of component A, ny4, or energy, E. Let ¢ denote
the, concentration of § per unit volume and consider a control
volume with volume V(m?). For example ¢ may represent den-
sity, p(kg/m?), concentration of component A, ca(moleA/m3),
or specific energy, e(J/m?). The conservation principle for change
in S per unit of time is

%Holdup = Bulk;,, — Bulk,y: + Supply of S by other means + R

(1)
where Holdup = ¢V is the holdup of quantity S, Bulk;, = ¢;n¢in
is the amount of § entering the control volume per time unit
through bulk (convective) transport, Bulk,, = Cout{our 15 the
amount leaving with bulk transport, ¢ denotes flow in m3/s, sup-
ply of S by other means includes for example diffusion of mass
through a membrane, external work and heat transfer through a
wall, R = rV is the rate of formation of § by chemical reaction,
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and r is the specific reaction rate (amount of S/m? s).

Applications to small (differential) control volumes give rise
to parial differential equations. In specific applications one may
choose to use other units for V and ¢ than those given above,
but the basic principle is still the same.

2.3 Flash tank case study

As a simple example consider the flash tank in Fig. 1 with ex-
ternal heating and no chemical reaction. This example will pro-
vide a good basis for further studies on distillation dynamics.
Three valves are shown in Fig. 1: one each for heat input @,
liquid outflow B, and vapor outflow D. These are all poten-
tially independent variables. However, in some cases we may
rely on self-regulation for liquid holdup (level) or vapor holdup
(pressure) in which case B or D becomes a dependent variable
instead. In other cases we have a control system in place; this
also may change independent variables into dependent variables.
Also note that at steady-state the holdups have to be constant
and there is only one independent variable.

We shall use moles as our basis. We now apply the conserva-
tion principle to the tank.

i) Total material balance (mol/s)

d
7ML+ My)=F-B-D (2)

where M; My are liquid and vapor holdups in mol, and F, B
and D are flows in mol/s.
i) Material balance of light component (mol/s)

d \
5 Mz + Myy) = Fz — Bz — Dy (3)

iii) Energy balance (J/s)

dEnergy
dt

where “energy” in a stream means internal energy u. “Work”
is the work done on the control volume by streams entering and
exiting the system. For example, the energy entering with the
feed stream is Fur and the pV-work done on the system by this
stream is Fpr/pr. The total contribution of energy and work
from the feed stream is then F(up + pp/pr) = Fhp, that is,
enthalpy appears as the sum of (internal) energy and work. The
energy balance then becomes

= (Energy In — Energy Out)p,x + Work + Q@  (4)

d(Mpur + Myuy)
dt
where the (in this case saturation) energies u and h are known
functions of composition and temperature T. Note that internal
energy and not enthalpy appears on the left hand side.

=FhF—BhL—th+Q (5)
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Comment on reference energy: Energy needs always be de-
fined relative to some reference state, and the value of eg. hp
will depend on this choice. Typical reference states for energy
include: 1) Pure components as saturated liquids at some given
pressure (i.e., each component has a different reference tempera-
ture; this reference state is often used for distillation models), 2)
Pure components as liquid at a given temperature and pressure,
e.g., 0°C and 1 atm (used in some commercial simulators such
as PROCESS), 3) Pure components as ideal gas at 298.15 K and
1 atm (often used if equations of s*ate are used), 4) Elements as
ideal gas or solid at 298.15 K and 1 atm (makes it easy to care
of chemical reactions without having to add a separate heat of
reaction term).

In the following we shall assume

A1l Perfect mixing in both phases
A2 Thermodynamic equilibrium between phases

and consider two special cases: Case A: Composition response
with constant pressure and holdup. Case B: Pressure (tempera-
ture) response with 1-component mixture.

Flash tank: Composition response.

The problem in this case is to find how the compositions vary
with time. Consider a binary mixtures and let z and Y represent
the mole fraction of light component in the two phases. The
assumption of VLE yields

y=Kz (6)

where the equilibrium “constant” K(z,p) in general is a complex
function of composition and pressure. For the special case of
constant relative volatility, o, we have

(o

K(z,p) = K(z) = Tfa-1s

We now make the following physical (engineering) assumptions
A3 Constant liquid holdup M,
A4 Constant vapor holdup My

Vapor and liquid holdups are assumed constant and since
these cannot be truly independent variables physically, we are
implicitly assuming that there is a “perfect” control system in
place. This control system (Fig. 2) may use, for example, the
heat input @ and the liquid outflow B to keep constant pressure
and level (these variables are closely related to My and M)

In this case D becomes the only independent variable while
@) and B become dependent variables. Such assumptions about




“perfect inventory control” is frequently used and may reduce the
modelling effort.

With the above assumptions the total material balance be-
comes

B=F-D (7)

Substitute (6) and (7) into the component balance (3) and set
dMy /dt and dMp,/dt equal to zero. This gives

Ah%ﬁmhiggiﬂzFrﬂF—Dn—DK@n (8)

Eq.8 yields an equation for how z varies with time with D and
the feed (F, z) as independent variables. It is a simple nonlinear
first order differential equation which may easily be solved. Note
that with D as the independent variable the energy balance does ,
not yield any additional information. However, it could aave N
been used to compute the necessary heat input Q. \ﬁ

Assume the feed (F,z) is constant. A linear model useful 7
for obtaining insight and possibly for control purposes is easily
derived.

ol
i
|

(Mg, + MVK')djtx = —(B*+ D*K')Az — (y* —2*)AD (9) |
where K' = (9y/dz)* = (0(K(z)z)/0z)* is the slope of VLE-
curve at the nominal steady-state. A denotes deviations from
the nominal steady-state (which is denoted with superscript *).
By “nominal” we mean the initial steady-state value at time t =
0. For example, AD(t) = D(t) — D*, and we have A(0) = 0.
To simlify notation the superscript * and also the explicit time
dependence (t) is deleted in the remainder of the paper (except
in cases where it is needed for clarification). Written in terms
of Laplace transforms (essentially, replace differentiation by the
Laplace oprator s) the linear model becomes

Kz
TS+ 1

Az(s) = g(s)AD(s); g(s) = (10)

where the “steady-state gain” (the value of the transfer function
g(s) when s = 0) is

y—-x
S A 11

N
and the linear time constant for the response is m
Tz = (ML + MyK")/(B + DK (12) e >

The initial slope of the response, that is, the value of dz(t)/dt just Fig.3
after £ = 0 (may obtain from sg(s) by letting s — oo) becomes

kI:ﬁ:— y—r
£ Tr ML+ My K¢

8



In many cases K will be of the order 1 and the gain k; will
be approximately —(y — z)/F and the time constant 7, will be
approximately (M, + My)/F which is the residence time of the
tank. In words, for the case of negligible My, the time constant
is equal to the liquid holdup divided by the sum of liquid outflow
plus K times vapor outflow. We shall make use of this result
later when studying distillation columns. In the derivation above
we assumed F' and zp constant. However, it is easily shown that
the same value of the time constant also applies to changes in F
and zp. We can show that the saine time constant applies also
when My and M, vary with time, provided we neglect the direct
effect of changes in z on My, and My.

