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Abstract

Temperatures and flows are often used as secondary measurements to estimate
the product compositions (outputs) in distillation columns. The problem is charac-
terized by strong collinearity (correlation) between the temperature measurements,
and often between the effects of the inputs on the outputs. In a linear study three
different estimator methods, the Kalman-Bucy Filter, Brosilow’s inferential estima-
tor, and Principal Component Regression (PCR) are tested for performance with

. mu-analysis. It is found that use of input flow measurement has a damaging effect on
the estimator performance for this ill-conditioned plant (with high RGA-elements).
This is the main reason why the Brosilow inferential estimator js found to perform
poorly." Somewhat surprisingly, it is found that the static PCR-estimator performs
well compared with the dynamic Kalman filter. The reason is that the temperatures
and compostions have very similar dynamic responses. Contrary to some claims in
the literature, it is found that the performance of the estimate, even when used for
feedback control, generally is improved by adding temperature measurements. For
high purity distillation columns and other plants with large elements in the (appro-
priately scaled) gain matrix, the use of input measuremets are not recommended in
the present of input disturbances,



1 Introduction

This paper addresses the estimation of process outputs based on multiple secondary mea-
surements. The application chosen here is the use of temperature and flow measurements
to estimate the product compositions in a distillation column. This is an interesting ap-
plication which features: i) a large number of strongly coupled measurements, and ii) a
large number of disturbances and inputs with similar effects on the outputs.

The use of temperature measurements for feedback control of distillation columns
is quite extensively discussed in the chemical engineering literature (eg., Nisenfeld and
Seeman, 1981, p. 85-95). Temperatures are usually not used because they are of interest
themselves, but as inexpensive and reliable indicators of composition. One problem is
that temperature is a true indicator of the tray composition only if the mixture is binary
and at constant pressure. Furthermore, even at steady state the correlation between the
composition on a tray inside the column and the product composition at the end is not
unique; it changes depending on the feed composition and the other product composition.
These problems may be partly overcome by using several temperature measurements.

Measurement selection. Many columns have temperature sensors located at about
every fifth tray in the column, that is, a typical column may have 5-10 temperature mea-
surements. In industry all these measurements are rarely used. Rather, each composition
measurement is replaced by a single temperature measurement and used for single-loop
feedback control. The main problem is then to find a suitable location for this tem-
perature. According to Nisenfeld and Seeman (1981) the most important issues are, i)
that the temperature should be sensitive to changes in the composition, and ii) that the
correlation between temperature and composition should be insensitive to disturbances
in feed composition and in flows. Since the products are often very pure the first crite-
ria favours placing the temperature sensor away from the products. The second criteria
favours placing the sensors close to the product. However, in this paper, measurement
location is not an important issue. The reason is that we use several (typical five or more)
temperature measurements and then estimate the product compositions. In this case the
exact location is far less important than in cases where single temperature measurements
are used.

Problem definition. The objective is to obtain the best estimate y of the outputs

(product compositions) using all available information, §. In terms of deviation variables



the linear estimator may be written

i(s) = K(s)8(s) (1)

This estimate should be obtained based on a description of the process (nominal model
and expected uncertainty), the expected noise and disturbances, and a more precise def-
inition of what we mean by “best”. In the general case f should include all measured
dependent variables (primary measurements, y, and secondary measurements, 6), and all
known independent variables (manipulated inputs, v, and measured disturbances, d). In
this paper we usually have § = 0, that is, the estimate is based on only secondary mea-
surements (temperatures). The reason is that we assume no primary measurements, no
measured disturbances, and we shall show for our case that the additional information
contained in u is of limited value.

In this paper we consider three different approaches to the estimation problem: i)
The Kalman-Bucy Filter, ii) Brosilow’s Inferential Control Method, and iii) Principal
Component Regression (PCR). In the last two cases we shall base the analysis on the
steady-state, and use a constant gain matrix K.

Use of separate estimator. An estimator-based control scheme for the distillation
column is shown in Fig.1. Note that we are implicitly assuming that the controller should
be separated into two parts: one estimator which condenses all the measurements into a
few estimated outputs, and a “small” (in terms of number of inputs) controller which uses
these estimates for feedback control (Fig. 2). The motivation for doing this is reliability,
design simplicity and robustness. In general, this solution is suboptimal compared to
using one big controller which directly uses all available measurements. The reason is of
course that some information is lost when the original measurements are condensed into
the fewer estimated variables. In some cases it may be shown that no information is lost
and this is then referred to a separation principle. In particular, this may be the case if
all the states of the system are estimated since they contain all information about the
system at any given point in time. However, in this paper we shall not use all states for
feedback control and therefore the separation principle does not apply. And as we in our
case are estimating the actual controlled outputs, we may postulate that the performance
loss caused by the separation is not a major problem.

Use all available measurements ? The statement in the problem definition above that
the best estimate should be based on all available measurements is not as obvious as one

should think. Actually, a large number of authors (eg. Joseph and Brosilow, 1978, Morari
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and Stephanoplous, 1980, Patke et al., 1982, Yu and Luyben, 1986, Moore et al., 1987,
Keller and Bonvin 1987) have suggested that one should only use a few of the temperature
measurements to avoid the poorly conditioned problem of obtaining information from the
strongly correlated temperatures. For example, our example column has 41 temperature
measurements. That is, we need to determine 41 parameters in K for each output if all
temperatures are used. However, the temperatures are of course strongly coupled and the
41 parameters must also be strongly coupled. Furthermore, our distillation column with
two components, two products and constant pressure has only three degrees of freedom
at steady state (eg., zr, yp, zp). This implies that, at least for the lifiear case with small
perturbations from the nominal operating point, we may determine at most three of these
41 parameters independently (irrespective of how the temperatures are coupled).