Flash tank: Pressure (temperature) response

In this case we make the following assumptions
A3 Constant liquid holdup M,
A4 Volume of vapor Vi constant
A5 One-component mixture

For a one-component mixture the assumption of vapor-liquid
equilibrium gives that the pressure p must equal the saturation
pressure for the component

p=p"(T) (13)

Consequently, specifying the tank pressure is equivalent to spec-
ifying its temperature T. Furthermore, because Vi is constant,
My is directly related to T' (using an equation of state).

Also in this case we have made the “perfect control” assump-
tion of constant M. Assume that B is used to keep level (ie.,
Mp,) constant. In addition to the feed the independent variables
are then D and Q. Given these independent variables we may ob-
tain the dependent variables T' (temperature) and B as functions
of time using Equations 14 and 15.

Since dM[,/dt = 0 the material balance becomes (mol/s)

dMy
dt

=F-B-D (14)

The energy balance yields

duL d(Mvuv)
M
L T a

=FhF—BhL—th+Q (15)

Numerical solution and the indez problem. The model above
(Eq. 14 and 15) is perfectly sound, yet many numerical sotware
packages will not be able to solve it. The reason is that we have
what is called an index problem (of order 2). Index problems
arise in general whenever the equations involve differentiation of
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a variable which is not a state variable. States of a dynamical
system are the minimum number of variables that must be spec-
ified at ¢ = 0 (in addition to the independent variables such as
feed, ) and B above) in order to be able to solve the equations
for t > 0. In the present problem there is only one state variable,
which may be chosen to be the holdup My (or equivalently p or
T which are directly related to My ).

Now imagine that a standard differential equation solver (for
example, using Euler integration) is used to solve the equations.
At a given time step the state variable My (and consequently p
and T') is known, and the user has to supply the value of dMy /dt
at this time step. This derivative is given by Eq.14, but first
the liquid outflow B, which is an dependent variable, must be
obtained. B may be found from Eq.15, but this requires that the
time derivative of the energy in the tank is known. In theory,
Eq.15 may be transferred into a purely algebraic equation which
is easily solvable for B (as shown below for a specific case), but
in practice it may be extremely tedious and not worthwhile. For
example, the term duy/dt ~ dhp/dt which appears on the left
hand side of Eq.15 inay be written as

dhy, _ Ohp, dMy

dt oMy dt (16)

and we may substitute in for dMy /dt from the material balance
and transfer Eq.15 to an algebraic equation. However, evaluating
the term

dhy,  Ohg (BT)S’” dp

oMy ~ aT \3p) iy (17)

requires analytical expression for derivatives of the enthalpy equa-
tions, the saturation pressure equation and the equation of state.
In general, these may be extremely tedious to obtain, in particu-
lar for multicomponent mixtures. Numerical differentiation may
be used, but again this will be very time cousuming because it
involves differentiation of all the thermodynamic equations which
themselves often are iterative calculations. A simpler solution,
which actually is implemented for a similar problem in our mul-
ticomponent dynamic distillation program (ddlp) at Institutt for
Kjemiteknikk, is to evaluate dhy /dt using data for previous time
steps, that is

dhy, N hr(t) — hr(t + At)

dt =~ At
This gives very good results since the contribution to to the en-
ergy balance from the change in enthalpy with time usually is
very small.

Although the index problem is really a numerical problem and
not a modelling problem, it is important also for the modeller to
be aware of it. It may be avoided in some cases be rewriting the
model. In the present case the index problem may be removed

(18)

10



by not assuming M|, constant, and introducing B = f(Mp,) (the
function f may represent a self-regulating effect or a controller).
The material and energy balance give expressions for the time
derivatives of total mass M = M + My and total energy U =
Mpur + Myuy and M and U may be used as states. At a
given time step, M and U are known. A constant volume (tank
volume) and constant internal energy flash will yield the phase
distribution (My and ML) and the pressure/temperature. One
should note that this may not be an easy task, because the kind
of flash here required may be time consuming and is not available
in many thermodynamic packages. The derivatives of M and U
may subsequently be calculated.

Flash tank: Pressure response. Analytical expres-
sions for insight. We shall now linearize the equations to gain
insight into what response times we might expect. Make the
following additional assumptions

A6 Ideal gas equation of state:

p= MyRT/Vy (19)

AT Specific energy (J/mol) is a function of temperature only,
that is, du = cydT and dh = cpdT.

A8 Liquid: ug = hr; Vapor: uy ~ hy — RT (ideal gas).

In particular, the simple equation of state and the fact that p =
p°**(T) makes it possible to evaluate terms such as Ohr /OMy
analytically (recall Eq. 17) and thus avoids the index problem.

As reference state for energy we choose to use the pure liquid
as saturated liquid at the nominal pressure, i.e., hi = 0 (this is
simply a convinient choice, and not really an a.ésumption). We
also introduce the heat of vaporizétion hveP = hy — hy,.

To study the pressure response we consider the energy bal-
ance, Eq.15.

du d dM
ML= + My 4 uy =X

dt d
Consider the effect of a change in D (with B as a dependent
variable). Linearize for the case with Fhr and Q constant and
introduce assumptions A7 and A8 and h% = 0 to obtain

= Fhr — Bhy — Dhy + @ {20)

(Myey, +Myev,) ST i @0 _pan, _porap-pany
= —h"*’PAD - (BCPL + Dcp, AT (21)

where hv9P = yy — hr = h"*? — RT (in most cases we may
set hY*P ~ h'%P). As noted previously there is a direct relation

11



between My and T given by the equations My = pVy/RT and
p = p***(T). Combining these algebraic (static) equations yields

Vv dp** pVy

AMv. = qrar AT~ Rt
d ln psat 1 I(sat
_ C1)=AT = AT (22
vigmy ~ VAT =Mv— (22)

The term K?®t = (4ne= dlnT —1) is typically of the order 8 2. Intro-
ducing (22) into (21) and taking the Laplace transforms finally
yields (this expression also applies to the pressure response since
Ap=FL(1L+ ghwdMy)

kl
A = — 23
My (s) o 1/T,,AD(S) (23)
where the initial gain is
vap }.sat
K= MyhveP Koot /T (24)

MLCVL + Mvcvv + Mvil"apfi'sat/T

and the time constant for “self-regulation” of vapor holdup (pres-
sure) is

_ Mpey, + Myey, + MyhvePKsetT
B Bep, + Dep,

(25)

The steady-state gain is k = k'r, = —%?—. The term
“self-regulation” refers to the fact that after an increase in the
exiting vapor flow, D, the vapor holdup will level off at a lower
value. In the case with no self-regulation we would simply have
AMy(s) = ~(1/s)AD(s)3, and the holdup would decrease conti-
nously with a constant slope of -1 (i.e., ¥’ = —1 and 7, = oo and
k = —00). However, in practice the decréase in My (and thereby
in pressure) leads to evaporization of liquid which counteracts the
increase in D. In the new steady-state there is a balance between
the additional “latent” enthalpy leaving with the vapor, and the
reduced “thermal” energy, and we have Bep, AT + Depy AT =
hv*PAD.
In the case of negligible vapor holdup, k&’ will be close to
zero and 7, will be of the order of the residence time, My /F

*This value may be obtained using

Ay K
dnT RT
(see RPS, Ch.6) where 2" is the difference in compressibility between the
vapor and liquid phase. At the normal boiling point (1 atm) we have z*%? ~ 1
and To/T =T /Ts = 1.4.
3To derive this consider the material balance, Eq.2, and assume M, F
and B are constant as may be reasonable for a flash tank where no conden-
sation/evaporation takes place, i.e., h"%F is very large

12
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(somewhat higher since in general cpy > cpp). If the vapor
holdup is “large”, then k' is close to -1 and 7, is of the order

Mﬁﬁw, which typically is of the order 4My /F.

cp
The value of the time constant for pressure will be the same

if we consider other changes such as in ¥ and @ provided no
other “self-regulating” effects take place. However, the gain will
obviously be different in such cases.

Comment: A common assumption is to neglect changes in
internal energy, that is, to set the left hand side of the energy
balance (Eq.20) equal to zero. Note that since the left hand side
contains the term uj,d My /dt and since d My /dt is not negligible,
this assumption in our case only makes sence if we at the same
time choose the reference state for energy such that ujy, = 0. With
this assumption A} = —hva? and the energy balance simply be-
comes ( = - fz““pAB-}—(BcPL +Dcp,)AT+ RTAD and we obtain
by combining with the material balance &' = —1 —RT/hv? =~ -1

fva sat
and 7, = ME%%E?‘ These values are approximately the same
as found above for the case with My large (However, note that

the steady-state gain k = k'rp is close to the correct value).
Thus, neclecting energy changes is often a poor assumption even
with the reference state chosen such that the term udM/dt is zero.
This makes sense, since the “self-regulating” effect on pressure
caused by the liquid phase is due to the change in temperature
which is neglected if hz, is assumed constant.

Eztensions. If heat transfer to the tank internals (walls etc.)
is included, then the time constant will increase, and the total
heat capacity of these (in J/K) must be included in the numerator
of Eq.25. Above that heat input  was assumed constant. We
have thus neglected the possible effect temperature might have on
heat input Q, for example, we might have Q = UA(T,-T). Such
an effect would decrease the time constant and a term 9Q /8T =
U A should be added to the denominator of Eq.25.

Note that although the time constant above was derived for
a one-component mixture, it will also apply to close-boiling mix-
tures where temperature is mainly a function of pressure such
that the assumption p = p***(T) applies.

Distillation columns: Pressure response. The analysis
for the flash tank above will apply to the self-regulation of pres-
sure in a distillation column if we make balances over the entire
column and assume 1) Physical data such as cp, h¥?? and K%
are constant throghout the column, 2) the temperature change
AT (and thereby Ap) is the same throughout the column, and
3) the flows leaving and entering the column are at their satura-
tion temperatures. By the “column” we mean the column section
without condenser and reboiler. D and B then represent the net
flows leaving the column in the top and bottom, respectively. If
the pressure change is caused by an increase in Vr (or decrease in

13




V') then the gain &' is identical to the one derived before (Eq.24)
except that the two first terms in the denominator are replaced
by Cv. Cy represents the total heat capacity (J/K) for the en-
tire column including liquid, vapor and column internals (this
assumes that heat transfer is immediate; Cy should be reduced
if heat transfer to column internals is slow). The time constant
becomes (feed liquid)

- CV + MviluapK.mt/T
P FCPL +3Qc/3T+0QR/0T

The term Fepy, in the denominator is an approximation for Lgepy, ,—
Irepry + Vrepy, — VBCpy, which applies to the case with con-
stant cpy and cpr, feed liquid and constant molar flows (V7 =
V). The last two terms in the denominator account for the pos-
sible effect of temperature on Vr and Vg caused by changes in
condenser and reboiler duty (which both may decrease if T' in-
creases and thus reduce 7,). Note that these terms usually will
dominate in the denominator if either one is present. A typical
value for these terms will be 0Q/0T = Q/ATg = h**?V/ATyg
where V is the boilup aud ATy is the temperature difference
between the hot and cold side (typically 30 K). Whether these
terms are present or not depends on the nature of heating and
cooling. In many cases the heat input to the reboiler Qg is sup-
plied by condensing steam and Qg is almost independent of the
temperature in the column, that is, dQr/0T =~ 0. If both of
these terms are zero, that is, Q¢ /T is also zero, then 7, may
be large. This does not mean that self-regulation of pressure can
be neglected since the magnitude of the gain k' is significantly
less than 1 when My is small.

Typical values for holdups: Total liquid holdup on the trays
inside the column, M;/F = 0.5N [min] where N is the number
of trays in the column. Total vapor holdup,

My /F = 0.001h[m]y/plbar)M[kg/m3)V/F [min]

(assuming vapor velocity about half of flooding velocity; A is the
column height).