Latent variables. The above discussion points out the need for a robust way of ob-
taining the matrix K which avoids this overparameterization. Intuitively, this may be
done by smoothening the available data, and obtaining a smaller number, k, of “latent
variables”, ¢, which are less coupled and contain most of the original information. These
are subsequently used for estimation. In the linear case the latent variables may be writ-
ten ¢ = P8, where P, is the projection matrix. The estimator then becomes ¥ = Kt
where K; is a “small” matrix with & parameters for each output (typically ¥ = 3 in our
examples), and the overparametrization in the regression step is avoided. The simplest
“method”, but certainly not the optimal one, is to delete measurements 0, and use, for
example, only three temperatures as latent variables. This approach is implicit in some
of the papers mentioned above. In Brosilows method estimated (inferred) disturbances
are used as latent variables. In the PCR and PLS methods a few linear combinations of
the secondary measurements are used as latent variables. These linear combinations are
those which are found to be most sensitive based on the calibration set. In the Kalman
estimator the states may be regarded as latent variables, although they are not indepen-
dent as they are coupled through the model. Also, their number is often not less than the
measurements.

Kalman estimator. The Kalman-Bucy filter (Kalman and Bucy, 1961) arises from
the traditional “optimal” approach of modelling disturbances and noise as stochastic pro-
cesses and minimizing a quadratic error function. This estimator contains a full dynamic
model of the plant, and the states are updated using constant gain feedback from the
measurements. Somewhat surprisingly, there are very few reports on the use of model-

based Kalman filters for composition estimation in distillation columns. Apart from its



complexity the main disadvantage with the Kalman estimator is that model uncertainty
1s not included, and that it is difficult a priori to find the weights for the disturbance and
noise.

Brosilow estimator. In process control, Weber and Brosilow (1972) proposed to use
secondary measurements to estimate disturbances. Their justification is that measure-
ment noise is usually less important in process control applications, and that the output
variations are mainly caused by disturbances, which tend to vary slowly compared to
the process dynamics. In Brosilows inferential controller, the disturbances are then as-
sumed to be constant in the future, and the disturbance estimates are used in a sort of
feed-forward scheme to counteract their expected effect on the outputs. We shall only
use the estimator part of Brosilows scheme (Joseph et al., 1976) and not the feedback
part. Brosilows scheme has a strong intuitive appeal and seems to have found some use
in industry. However, because of measurement noise, model error and poor numerical
properties caused by collinearity, we will show that the use of inferred disturbances as
latent variables may not work well for ill-conditioned plants.

PCR estimator. A more direct approach is to derive a direct relationship between 6
and y using a static regression estimator. The approach taken here is inspired by recent
efforts by analytical chemists in their “multivariate calibration problem”, e.g. Wold et al.
(1987). This ’soft modelling’ approach has an intuitive appeal to engineers as one seems to
skip the modelling step: One does not have to obtain an explicit ("hard’) model of how the
independent variables affect 6 and y (although typical variations should be included in the
calibration set). Rather, one seeks a direct correlation between the available measurements
(0) and the variables to be estimated (y). However, fundamental knowledge may not be
easily included in the estimator.

Analysis of estimators. The estimators are compared on a rigorous basis, considering
both the estimation error y —§ (“open loop” when the estimates are not used for feedback)
and the control error y — y, (“closed-loop” when the estimates are used for feedback).
Input uncertainty, disturbances and noise are explicitly included in the analysis using the
structured singular value, u, of Doyle (1982).

lil-conditioned plants. The distillation column used in this paper is an example of an
ill-conditioned plant. Here the plant gain is strongly dependent on the input direction, or

equivalently the plant has a large condition number, v(G). At each frequency

1(G) = 01(G)/0:(G) (2)



a N NF ZF Yp rg D/F L/F
1.5 40 21 0.50 0.99 0.01 0.500 2.706

Feed is liquid.

Constant molar flows.

Ideal VLE using Raoults law.
Constant pressure 1 atm.

Holdup on each tray; M;/F = 0.5 min

Parameters A,B and C in Antoine equation:

In p(mm HG) = A - B/(T(K) + C)

Light component Heavy component
15.8366, 2697.55, —-48.78 15.4311, 2697.55, —48.78

Table 1: Data for distillation column example.

Here o is the largest singular value, and o, is the r'th (the smallest) singular value,
where r is the rank of G. 01(G) is a measure of the magnitude of the elements in the
matrix. The smallest additive perturbation matrix which may make G loose rank has
magnitude o,(G). Thus, the condition number, 7(G) gives the relative magnitude of the
additive error allowed to avoid singularity (loosing rank). Consequently, matrices with
a large condition number are very sensitive to numerical round-off errors (eg., Weber
and Brosilow, 1972). For square matrices the relative gain array (RGA) may be used as
an alternative measure. It is defined at each frequency as RGA = G x (G™1)7, where
X denotes element-by-element multiplication. The magnitude of the RGA-elements is
closely related to the optimal condition number (7(G) minimized with respect to input
and output scaling) (Skogestad and Morari, 1987). Skogestad and Morari (1987) have
shown that the RGA is also a very good indicator of how sensitive a plant’s feedback
control performance is to input gain uncertainty.

Ezample column. As an example column we use column A studied by Skogestad and
Morari, 1988. The column separates a binary mixture with relative volatility 1.5, and
has 40 theoretical stages, including the reboiler, plus a total condenser. Column data are
given in Table 1. The liquid holdups are assumed constant, that is, the flow dynamics are
neglected. This gives rise to a 41th order linear model in terms of the mole fraction of the

light component on each tray. The two dominant time constants of the column are 194
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Figure 3: Temperature profiles for different feed compositions when yp and zg are held
constant.
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Figure 4: Temperature profiles for different top product compositions when zp and zg
are held constant.

min and 15 min. The difference in boiling points of the two pure components is 13 °C. In
Figure 3 and in Figure 4 typical temperature profiles for the column are displayed. We
note that variations in temperature are small towards the ends of the columns, and that
changes in feed composition have a large effect on the temperatures inside the column

even though the product compositions are constant.
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Figure 5: Block diagram of the Kalman Estimator.

2 Estimation Methods

2.1 Kalman filter.

In this scheme a dynamic state space model is used in parallel with the process, and the
deviation between the outputs from the process and the model is used as feedback to the

model through a filter gain K s (Fig. 5). The linear state space model for the process is

t = Az + Bu+ Ev (3)
= Cz (4)

Here z is the state vector, u the manipulated inputs, y the primary outputs to be es-
timated, @ the secondary measurements, v the process noise (disturbances), and w the
measurement noise. v and w are assumed to be white nojse processes with covariance

matrices V and W.

Minimizing the expected variance of § — yields the estimated states

A

T = Ai+ Bu+ K;(0— Cy) (6)
= (A= K;C)é + Bu + I,0 (7)
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Figure 6: Block diagram of Brosilow Estimator.

where filter gain K is —
Ky =xciwt (8)

Here X, the covariance matrix of I, is found from the matrix Riccati equation
X = AX + X AT — XCTWC,X + EVET (9)

We use constant filter gains which give X = 0, and Eq. (9) is reduced to an algebraic
equation. The overall Kalman estimator then becomes

(s) = C(sI ~ A+ K;C)™ (I ,0(s) + Bu(s) (10)
2.2 Brosilow estimator.

The following linear steady-state model of the column in terms of deviation variables is
used

Y=Gyd+ Guu (11)
0 = Fud + Fu (12)
Here d denotes the disturbances. The matrices above are of course related to those used
in the state space description in the Kalman filter. For example, G, = —CA~'B and for

the case v = d we have Fy=—-CyAE. Using (12) the estimated disturbances become

d=F}(6 - Fu) (13)

10



where the pseudoinverse F J is the optimal inverse in the general least square sense. For

the special case of more 8’s than d’s and independent d’s (Weber and Brosilow, 1972)
Fj = (F{F)"'F} (14)

For the special case of more d’s than 6’s and independent §’s (Joseph et al., 1976, Joseph
and Brosilow, 1978)

F} = F[(F,F])™ (15)
In the general case the pseudoinverse is obtained from a SVD of Fy by deleting directions
with singular values equal to zero (eg., see Strang, 1980, p. 142). Combining (11) and
(13) yields the Brosliow estimator (see Fig. 6)

where
Kg = GyF] (17)

This static Brosilow estimator may be made equivalent to the Kalman filter at steady-
state only if non-stationary noise is allowed for the disturbances v (Morari and Stephanopou-
los, 1980).

2.3 PCR estimator.

We want to estimate p outputs (y) from ¢ known variables (0). The problem is then to
obtain the matrix K in

§ =Ko (18)

To this end obtain n “calibration” sets of corresponding values of y and 8, and place these
as rows in the matrices Y"*? and @4, respectively. ! If the estimator was perfect we
would have

Y = 0KT (19)

The ordinary least square solution for K is:
Kis =YTo[0T0]™! (20)

which is the “regression estimator” used by Joseph et al. (1976). The ¢ x ¢ matrix ©T0 is

n times the covariance matrix of the calibration measurements 6. This matrix is singular

It might seem more reasonable to place y and @ as columns in the matrices, but we shall here use the
standard notation in statistics.

11
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Figure 7: Block diagram of a PCR Estimator that does not use input information.

if n < g, that is, if we have too few calibration sets. It is also singular if strong collinearity
in the temperatures exists. This will usually be the case in a column with measurements
located close to each other.

To avoid these difficulties the general pseudo inverse in terms of the SVD is used,
and directions corresponding to small singular values (principal components) are deleted.
Using standard notation from the statistjcs literature, the SVD of © is written

O =tip] +t2p] + - + tmpl. (21)

where m < min(n, q) is the rank of O. Here p, is the eigenvector corresponding to
the largest eigenvalue of ©TQ, (the square of the largest singular value of @), and p, is
the eigenvector corresponding to the second largest eigenvalue, and so on. The loading
vectors (p’s) give the directions of the principal components, while the scores (t's) give
the magnitude. If all m terms in ( 21) are retained we obtain the generalized pseudoin-
verse. However, in PCR we select only those first k principal components that can be
distinguished from the measurement noise. Let the matrices P7* and T™** include only
these £ most important directions. Define the new latent variables as ¢ — PT0. Note
that PT = P-! since P is orthonormal. The least square solution to y = Kt becomes

Ky = YTT[TTT], and the overall estimator gain matrix becomes (see Fig 7)

Kpor = YTT[TTT] PT (22)

12



Gain %

L V F  zF
K1 diag{ 200 200 0.01 0.01
K2 diag{ 0.10 0.10 0.01 0.01
K3 diag{ 0.01 0.01 0.01 0.01
K4 diag{ 0.0 0.0 0.01 0.01

Table 2: Process disturbance covariance matrix of Kalman filter gains. In all cases W =
11AT

In the general case 6 may be replaced by 6 which includes also the inputs and measured

disturbances.

3 Estimators for the example column.

In this section we describe how the different estimators were obtained for the example

column with 41 stages.

3.1 Kalman filter gains.

The covariance matrix of the measurement nojise W was set to 0.04, where I is the
identity matrix. This corresponds to 0.2 °C’ noise on each temperature. The process
noise is here defined as v7 = [L, V, F, zp] (reflux, boilup, feedrate and feed composition).
Its covariance matrix, V, was assumed diagonal and was varied in order to tune the
filter. Four different values of the variance on L and V were selected (Table 2) and the
corresponding filter gain matrices are denoted K1 to K4. The assumption of white noise
process disturbances is somewhat unrealistic in a distillation column, but the estimator

is not expected to be very sensitive to this assumption.

3.2 Brosilow estimator.

With d¥ = [zp, F] and u7 = [L, V], the matrices Fy,F,,G4 and G, in equations (11) and
(12) were found by linearizing the model at the nominal operating point. The estimator
was obtained using Eq. (16).

A modified estimator Kp_ . was formed by not using information about the manipu-

lated inputs u, and instead using L,V and z; as the disturbances d’ to be inferred. The

13



Zf Yd Ty Zf Yd Ly
0.4000 0.9810 0.0190 [[ 0.4000 0.9810 0.0010
0.4000 0.9990 0.0190 [ 0.4000 0.9990 0.0010
0.6000 0.9810 0.0190 [ 0.6000 0.9810 0.0010
0.6000 0.9990 0.0190 [ 0.6000 0.9990 0.0010
0.4500 0.9855 0.0145 || 0.4500 0.9855 0.0055
0.4500 0.9945 0.0145 [| 0.4500 0.9945 0.0055
0.5500 0.9855 0.0145 (| 0.5500 0.9855 0.0055
0.5500 0.9945 0.0145 |[ 0.5500 0.9945 0.0055

Table 3: Data to simulate statlonary temperature profile. g = 1.0, P = 1.0 atm.

estimator then becomes §j = K Bmodd where
Kpmoa = G'(FTFY 1T (23)

and F”" and G’ are the process matrices formed by these three variables. In the linear case
with no errors in the matrices G’ and F ’, this estimator is identical to the PCR-estimator.
This is also clear if we compare (22) and (23) and imagine using changes in L,V and zp
to generate the calibration sets. In both cases we obtain the least square estimate, and if

we disregard numerical problems it does not matter which latent variables we use.