Numerical ezample: Consider an example where we neglect
storage of thermal energy in the column internals and in the
liquid in the reboiler and condenser. Assume M;/F = 20 min
and My/F = 0.7 min (Use N = 40, 1 m average tray spacing
incl. top and bottom part of column, V/F = 3,p = 1 bar,M =
30kg/m3). FurthermoreassumeT= 400K h**? = 31 kJ/mol (ie.,
hv*p = 27.6 kJ/mol), cp, = 163 J/mol K, cp, = 131 J/mol K (ie.,
¢y, = 123 J/mol K), and K*** ce= 8. Neglect self-regulation in
the reboiler and assume that the temperature difference between
hot and cold side in the condenser, AT¢, is 30 K. We get

Mjcy, + Mycy, + Myhvepset)T
Fep, + Vhver AT

(26)

Tp (27)
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20-0.16 4 0.7 - 0.12 + 0.7 - 27.6 - 8/400
0.16 + 3 - 31/30
3.2+ 0.09 + 0.39
0.16 + 3.1

= 1.1min (28)

Note that the contribution from the vapor phase is about 10%
of that of the liquid phase. The term Fecp, in the denomina-
tor is usually negligible provided we have self-regulation in the
condenser, and 7, becomes relatively small. On the other hand,
if these effects are negligible then a lower bound on Tp becomes
Tp > M|/ F, which usually is quite large.

The initial gain is independent of the effects in the condenser
and reboiler. We get

Mvhvapﬁ'sat/T

- MLCVL + Myey, + Mvﬁ”apli'sat/T
0.43
= - = -0.12 29
3.26 + 0.09 4+ 0.39 (29)

kK =

which is significantly less than -1. Thus, self-regulation of pres-
sure will be important in distillation columns, except in cases
with large vapor holdup (pressure larger than 20 bar). Physi-
cally, for an increase in boilup, the self-regulation is caused by
condensing vapor which increases the temperature to match the
higher pressure.

Summary. For a multicomponent flash tank with varying pres-
sure, the model will be a combination of the composition and
pressure responses studied above. However, for close-boiling mix-
tures the temperature will mainly be a functions of pressure and
the equations derived above for 7p will apply. Also, in this case
compositions are not very much affected by pressure and the ex-
pression derived for 7, applies.

Several things are probably clear from the examples above: 1)
Even for this simple example there are a number of possibilities
with respect to modelling assumptions and simplifications. 2)
Very interesting results may be obtained simply by applying the
conservation principle for mass and energy. 3) Linearizing the
equations may yield invalueable insight in terms of analytical
expressions for the time constants. Such insights may be very
difficult to obtain from simulation studies using the nonlinear
equations.

3 Modelling of Distillation Columns

3.1 Introduction

A distillation column consists of a large number of flash tanks
of the kind studied above stacked on top of each other, and the
insight obtained above will prove useful.
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This part is mainly taken from two papers by Skogestad and
Morari (1987,1988) and also from the Diploma thesis by Jacobsen
(1987). The main emphasis here is on the composition response
and we shall assume negligible vapor holdup, constant pressure
(the pressure dynamics were considered above) and constant mo-
lar flows. However, let us first consider a more general model.

3.2 General model

Consider a tray ¢ that is not a ‘eed tray, and which does not
have any product streams or heat input/output. On each tray a
differential equation may be formulated for ,

(ii) the overall material balance (flow dynamics)

d
d_tMi =Lipg+Viaa-Li -V (30)

where M; = My; + My;
(tray hydraulics) L; = fi(Vi, Mp;, Ap;)
(pressure drop) V; = fo( M, Ap;)

(i) the material balance for each component (composition dy-
namics)

dn;
rri Lipizigy + Vicryiog — Liz; — Viy; (31)

where : n; = Mpiz; + My;y;
and (iii) the energy balance

dU;
d_t’ = Livihriv1 + Vicrhvicy — Lihp; — Vihy, (32)

where U; = Myu; = Mp;up; + My;ur;

The vapor and liquid phase on a tray are assumed to be in ther-
modynamic equilibrium, and a separate set of (algebraic) ther-
modynamic equations give the remaining necessary relationships.

Rigorous approach. This set of equations may be solved as
follows: State variables is the n; for each component (sum of
which is M;) and U; (a total of N(N, + 1) state varaiables where
N is the number of stages and Ng the number of components).
When performing the integration the values of these variables
are known at each time step. Procedure: 1) Given the mole
numbers n;, the internal energy U; and the total tray volume.
2) Perform a UV-flash for each tray. This yields the phase split
(MLi, My;), the phase compositions (z;, ¥i), the temperature (T5)
and pressure (p;), and the specific energies (hriyhvi). 3) L; and
V; may now be computed from the algebraic expressions for tray
hydraulics and pressure drop. All the variables on the right hand
side of Equations 31-32 above are now known and the derivatives
of the state variables may be computed and the integration may
proceed.
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3.3 Simplified models

1. Neglecting vapor holdup. Very few dynamic distillation pro-

grams solve the equations in this rigorous fashion. In most cases

the holdup in the vapor phase is neglected, that is, n; is replaced

by Mp;z; and M; is replaced by My;. The balance equations

become

N d

1) EML:' = L+ Viai—L; -V, (33)

d(Mp;z;)

dt

d(MLihLi)
dt

i)

Livizigyr + Vicayior — Lizi — Viye (34)

i1) Liyrhpivr + Vicihvicy — Lihp — ViE3R)

Note that we have one state less on each tray in this case (the
total number of states is N N,), but the number of differential
equations remains the same - this signals an “index problem”
(see Gritsis et al, 1988). Choose the state variables as z; and
Mpi. The solution (integration) of the equations may proceed
as follows: 1) At a given time step, pressure is assumed to be
known (either assumed constant, or guessed from previous time
steps). 2) With given z; and p; a bubble point flash is performed
to compute y;, T; and the specific enthalpies. 3) We now want
to use the energy balance (35) to compute V;. This gives rise
to an index problem as discussed in the previous section, but it
may be circumvented by estimating dhy,/dt using previous time
steps as shown in Eq.18. 4) Since V; is now known, pressure
may be computed from the pressure drop equation (One might
possibly redo the steps above if the initial guess for the pressure
was wrong). L; is finally computed from the tray hydraulics, and
the derivatives of the state equations may now be computed.

Note that the simple bubble point flash is much simpler to
handle for most thermodynamic packages than the flash with
constant energy and volume required by the rigorous approach.
However, we have to pay for it in terms of the index problem.
Furthermore, the assumption of neglible vapor holdup is not ap-
propriate when the pressure is large. The above model also im-
plies that a change in vapor flow at the bottom of the column
immediately will change the vapor flow at the top. This is of
course somewhat unrealistic, and is caused by the fact that we
have neglected the vapor holdup.

2. Assuming equal vapor flows up the column (“constant mo-
lar flows”). In addition to neglecting the the vapor holdup, ne-
glect changes in specific enthalpy on the tray (that is, neglect the
term Mp;dhr;/dt)*. Substitute dMy;/dt from the total material

{The assumption of constant hz; on a given tray i is reasonable if: 1) The
reference state for enthalpy is pure component as saturated liquid at column
pressure (this means that the individual components have different reference
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balance (33) into the energy balance (35) and derive
0= Liyi(hriv1 —hri) + Vicr(hvicr = hri) = Vi(hvi — b)) (36)

This is in fact identical to the steady-state enthalpy balance. The
“constant molar flows” assumption (as used in steady-state dis-
tillation) implies that we assume hjp; constant and equal on all
trays (as discussed in the footnote) and assume constant heat of
vaporization, h"*?, throughout the column (ie., all pure compo-
nents have the same heat of vaporization at the column pressure).
Then (36) yields 0 = (V;_; — V;)h"*? and we have

Vi(t) = Viaa(t) (37)

That is, the vapor flow up the column is equal on all trays (except
at locations where there is a feed stream). At steady state the
liquid flows will also be equal down the column, that is L} = T+
but dynamically these will not be equal because the holdup M
varies. This means that if L at the top of the colums changes
then it will take some time before liquid flow further down the
column changes.

Decoupling of liquid flow dynamics. One important implica-
tion of the above equal vapor flow assumption, is that the liquid
flow dynamics become completely decoupled from the composi-
tion dynamics. The total material balance becomes

dMy,;
dt

=Lit1 - Li (38)

where L; is a function of My, and V; (tray hydraulics). This set
of equations may be used to find the dynamic response L; on a
given tray as a function of changes in reflux and boilup without
considering the composition response. The detailed equations for
the linearized case are presented in Appendix B.

3. Neglecting liquid flow dynamics. On the other hand, the
composition dynamics (Eq.34), will depend on the liquid flow dy-
namics, Eq.38. However, the dependency is usually weak and as a
first assumption one may assume immediate liquid flow responses
when considering the composition response. In particular, it may
be shown that the eigenvalues (ie., time constants) for the compo-
sition dynamics are independent of the flow dynamics if constant
molar flows are assumed. This follows since the overall state ma-
trix is triangular because the compositions z; have no effect on
the holdup My, in this case. The simplified model presented next
for the composition response neglects the flow dynamics.

temperatures); 2) Column pressure is constant; 3) Negligible heat of mixing.
With these assumptions we get ks, = 0 on all trays and there is no “cooling”
effect of sending additional cold liquid down the column.
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3.4 Simplified model for composition dynamics

We shall illustate the modelling and simulation of distilation col-
umn using a simple column with only three stages. Assume con-
stant vapor holdup (pressure), constant holdup of liquid (that is,
neglect flow dynamics), negligible vapor holdup |, perfect control
of levels using D and B, constant molar flows, binary separa-
tion, vapor-liquid equilibrium on all trays, and constant relative
volatility for the VLE. With these assumptions the only states
are the mole fraction z; on each tray. The complete model for a
column with N theoretical trays is given in Appendix A.

Example 2. Three-stage column.
Problem statement.

The column has two theoretical stages plus a total condenser.
Stage 1 is the total condenser, the liquid feed enters on stage 2,
and stage 3 is the reboiler (For convenience the numbering has
been reversed compared to the rest of the paper). Steady state
column data are as follows:

F=1 kmol/min, 2p=0.5

D=0.5 kmol/min, yp = z, = 0.0

B=0.5 kmol/min, zg = z3 = 0.1

Relative volatility, a = 10.0

Tray holdup (incl. reboiler and condenser), M; = 1 kmol

Here z,y, z represent mole fractions of the most volatile compo-

nent. With these data the steady-state column profile becomes
5

Table 1:

Stage 1 L; Vi z; Yi
Condenser 1 3.05 0.9000
Feedstage 2 4.05 3.55 0.4737 0.9000

Reboiler 3 3.55 0.1000 0.5263

a) Formulate the dynamic equations for the composition re-
sponse with L and V as independent variables (in addition to F
and z).

b) Linearize the equation and write them on the form dz/dt =
AAz + BAdu + EAf where Az, Au and A f are deviation vari-
ables. The three elements in the vector z are the mole fractions
z; on each stage, the two elements in u are reflux (L = Ly) and
boilup (V' = V3), and the two elements in f (disturbances) are
feed flow (F') and feed composition (zr). The linearized VLE on

°Note that the tray numbering in this example (starting from the top)
is opposite of what was used above (starting from the bottom). The use of
numbering starting from the top is convenient when representing the data
on matrix form (since the 1st row is on the top) and has gained popularity
lately
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each tray is written dy;/dz; = k~i. Compute the eigenvalues of
the matrix A.

¢) Simulate the response to a disturbance in feed composition
from 0.50 to 0.51 with the other independent variables constant.
What is the dominating time constant of the response?
Solution.

a) The material balance for light component on each tray
gives:

doy

M, i Vays — Lyzy — Dy (39)
dﬂ?z

2 = Fzp + Vays + Lizy — Vayp — Loz (40)
dz

3—f = L2z2 — V3y3 - B.’E3 (41)

With the assumptions above the flow responses are decoupled
form the composition dynamics and we have at any given time:

Three. slage column

Vo=V, Ly=L+F, D=V-L, B=L+F-V (42)

(the last two equations follow because D and B are used for level

control).
b) Linearizing the material balance for the condenser (stage
1) yields
dzl
MIW = V(A‘yz - AII)]) + (y2 — .’El)AV (43)

Here the last term is zero because y, = x; at steady-state for
a total condenser. The component balances for the other stages
may be linearized in similar manner and we obtain the linear

model d
M;d—f — AAz + BAu + EAf (44)
(31
() ) e
| % ZF
I3
where
-V VK, 0 —-3.550  1.282 0
A=| L —(L+F+VK,) VK, ) = ( 3.050 -5.332 9.834 )
0 L+F ~(By K3) 0 4.050 —10.334

0 0 0 0\
B = 1 — T2 Y3 — Y2 = 0.4263 —03737)
Ty — I3 —(y3 — .’L‘3) 0.3737 —0.4263

0 0 0 0
E=|z2r—29 F): (0.0263 1)
z9—1z3 0 0.3737 0
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Here K' are the linearized equlibrium constant which for the
case of constant relative volatility becomes [\ =a/(l+ (a-
1)z;)? and we have K, = 0.361, K3 = 2.770. The eigenvalues
of the state matrix A are -0.22, -4.26 and -14.7 (min~!). The
dominant time constant is expected to be equal to the inverse of
the smallest eigenvalue, that is, equal to 1/0.22 = 4.5 min.