3.3 PCR estimator.

In this paper the calibration sets are obtained from a linear steady state column model.
A factorial design method was used to select 16 different runs around the operating point
(Table 3). When stated random noise of magnitude 0.1 °C was added on all temperatures
in the calibration sets, but the default is no noise. The specified variables were chosen as
the outputs yp and zg and the feed composition zg. Note that the column conditions are
independent of the load (increasing all flows proportionally), and it is not necessary to
simulate different feed rates. The temperature data were reduced to the desired number
of principal components and K pcr Was computed from (22).

Strictly speaking, with a linear model we need only three runs (in addition to the
nominal steady state) to generate the data, but we used 16 runs to better study the effect
of measurement noise and to get better statistical information.

It is important to note that with this approach we may freely vary the oulputs, yp
and zg, and are thus able to span all directions in the output space. This is different

from the Brosilow approach, which is based on an open-loop model in terms of the inputs

14



Case. Location (tray no.)
41 at every tray
Sa 1,12,21,30,41
5b 10,15,22,29,33
3a 2,22,41
3b 6,22,36
3c 10,22,33
3d 10,17,33
2a 1,41
2b 6,36
2c 9,33
2d 10,30

Table 4: Location of temperature measurements.

(L,V, F, z5), and where the output space will not be properly spanned for ill-conditioned
plants with strongly coupled outputs y.

3.4 Number of measurements and their locations

The estimation methods above were applied to different locations and numbers of tem-
perature measurements. The various cases are summarized in Table 4. Here tray no. 41

denotes the reboiler, no. 21 the feedtray, and no. 1 the condenser.

4 Analysis of the Estimators.

The objective is to evaluate the different estimation methods described above. In this

section we define our criteria for the evaluation.

4.1 Evaluation criteria

e Open-loop evaluation (OL). One obvious criteria for evaluating the different estima-
tors is their ability to follow the true composition value. The error e, in fig. 8 is
the difference between the real (y) and the estimated output (). The column is
assumed to operate under feedback, since this is more close to a real situation than
a pure open loop test. The term “open loop” is still used since the controller uses
the actual y, that is, there is no feedback from the estimate . We use single-loop

PID controllers since this is the most common choice in practice. The tunings in

15
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Figure 8: Block diagram for “open-loop” p-test. We use A = 0 (nominal performance)

unless otherwise stated.

PID-Parameters

Loop K. T Td
yp 0.589 9.53 0.620
zg 0.555 4.42 0.332

Table 5: PID-parameters for the distillation column example.

16
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Figure 9: Block diagram for “closed-loop” test.

Table 5 yield optimal robust performance (minimize 1t) when the estimate is exact.
To make our results only weakly dependent on the controller used, we shall usually
consider the nominal performance in this test, i.e., without any uncertainty. This
makes the comparison independent of the robust stability requirement of the system

which depends strongly on the controller.

o Closed-loop evaluation (CL). The main objective of the estimator is to replace the
primary measurement of Y, that is, use the estimate y for feedback control. The
error, ey, of interest to be minimized, is then the control error, i.e. the difference
between y and y,e, (Fig. 9). We use the same controller as for the open-loop
comparison, that is, a PID controller tuned optimally for perfect estimates. Using
the same PID controller for all estimators will bias the comparison somewhat, as

the optimal controller in each case will depend on the estimator used.

4.2 p-analysis.

Our tool is the Structural Singular Value (y) analysis (Doyle,1982). In this framework
We rearrange our system to fit the general form shown in fig. 10. Here M denotes the

generalized nominal plant including the plant and the weights, d denotes external input

17
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Figure 10: General structure for studying any linear control problem.

3

disturbances and setpoint changes, and e is the "error” we want to keep small. We have
one A-block loop, which represent the model uncertainty, and one controller loop. In the
p analysis we evaluate the maximum amplification from d to e at each frequency. Weights
are used to scale the signals, d and e, and the uncertainty A to be less than 1. These
weights are discussed below. p expresses the worst-case error at a given frequency, and the

performance requirement for the error is satisfied if p is less than one at 4ll frequencies.

4.2.1 Uncertainty weights.

The most important source of uncertainty is assumed to be on the inputs (L and V). We

shall use the same uncertainty weight as Skogestad and Morari (1988), which is given by

5s + 1
0.5 +1
The weight is shown graphically in fig 11a. In the low frequency range it allows for a

wy(s) = 0.2 (24)

20% uncertainty in flow changes (L and V are deviation variables), due to the inaccuracy
of valve settings. The uncertainty increases at higher frequencies, reaching a value of
100% at about w = 1 min~!. The increase at high frequencies will allow for a time delay
of about 1 min between L and V and the outputs yp and zg.

18
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Figure 11: Weights for p-analysis. a) Uncertainty weight. b) Inverse performance weights.
Solid line: Closed loop, dotted line: Open loop.

4.2.2 Performance weights.

In the “Open Loop” test we use the following performance weight

10
45 +1
which is shown in fig 11b. This weight requires less than 10% estimation error for (1-9p)

(25)

wy(s) =

and £p at steady-state (w < 0.1 min~'). At higher frequencies the weight increases to
one at w = 2.5 min~!. This allows for an error greater than 100% at frequencies above

2.5 min~!, In the “Closed Loop” test we chose a performance weight

10s + 1
() = 555577
This implies that the deviation of ¥ — ys should be within 20% at steady state, i.e, we

(26)

tolerate a deviation of the product composition of about 0.2 mole%. Our feedback system
should be effective up to about w = 0.05 min~! and the amplification at high frequencies
should never exceed 2. Except for the allowed steady state offset this wéight is the same
as the one used by Skogestad and Morari (1988).