Note that all the elements in the first row of B and E are all
zero. This inplies the changes in L, V, F or zr have no immediate
effect on top composition. The reason is of course that z; = Y2
at steady-state because of the total condenser. However, this
does not mean that the steady-state effect is zero because of the
interactions with the other stages. Indeed, the steady-state gain
matrix G which gives the effect of L, V, F, zr on z1, 22, x5 is given
by

0.750 —0.748 0.366 0.959
G=-A"'B E]l=| 208 =207 101 2.65 (46)
0.850 —0.853 0.433 1.04

¢) Nonlinear simulations of an increase of zp of 0.01 using
the program MATLAB are shown in Fig. 4. We note that the
dominant time constant s about 4.5 min as expected from the
linear analysis. Also note, for example, that the steady-state
increase in z; is about 0.026, which corresponds to a gain of
0.026/0.01 = 2.6. This compares nicely with the value 2.65 in
the gain matrix G.

motlab el | 4.0

03—
,__A—/\
‘I t.x! = ode45(dist’.0,25,(0.9:0.4737:0.1].1.€-6.1)
A)(q LD LFEED’)
0025F e
dist.m : (matlab subrautin®)
function yprime=dist(t,x);
0.02}
a=10;
y{1)=x(1):
oA y(2)=a°x(2)/(1+(a-1)"x{2));
0.015¢ A - y(3)=a"x(3)/(1+(a-1)*x(3));
I 1 -
i [ = 3.05;
| S A I
0.01+ e ot L e v2 = 3.55;
2 e = v3 = 3.55; R
; AXq (&) (Toe b= 0.5 S’cep in Z¢
0.00s} o ‘(’com 0.50 to (.57
/ =0.51; &
p dxldt = v2°y(2) - 11°x(1) - d*x(1);

dx2dt = [*zf + v3*y(3) + 11°x(1) - v2°y(2) - 12°x(2);

15 20 25 dx3dt = 12°x(2) - v3°y(3) - b*x(3):

t l'me_ (m((\) yprime=(dx 1dt:dx2dt:ax3del;

FLSH, Response  for 3-stuge sl to feed omposition change |
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4 Analysis of the dynamic behavior of dis-
tillation columns

For a column with N stages we get N coupled differential equa-
tions for the compositions (z;) only. From this one might expect
that distillation columns have a complex and high-order dynamic
response. However, both observations and simulations have es-
tablished that the dynamic composition response in a distillation
column is dominated by one large time constant, 7y, which is
nearly the same regardless of wheie a disturbance is introduced
or where composition is measured.

The objective cf this Chapter is to explain this somewhat
unexpected behavior and gain insight into the dynamic behavior
of the column. As before this is done by developing a simple
linear model of the column with analytical expressions for the
time constants and gains.

One possibility for deriving such a model would be to lin-
earize all the equations. However, because of the large number
of trays (and equations) this would result in a high-order model
(at least of order N) which hardly would be very helpful for gain-
ing insight. It would of course be possible to reduce the num-
ber of states by using established methods for model reduction
(Balanced realization, residiualization, mode matching, etc.), but
these methods are purely numerical and we would not obtain any
analytical expressions which would yield insight. In fact, it would
not yield any more insight than simulations with the nonlinear
model.

Attempt 1. As a first guess we might try to simply add to-
gether the time constants of the individual trays. Recall Eq.12
where we showed that the compusition response for an individual
tray is 7o; = M;/(L; + K,V;). For a composition change to travel
from the top to the bottom (or the opposite) the overall lag will
be Tzpr = 3 7. Consider the 3-stage column in Example 2. The
individual composition time constants on the stages are (recall

Eq.12): 7151 = z% = 0.282 min, 7,9 = ﬁa = 0.171 min,

Tr3 = =M4— = 0.097 min, and we find that the sum is 7,5
B+KVy

= 0.55 min. However, this is much smaller than the observed
dominant time constant of 4.5 min. Consequently, this simplistic
approach does not work.

Attempt 2. A second simple approach is simply to use the
total holdup. We get M;/F = 3 min, which is closer to the ob-
served value, but is still too small. The reason is that the com-
positions change more in the middle of the column than towards
the column ends.

Attempt 3. An alternative approach is to consider the total
holdup of each component in the column and assume that all
trays have the same response. As we shall show below this di-
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rectly leads to a first order model, and the dominant time con-
stant can be estimated very accurately. According to Rademaker
et al. (1975, p.280) this idea dates back to the beginning of the
century (Lord Raleigh) and seems to get rediscovered every few
years.

Derivation of expression for 1

Consider a column which initially (¢ = 0) is at steady state
(subscript 0). At = 0 a step change is introduced to the column
which eventually (t — o) moves the column to a pnew steady
state (subscript f). The nature of this step change is not impor-
tant as long as i) the new steady state is kown and ii) it leads
to a change in the total holdup in the column of one or more
component. This includes most disturbances and inputs except
changes in the internal flows (simultaneous changes in L and V
keeping product rates constant).

Assumption 1. The flow dynamics are immediate, i.e., for
t>0: Mi(t)= My, D(t) = Dy, B(t) = By.
The assumption is reasonable when considering the composition
dynamics, provided the flow response is much faster than the
composition response. Using Assumption 1 the overall material
balance for any component for ¢ > 0 becomes:

d N+1
5[2 Miszi(t)] = Fyzrs — Dyyp(t) - Brag(t) (47)
=1

Subtracting the final steady state
0= Frzps — Dyyps — Byzpy (48)
yields

N+1
dAz;(t

> M‘f—dt( ) - —DsAyp(t) — ByAzp(t) (49)

=1

where A represents the deviation from the final steady-state, eg.,
Ayp(t) = yp(t) — ypy.

Assumption 2. All trays have the same dynamic responses, that
is: Azi(t) = Az;k(t), Ayp(t) = Aypk(t), Azp(t) = Azgk(t).
(Here k(0) = 1 and Az; = Azi(0), Ayp = Ayp(0) and Azg =
Azp(0) denote the difference between the initial and final steady
state.)