4.2.3 Weights for external inputs.

The external inputs to the systems (the d's in the block diagrams for mu-analysis) consist
of setpoints, as well as ordinary disturbances and noise. They are normalized by specifying

their maximum values at any {requency using weights. The maximum setpoint changes

19
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Figure 12: Elements in matrix K for estimation of 1) yp, 2) zp.

are set to 100% of x5 and (1 —yp). Since the operating point is 0.01 and 0.99 this implies
that the zg,,, may vary from 0 to 0.02, and YDset from 0.98 to 1.0. The disturbances in
the feedrate F' and the feed composition zp are set to 20%, i.e. zp may vary from 0.4 to
0.6 in mole fraction. Noise was generated by adding a constant vector of random values
with normal distribution and a standard deviation of 0.2 °C to all 41 temperatures. No

noise is used in the mu-analysis unless otherwise stated.

5 Results.

5.1 Insights into the collinearity using PCR.

The elements in the matrix Kpcp for the case with 41 temperatures, are plotted in fig. 12.
In fig. 13 the three largest loading vectors p are displayed. These show how the different
measurements are summed up to make the latent variables (principal components). The
first component is mainly due to changes in the external flows, D and B, and reflects
moving the entire temperature profile up and down the column. The second component
is due to changes in internal streams (with D and B constant), and reflects stretching or
compressing the profile (changing the separation in the column). The third component is
due to changes in the feed composition. From the figures we see that the temperatures
near the product streams are weighted little compared to the ones towards the middle of

the column. The reason is that the temperature variation is small at the ends, and the

20



R L R ——
8. 28
a
—.a' zaw .E...... :
—.B- qaq ................................................................ ‘rii;’.‘: ,r-ll:’:
T T T T T T T T .
a 5 in 15 28 25 38 as 48
LOADINGS : Curve ldentif ler = factor number

Figure 13: Loading plot of the first 3 principal components. Curve identifier: component
number.

measurements are therefore much more sensitive to noise. Pressure variations were not
included in this study, but the temperatures near the ends of the column would be useful
to compensate for such variations. The forth vector is displayed in fig. 14. We see that
this vector contains only numerical noise, and there are, as expected, only three different
directions in the temperature space when pressure is kept constant. This is also confirmed
by Figures 15 and 16. They show how the different principal components account for

the total variance in the calibration set both in y-space and in 6-space.

5.2 Number of measurements and their location.

The p-plots in Figure 17 for the PCR estimator shows the effect of using varying numbers
of measurements. It demonstrates that adding temperature measurements improves the
estimates and the control performance. The main difference is between two and three
measurements. With less than three measurements all principal components in the tem-
perature space can not be recovered, unless they are placed towards the ends where the
dimension of temperatures shrinks to one (see Figures 3 and 4). A comparison of various
locations of the two temperatures are shown in the p-plots in Figure 18. Without noise
the best location is of course at the ends (trays 1 and 41, Case 2a in Figure 18a) and
a perfect estimate is obtained. With noise it is better to use measurements closer to
the middle of the column where the temperature changes are much larger (trays 6 and
36, Case 2b in Figure 18b). The same conclusion applies to cases with three (Fig. 19)
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Figure 19: Effect on p of location for three measurements. PCR with 0.1 °C noise in
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Figure 20: Effect on g of location for five measurements. PCR with 0.1 °C noise in
calibration set.

and five measurements (Fig. 20), but the location of measurements of course becomes
less important as additional measurements are used, provided they are reasonably evenly

spaced.

Also the Kalman filter is improved by adding measurements. This is illustrated by
the u-plots in Figure 21.

5.3 Comparison of Kalman filter and static PCR. estimator.

In fig. 22 we compare the p-plots of the Kalman and PCR estimators, using 41 tem-

peratures. The first thing to note is how well the simple static estimator § = Kpcgrl
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Figure 21: Effect on p of number of measurements for Kalman Filter (K1). No Noise.
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a) y used for feedback control, b) § used for feed backcontrol.

performs. The main reason is that the dynamic responses of the temperatures 0 and the
compositions y are very similar. This will be the case for most distillation columns, at
least for sections of the column, but may of course not be the case for other applications.

In the Open Loop analysis the Kalman filter is significantly better at higher frequen-
cies. This is due to the dynamics included in this estimator. On the other hand, the
“Closed Loop” test shows that the estimators will perform about equally well when used
for feedback, and also as well as using perfect measurements. Actually, for some frequen-
cies, the PCR estimator is even better than using perfect measurements. The reason is
that the temperatures in the middle of the column generally change slightly faster than
at the ends, and the steady state estimator will therefore have a small inherent ”feedfor-
ward” effect. The simulation responses in Figure 23 confirm that the PCR-estimate is

almost equal to the true value. One exception is for feed composition disturbances, where

it shows a small inverse response,

27



Open Loop Closed Loop

Ak4 | k3 - \
L

57 s P KR35 N ] —E
o N> | 1 1 1 0 A2 1= e 2
'Kl‘"inix K2/ a“ﬁahh
-t \ -
] N 1K1

O =Tt —rromt—r T =TI ﬁ-n'nml ] LR LRLL L L 11 1 S a0

107 1072 4! 10 10 107 1072 1072 7! 10 102 10

frequency (radians/min)

R IN

L ~ o

i) < Ul N AN BN

b T~ = A

- \\““"\.“
0 J' RAALAALLLL BN 1 011 e 2 B ":"?'?'T'[
1077 1072 4g-! 1 10 10?102

frequency (radians/min)

Figure 24: Different Kalman filter gains (Table 4.2). Upper left: Nominal estimation
error. Lower left: Robust estimation error. Upper right: Robust control error. Solid line:
K4. Short dotted line: K3. Medium dotted line: K2. Long dotted line: K1.

5.4 Different Kalman filters and use of inputs in estimator.

Figure 24 shows pu-plots for the Kalman filters obtained using the four different levels of
process noise on L and V in Table 2. The best Kalman filter, K1, is the one that was
compared with PCRR above. The remarkable thing with this best estimator is the very
large assumed variance on the inputs u (L and V). In effect, this variance is so large that
the transfer function from u to g in Eq.( 10) is approximately zero, that is, the estimator
does not use the information about the input signals.

The worst Kalman filter, K4, assumes disturbances (noise) of magnitude 0.1 for F and
zp, but assumes no disturbances on the inputs. This estimator performs reasonably well
in the p-test when there is no uncertainty (upper left part in Figure 24). (But note that
disturbances on the inputs are not included in the p-analysis.) However, it is extremely

poor when input uncertainty is added (lower left).
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Figure 25: Effect of number of measurements for Brosilow Inferential Estimator. No noise.

The PCR estimator in this paper uses only temperatures, but we did also evaluate the
effect of adding inputs. However, the improvement in estimator performance was very
small even at steady state. Furthermore, the dynamic behaviour of the static estimator

is much worse when inputs are used.

5.5 Brosilow estimator.

The Brosilow inferential estimator for the system with different numbers of measurements
1s shown in Figure 25. It clearly demonstrates that the estimator as originally proposed
performs poorly, and its performance does not improve with increasing number of mea-
surements. The “Open-loop” test shows that the estimator nominally works well at very
low frequencies (w < 0.001 min~!). The poor dynamic performance (intermediate fre-
quencies) is due to the fact that the estimator uses the input signals u (L and V) as
shown in Eq. (16). The dynamic behaviour of u and the compositions y are very different
and using a constant matrix Gy — KgF, does not work well. This problem could have
been corrected using a low-pass filter on the inputs with a large time constant, e.g., 194
minutes (that is, add dynamics to G. and F,). However, even this estimator would not
perform well in practice, as the “Closed-loop” test shows that the robust performance is
poor even at low frequencies. This is due to the input uncertainty, that is, the actual
values of L and V are different from what the estimator thinks they are.

We therefore conclude that using the measured input signals u (which are inaccurate)

does not improve the estimate. A better approach then seems to be to regard the inputs L
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Figure 26: Modified Brosilow estimator based on temperatures only. 41 temperatures. A:
Perfect model. B: Model rounded to 3 digits. C: Model when 1% random noise is added
to process matrices.

and V' as unknown disturbance together with zy. This gives rise to the modified estimator
Y = KBmoqd where d' = [L,V,2¢]T. This estimator performs much better as seen from
curve A in Figure 26. The estimated values of the latent variables L,V and zp may not
be correct, but this error is not important as long as the estimate § is accurate. However,
using L,V and zp as latent variables has very poor numerical properties. For example,
curve C in Figure 26 shows the drastic deterioration in performance caused by adding 1%

random error to the elements of the matrices G' and F".

6 Discussion

6.1 Kalman filter.

Model uncertainty is not included explicitly when obtaining the Kalman filter and it may
require physically unrealistic values of the nojse weights, V and W, in order to obtain
the best estimator when uncertainty is included. This is illustrated by the large value
needed for noise (disturbances) on the inputs in order to obtain the best Kalman filter,
K1. Otherwise, the Kalman Filter performed well in the y-tests and was undoubtedly
the best estimator in the open loop p-test. The main reason is its inherent dynamics,
which can track the changes in the process tightly. Furthermore, because of the weights,
it is flexible, and it may be tuned to perform well for ill-conditioned plants a well. As

mentioned above this is done by adding (artificial) large noise (disturbances) on the inputs
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to the process.

6.2 Brosilow estimator.

As discussed above the Brosilow Inferential estimator as originally proposed suffers from

four main weaknesses:

W1. For il-conditioned plants (with large RGA-values) input uncertainty causes poor

estimates when the estimator uses information about the manipulated inputs u.

W2. Even for plants which are not ill-conditioned, the dynamic behaviour of a static
estimator which directly uses inputs is often poor. The reason is the dynamic “lag”

which usually exists between the inputs u and the outputs y.

W3. It does not handle collinearity among the variables in an appropriate way. If the
number of disturbances are less than the number of measurements, like in our exam-
ple column, the problem arises when there is collinearity among the disturbances.
This makes the results sensitive to small numerical errors as shown above. On
the other hand, if the number of disturbances is larger than the number of mea-
surements, like in the work of Joseph and Brosilow (1978), the collinearity between
temperatures creates problems. Instead of using only selected measurements as pro-
posed by Joseph and Brosilow (1978), one should rather delete small directions in

Fy using the singular value decomposition.

WA4. For ill-conditioned plants (with large condition numbers) the use of inputs and dis-

turbances as latent variables is tll-conceived .

Weaknesses W1 and W2 may be corrected using the “modified” Brosilow estimator,
and also W3 may be corrected using an appropriate pseudoinverse of F;. However, the
use of secondary measurements to infer the disturbances and then estimate the primary
measurements is the key idea in the Brosilow estimator, and W4 can not be corrected. To
illustrate W4, consider an ill-conditioned plant, where we, in order to get a good estimate
must require that:

1) The estimate of the disturbances and the inputs is very accurate (this implies that
models F, and F}, which are used to infer the disturbances, also must be very accurate).

2) The model from disturbances and inputs to disturbances (G and G,) is very

accurate (it must capture the low-gain direction as well).
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If the condition number of any one of these four matrices is large then the estimate
may be sensitive to small numerical errors. The same applies to the modified Brosilow
estimator if the matrices G’ or F” are ill-conditioned. For our example column the condi-
tion numbers of G’ are F’ are 165 and 321. This explains the poor results in Fig.26. We
want to stress that this sensitivity to errors in the matrix elements is different from the
sensitivity to input uncertainty in W1, which is discussed in more detail below.

The estimation scheme of Brosilow is based on explaining the observations by estimat-
ing the inputs using a causal input-output model. This approach may be satisfactory in
many cases, but not for ill-conditioned plants 2. However, for such systems there may still
be a rather simple direct relationship between various dependent variables, for example,
between temperatures and composition in a distillation column, and a simple regression

estimator may work well.

6.3 PCR estimator.

The PCR-estimator does not have the same weaknesses as the Brosilow estimator. First,
the estimator used here does not use the input values, and does not suffer from uncertainty
with respect to their exact value and poor dynamic performance. Secondly, and more
important, its numerical properties are much better. The matrix to invert in PCR, the
score matrix T" in Eq. (22), is generally much better conditioned than F’ used by the
modified Brosilow estimator. For example, for our column the condition number of T is
4.7, whereas the condition number of F” is 321. To get a well-conditioned T one must
ensure that excitations of the weak directions are included in the calibration set. To
ensure such excitations, one should use data from the column with feedback (that is, with
specified outputs), for example, by specifying the product compositions together with the
feed composition in an factorial design like in Table 3. One should not use open loop data,
like step responses etc., which will excite only the strong directions (The gain matrices in
Brosilow’s scheme will typically result from such excitations).