This assumption is reasonable if the time constant for the internal
mixing in the column, 7, introduced above, is much shorter
than the dominant time constant. 7,as is the time it takes for
a composition change to travel from the top to bottom, and is
typically is of the order My/(L + V). Assumption 2 and Eq.(49)
yield

N+1 dk(t)
(3 Misde) 2 = (-Dsaup - Bydzp)h(t)  (50)
i=1
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Solving (50) gives a linear first-order response

k(t) = e~t/n (51)
where the time constant  is:

_ i MijAa

AS; (52)

1

AS; is the supply imbalance
AS; = DfAyD + BfA.’lIB = A(Flf) — ypoAD — zpoAB (53)
A simple interpretation of (52) is

”change in holdup of one component” (kmol)

" "imbalance in supply of this component” (kmol/min)

Comments on (52):

1. The column model was not linearized, and (52) applies to
any finite change provided Assumptions 1 and 2 hold.

2. The time constant depends on the magnitude and ”direction”
(negative or positive change) of the step change introduced.

3. The expression for 7 applies to any coraponent in a mul-
ticomponent mixture.

4. Eq. (52) applies to any change which changes the external
material balance,i.e., which has AS; # 0. Eq. (52) does not
apply for changes in the internal flows (changing L and V whiie
keeping D and B constant) because the denominator AS; is zero
in this case (see (53)). Methods for estimating the time constant
for changes in the internal flows are discussed in another paper
(Skogestad and Morari, 1987).

5. To compute 7y according to (52) a steady-state model of
the column is needed. For obtaining accurate numerical values
a nonlinear simulation program should be used. Such programs
are ususally readily available to the engineer. For any given step
change two simulations is all what is needed to compute 7.

6. Very large time constants are found for small perturba-
tions to columns with both products of high purity. This agrees
numerous observations from simulations. The reason is that the
compositions inside the column may change significantly (the en-
tire column profile may shift resulting in a large change in com-
ponent holdup), while the change in product compositions may
be very small (resulting in a small imbalance AS; to cause the
change in component holdup).

7. One disadvantage of (52) is that the compositions on all
trays are needed to compute 7;. However, Skogestad and Morari
(1987) have derived an analytical expression which is valid for
high-purity binary separations and small pertubations to the col-
umn which requires much less data.

M; Mpyp(1 —yp) , Mpzp(l-zp)

Mee® s T, © I, * I, (54)
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where

5 yp(l —zp)

= ey I, = Bzg(1 —2p) + Dyp(1 —yp)  (55)

Here M is the total holdup inside the column, Mp and Mg are
the condenser and reboiler holdups and § is the separation factor.
The first term in (54), which represents the contribution from
changing the component holdup inside the column, dominates
for columns with both products of high purity (1 - yp and zp
both small). Note that I, may be extremely small in such cases
resulting in very large values of 7y,.. The reader is encouraged
to study the paper by Skogestad and Morari (1987) who discuss
the use of (52) and (54) in detail.

Example 2 (continued). Three-stage Column.

To illustrate the usefulness of the above methods consider the
simple three stage column studied before. The following steady-
state profiles are obtained when 2 is increased from 0.50 to 0.51
with all flows constant:

Table 2:

Stage 1 L; V; T, Ui
Condenser 1 3.05 0.9091
Feedstage 2 4.05 3.55 0.5001 0.9091

Reboiler 3 3.55 0.1109 0.5549

Problem statement: a) Use these steady-state profiles to esti-
mate the dominant time constant. b) Compare with the shortcut
formula. ¢) Comment on the validity of these methods for esti-
mating 7.

Solution. a) From the steady-state profiles in Tables 1 and 2
and Eq.52:

S Mg A,
A(Fzrp)— ypAD — zgAB
1.0.00914+1-0.0264+1-0.0109

= = 4.64min

0.01-0-0

b) From the shortcut formula (54) using data from Table 1 (and
zp=1-yp):

MI/F Mp Mg 1 .

- - 1+1=4.53
Mee = owplnS T F ' F ~01.09.430 .7 men
(57)

c) Discussion. First we note an excellent agreement between
these estimates and the values obtained from the nonlinear sim-
ulations and from the eigenvalues of the state matrix. The main
assumption behind the formulas used above for estimating 7 is
that all trays have the same composition response. This seems
reasonable for such a small column with a large reflux ratio, and

™ = (56)
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is also confirmed by considering the time constant for internal
mixing, 7zps, which we found to be 0.55 min. This is much less
than 4.5 min and Assumption 2 is valid.

5 Distillation column model for control
purposes

The presence of the large dominant time constant has led many
operators and engineers to believe that distillation columns can-
not be easily controlled (“they are so slow so it takes hours before
anything happens”). However, this is not true because feedback
control changes the flows to the column in a different manner,
and we can get response times much shorter than the dominant
time constant (for example, in the order of minutes provided the
measurement delays are not too large).

Furthermore, although the dominant time constant is actually
observed in real columns, it appears not too be very important
for control purposes. The reason is of course that the dominant
time constant is often much larger than the response time which
we want under feedback control. These issues are discussed in a
number of other papers (Skogestad and Morari, 1988, Skogestad
et al., 1990). For example, under feedback control the response
of the internal flows proves to be much more important than in
open-loop operation, because the feedback excites this direction
to a much larger degree. Also, as mentioned in the Introduction,
the initial response is critical for feedback control. This implies
that flow dynamics, valve dynamics, measurement dynamics are
very important, and in fact much more important than the dom-
inant dynamics expressed by the dominant time constant.

A simple linear low-order linear model appropriate for control
purposes have been presented by Skogestad and Morari (1988,
Section 9) and the reader is referred to this paper for further
details.

NOMENCLATURE

I; = Dyp(1 — yp) + Brp(l — zp) - “impurity sum”
K = y/z - vapor-liquid equilibrium “constant”
K' = Jy/0z - slope of vapor-liquid equilibrium line
L = Lt - reflux flow rate (kmol/min)
Lp - liquid flow rate into reboiler (kmol/min)
M; - liquid holdup on tray no. i (kmol)
M =3 M; - total liquid holdup inside column (kmol)
N - number of trays in column ¢ - fraction liquid in feed
S = (yID_l—"'B - separation factor
yp)rp
V = Vp - boilup from reboiler (kmol/min)
Vr - vapor flow rate on top tray(kmol/min)
zp - mole fraction of light component in bottom product
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YD - mole fraction of light component in distillate (top product)
zF - mole fraction of light component in feed

Greek symbols
vi /i
1-yi)/(1-z|
71 - dominant time constant for external flows (min)

Ty - time consant for internal flows (min)
7L, = (OM;/OL)y - hydraulic time constant (min)
1 = (N — 1)1, - overall lag for liquid response (min)

a = - relative volatility for binary mixture
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APPENDIX A. Simplified distilllation column model for
compositions.

The model presented below neglects the flow dynamics. The
liquid flow dynamics are presented separately in Appendix B.