In an earlier study (Joseph et al., 1976) it was found that the Brosilow estimator
performed better than a regression estimator. However, they used the simple least-square
estimator in (20) which suffers from the same poor numerical properties as the Brosilow

estimator.

2The extreme of an ill-conditioned plant is a chaotic system where it is impossible to back-calculate
the inputs which have caused the observed outputs
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Conceptually, it is simple to generalize the static PCR estimator to obtain a dynamic
estimator. This may be done using the PCR method to derive an ARMA model relating
time series data for # and y.

Partial Least Square (PLS) estimator.

The PLS estimator is an alternative regression estimator, which also takes into account
the directions in ¥ when finding the approximate pseudo inverse of © (Hoskuldson 1988).
In the PLS method this is done by considering the eigenvalues of ©7YY 7O rather than
of 70 used in PCR. This takes into account the directions in ® which have the largest
covariance with Y, and thus ensures that these directions are not deleted. For the linear
distillation example studied in this paper the PCR and PLS methods gave almost identical

results. However, when nonlinear data were used we found PLS to be somewhat better.

6.4 Use of inputs in estimator

The p-results showed that when the inputs are used explicitly by the estimator, the
Brosilow estimator and the Kalman filter (case K4) are very sensitive to input errors. By
input error we mean the differences between the actual plant inputs, u, and the desired
input, u., computed by the controller and which are used for estimation (see Figure 27).
We consider two source of input error: 1) input disturbances, and 2) model uncertainty

at the inputs. We then have

where w4 is the disturbance on the inputs, and Ay is the relative input uncertainty (see
below). To understand the effect of the input error, consider the somewhat unlikely case
when there are no secondary measurements, that is, Fy(s) = F,(s) = 0. In this case both

the Brosilow estimator and Kalman filter become
3? = Gu(s)uc (28)

Assume also that there are no other disturbances (this assumption may easily be relaxed).
Then the actual plant output is

¥y = Guu (29)

and the estimation error becomes

e1=y—9=Gu(u—u) (30)



Uq

Figure 27: Actual input, u, may differ from value, u., used by the estimator because of
1) input disturbance u, and 2) input uncertainty A,.

We shall now consider separately the two sources of input error.

1. Input disturbances. In this case u — Uc = uq and the estimation error becomes
y—yg = Guuy (31)

We note that the estimation error may be large even for small disturbances, uy, if the
elements in the matrix Gu(jw) are large, that is, if 7(Gu(jw) is much larger than 1. This
assumes that G, has been scaled such that at any frequency expected input disturbances
have magnitude 1, and the allowed estimation error has magnitude 1. In cases where
(Gy) is much larger than 1, it is probably not advisable (or at least not very helpful)
to use the input signals for estimation. This is typically the case for distillation columns

with high-purity products. For example, in our case we have at steady-state (Skogestad

and Morari, 1988)
87.8 —86.4
Gu(0) = (108.2 —-109.6) (32)

Here the gain matrix is scaled such that the allowed estimation error s 1 in mole%
(corresponds to about 100% error of the nominal impurity) and the allowed disturbances
on the inputs, I and V, are equal to the feed rate (corresponds to about 30% of the
nominal inputs). The largest singular value, (G,(0)), is 197.2. We conclude that the
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use of input signals will not be very helpful for estimation in this case. This was also
confirmed by the results in this paper.

We might consider basing the estimation on, for example, D and V (DV- -configuration)
rather than L and V. In this case we have u = [DV]T and the gain matrix becomes (Sko-
gestad et al., 1988)

—-878 14 ) (33)

GY(0) = (—108.2 —1.4

This assumes disturbances on D of magnitude F'. This seems large, and a value of 0.1F

may seem more reasonable. Rescaling the gain matrix gives

878 14
GEV(0)=(_10.82 —1.4)

However, also in this case the elements in the matrix (and therefore also 7(G,,)) are rather

(34)

large, and the estimate will be sensitive to input errors.

2. Input uncertainty. In this case we have
u=(I+Apu, (35)

where the uncertainty matrix A; = diag{A;} is a diagonal matrix consisting of the relative

input errors on each input channel J. The estimation error becomes
y—9y=G.Aqu, (36)
From Eq. (28) we have u, = G and we get
e1=y—9=G.AG'g (37)

Skogestad and Morari (1987) found that the i’th diagonal element of the term G,A;G;1
is given by EiXi;(Gy) Ay where A;; denotes the 25’th RGA-elements. Consequently, in the
presence of input uncertainty, the estimation error e1 is likely to be very large for plants
with large RGA-elements. Note that this result is independent of the controller used.
The model Eq. (32) used throughout this paper has diagonal RGA-values of 35.1, and we
obtain at steady-state

(38)

G.AG-1 (35.1A1—34.1A2 —27.7A1+27.2A2)
usajlr, - =

43.2A, —43.2A;, —34.1A, + 35.1A,

The elements in this matrix may be large even for very small relative input gain, A;.

This is consistent with the p-analysis of the estimation error (“open-loop”) where we
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observed very large u-values for the Brosilow and Kalman(K4) estimators for the case
with uncertainty (eg., lower left in Fig.24).

For plants with small RGA-elements the diagonal elements in the error term G.A G
are small, but the off-diagonal elements may still be large. However, for the DV-configurations
mentioned above the offdiagonal elements represent no problem. The model in (34) has
diagonal RGA-values of 0.45 and we obtain

GDVAIGDv—l —

(0.45A1 +0.55A; 0.45A; + 0.45A, ) (39)

0.55A;1 4+ 0.55A2  0.55A; + 0.45A,

All elements in this matrix are small. This implies that an estimator which uses infor-
mation about D and V will not be sensitive to input uncertainty. However, as noted
above it may still be sensitive to input disturbances. Furthermore, we found for the PCR
estimator, that adding input information did not improve the estimate significantly even
the case of no input error (caused by disturbances or uncertainty). The reason is that the
temperature measurements contain most of the relevant information.