Assuthions:

o N theoretical stages plus total condenser, binary separation,
constant molar flows, constant relative volatility o

e Vapor-Liquid Equilibrium (VLE) and perfect mixing on all
stages

¢ No vapor holdup (i.e., immediate vapor response, dVy =
dVp)

¢ Liquid holdup M; on all trays constant (i.e., immediate
liquid response, dLg = dLT)
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This yields a (N+1)’th order model with one ordinary differential
equation on each tray (i = 1, N +1).

Nonlinear model

Material balances for change in holdup of light component on
each tray:
i=2 N (i# Np,i# Np+1):
Miz; = Liyyzipr + Vicryior — Lizy — Vi
Above feed location, 1 = Ng + 1:
Mz = Liy12i41 + Vicryio1 — Lizi = Viyi + Fryr
Below feed location, 1 = Ng:
Mz, = Liz1ziy1 + Vicayioa — Lizi — Viyi + FrarF
Reboiler, i = 1:

Mpi; = Liy12i41 — Viyi — Bz, rTp=1n
Total condenser, 1 = N + 1:
Mpz; = Vi_1yi-1 — Liz; — Dz;, YD = TN41

VLE on each tray (¢ = 1, V), constant relative volatility:
ar

Y% = -1
Flow rates assuming constant molar flows:
i > N (above feed): L; =1L, Vi=V 4+ Fy
i < Np (below feed): L;=L4+F,, V=V
Fy =qrF, Fy=F-F
D=Vy-L=V+F/-1L (condenser holdup constant)
B=L,-Vi=L+4F, -V (reboiler holdup constant)

Compositions zr and yg in the liquid and vapor phase of the
feed are obtained by solving the flash equations:
Fzp = Fraep + Fyyr
axr

YF = T3 a-1zr
Linear model
Linearized material balance on each tray (dL; = dL, dV; =
av):
Mii; = Lipydzig —(Li+ K[ Vi)dzi+ K;_Virdzi_y+(zi41 —2:)dL—(yi—yi—1 )dV
where K is the linearized VLE-constant:

' dy, o

i dz; - 1+ (a - 1)23,')2

and y;,z;,L; and V; are the steady-state values at the nominal
operating point. Written in the standard state variable form in
terms of deviation variables:

& = Az + Bu, y=Cz

Here z = (dzy,...,dzN41)T are the tray compositions, u =
(dL,dV)T are the manipulated inputs and y = (dyp,dzp)T are
the controlled outputs. The state matrix A = {a;;} is tri-
diagonal:
i# N+1: Giiy1 = L,‘+1/M,'
aii = —(Li+ K;Vi)/M;
t#£1: a1 = K;_\Viei/M;



Input matrix B = {b; ;}:

tEN+L: by = (2igr—2)/Mi, byj11=0
iFLIEN+L: by = —(y — yie1)/M;,
bnsre = 0, bio=(y —21)/M

Output matrix C:

0 0 ... 0 1
¢= (1 0 ... 0 0)
APPENDIX B. Simplified model for liquid flow dynam-
ics.
With the assumption of constant molar flows and negligible
vapor holdup the liquid flow dynamics are decoupled from the

composition response. The material balance for liquid holdup
becomes

dMp;

5= Liy1 - L; (58)
Use the following linearized tray hydraulics
oL; 0L,
L, = L — — ) AM; 59
’*(av)M,A”(aM,-)v (59
© Lriaav + -TI—AM,- (60)
L

Consider the response of the liquid flow at the bottom of the
colomn, Lg, to changes in reflux, L, and boilup, V. Repeated
combination of Eq.58 and 60 for a column with Ny trays yields
(Rademaker et al., 1975)

ALp = gr(s)AL(s) + A(1 - gL(s))AV(s) (61)
1
(14 rps)Nr

and 0, = Nprp. The approximation on the right hand side
of (62) follows since the response of N identical lags may be
approximated well by a dead time equal to the sum of the lags
when N7 is large. The values for 8, and A should preferably
be determined experimentally: 6 is the time it takes for an
increase in reflux to affect the reboiler level; A may be obtained
by observing the response in reboiler level to a change in boilup.
The effect of nonzero A’s was first dicsussed by Rijnsdorp (1965)
and is often denoted the K,-effect because he used this symbol
for A.

Tray columns. A typical value for the liquid holdup on each
trayis M;/F = 0.5 min. Let M; = M,;+M,,; where M,; represent
the amount of liquid over the weir. According to the Francis weir

where gr(s) = ~ em0Ls (62)

formula M,; = le?/S and we derive

oOM; _ oM, . 2M,;
TL_(E)V_(GLi)V_gL (65)
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Assuming all trays are identical, this yields the following value
for ()L 9 M. M
o1 [
b= N7 = 390
where M is the total holdup inside the column. A typical value
is Mo,'/M,' = 0.5.

Physically A represents the initial change (M; constant) in
liquid flow on each tray caused by a change in boilup. For most
trayed columns A is positive, but it may also be negative in some
cases. A negative A may be caused by “build-up” of liquid in
the downcomer due to increased pressure drop over the tray. A
positive A may be caused by vapor “pushing” liquid off the trays
due to an increase of gas bubbles in the liquid. For A > 0.5 both
zp and the reboiler level will show an inverse response for an
increase in boilup (Rademaker et al., 1975). Such behavior can
be detrimental for control purposes.

Packed Columns. Eq. (61)-(62) apply also to packed columns.
The total liquid holdup inside the column (Mj) can be esti-
mated for various packings from published correlations (eg., Bil-
let and Schultes (1987)). M| increases with liquid load. We have
Mp = k3 - L™ where n is typically about 0.6 (Billet and Schultes).
This yields

(66)

0 = n%, n =06 (67)
At low vapor flow rates the liquid holdup is nearly independent of
V, ie., A = 0. This applies up to the loading point where liquid
entrainment becomes important, and we have A < 0. Since X
is always negative for packed columns we do not expect inverse
response for changes in boilup.

Tray versus Packed Columns. Packed columns usually have
smaller liquid holdups inside the column than do trayed columns.
This results in a faster dynamic response for packed columns, but
it also makes flow and level responses more important. Firstly,
the smaller holdup inside the column makes the condenser and
reboiler holdups more important for packed columns. Secondly,
the relative importance of the flow response compared to the
composition response inside the column is sbout twice as large
for a packed column. The reason is that whereas the entire lig-
uid phase always contributes in the composition response, it is
only the liquid above the weir (M,;) that contributes to the flow
response in a trayed column. This effect may be beneficial for
control purposes as it decouples the column ends more in terms
of their composition response.
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