When secondary measurements, 0, are used by the estimator, then some of the input
error may be detected and corrected for. N evertheless, the results above demonstrate that
the estimator should not use information about the input signals for plants where either 1)
Gy (when appropriately scaled) contains large elements, or 2) G, has large RGA-elements.
Both these cases are often encountered for ill-conditioned plants. Note that the RGA is
independent of scaling.

The conclusion for our distillation column is to base the estimate on temperature mea-
suretnents only. Input information does not improve the estimate because of 1) sensitivity
to input error, 2) poor dynamic response when used in a static estimator, and 3) the fact
that the temperatures contain so much information that the estimate is not improved

significantly (even if we disregard the first two items).

6.5 p-analysis of estimators

The structured singular value, p is a powerful tool for comparing multivariable linear
systems with unknown disturbances and uncertainty, without having to perform a large
number of simulations. Since p is a worst case measure, this tool discovers explicitly
the weak spots in a system. For example, it would have been much more difficult to
discover the estimators’ sensitivity to input uncertainty from simulations. However, the

test requires additional modelling effort to capture the uncertainty in an adequate way.
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While using the p analysis we encountered problems with how to include measurement
noise. Modelling it as independent disturbances would give a worst-case combination
which would be extremely unlikely to occur when there are many temperatures. Therefore,
in the p-analysis we added the noise as n = kno, where k is a frequency-dependent
constant to be varied in the y-analysis, but where ng is a constant random vector. This
approach works well when comparing estimators with the same location and number of
measurements. However, in other cases the specific value of the random numbers in the
noise vector ng may be important and may bias the p-values. When comparing various
PCR-estimators we therefore did not include noise in the p-analysis. However, here we

included noise on the calibration sets.

6.6 Nonlinearity

All models used in this paper are linear. This simplifies the problem and is necessary
for using the p-analysis. But distillation columns are known to be very nonlinear, so the
effect of nonlinearity should be taken into consideration. Nevertheless, in general a system
that does not perform well in the linear case, will not perform well in the nonlinear case,
and a linear study is therefore a good first step in a performance evaluation.

The Kalman Filter may be extended to the nonlinear case using the so-called Extended
Kalman Filter, where the process matrices and the gains are updated on-line. For distil-
lation columns this may give a heavy computer load. For the PCR/PLS estimator the use
of additional principal components may be used to eliminate some of the nonlinearity.

For distillation columns an alternative way to counteract nonlinearity is to use loga-
rithmic transformations of the compositions (Joseph and Broslilow, 1978, Skogestad and
Morari, 1988). This approach may be used for all estimators. In another paper by the

authors, the questions of nonlinearity and multicomponent mixtures will be discussed in
detail.

6.7 Obtaining and implementing the estimators

Both the Kalman filter and the Brosilow estimator require a linear open-loop model.
On the other hand, the PCR approach only deals with the data. This is an advantage,
especially when experimental data are used, but also when we do have a good model, as

in this paper, since we save a significant effort in obtaining the linear model matrices.
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To obtain the Kalman filter one must specify weighting matrices for noise and distur-
bances. These may be difficult to determine a priori, especially since the best value of
these weights may not be physically meaningful. The Brosilow estimator has the advan-
tage of having essentially no tuning parameters, but this makes it inflexible, and it does
not work for ill- conditioned plants. Although not discussed in this paper, the PCR/PLS
estimator depends strongly on the scaling of the variables. These scalings are then ef-
fective tuning parameters, which are used primarily to reflect the measurement noise. In
this paper no variable scaling was applied.

As for implementation, the static Brosilow and PCR estimators are of course much
simpler than the dynamic Kalman filter. For all estimators it is necessary to have some
scheme for dealing with measurement failures, that is, to detect and correct outliers.

Pressure variations were not included in this study. Pressure compensation is easily
included in the PCR estimator if different pressure levels and pressure drops are included

in the calibration data set.

7 Conclusions

1. With the Kalman and PCR estimators, the estimate is improved by adding temper-
ature measurements. With more than three temperatures the improvement for our
example column is mainly to reduce the effect of measurement noise. The Brosilow
estimator does not handle collinearity well and the estimate is not improved by
adding temperatures. In general, one should not use few measurements (that is,
delete measurements), but rather use only a few combined measurements (in the

dominant directions of the measurement space).

2. From a theoretical point of view it is obvious that one may always improve the
estimate by “appropriate” use of additional information (measurements). However,
in some cases the usefulness of the additional information may be minimal (see use
of inputs below). In other cases the improvement of the estimate must be traded off
against the cost of obtaining the measurements and the increased chance of failures.

Therefore, in practice one may not always want to use additional measurements.

3. For plants with large elements in the appropriately scaled gain matrix, G,, the
presence of input disturbances implies that the use of input signals does not improve

the estimate. This will be the case for most high-purity distillation columns.
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10.

11.

For ill-conditioned plants with large RGA-elements for G,,, the presence of input
uncertainty implies that the use of input signals does not improve the estimate.
This was illustrated for our example column by the Kalman filter where the best

tuning corresponds to not using information about the input flows.

. The Brosilow estimator uses the inputs directly and the estimate may be very sen-

sitive small errors in input measurements. In the modified Brosilow estimator,
introduced in this paper, the inputs are regarded as disturbances and this sensitiv-
ity is avoided. However, the estimate remains sensitive to small model errors if the

condition number is large.

- In the case of perfect models the modified Brosilow estimator and the (linear) PCR

estimator are equivalent. This is quite obvious since both minimize the 2-norm of
the estimation error. However, for ill-conditioned plants, PCR is better behaved

numerically and is less sensitive to model errors.

When the dynamic response of the process outputs and the secondary measurements
are similar, a static estimator may be sufficient. This is the case for our distillation

example when inputs are not used.

. For our distillation example, the PCR and Kalman estimators were almost identical

in the closed-loop u-test. The Kalman filter is more difficult to implement, requires
more computer time, and needs initialization of the states. Thus the much simpler

static PCR estimator is preferable.

The PCR and PLS estimators gave very similar results for our linear distillation

example.

The exact location of the temperature measurements is important when few mea-
surements are used, but is less critical for our example when we have about four
or more measurements. 10. It is important to check the performance of an esti-
mator both in “open loop” (estimation error) and in “closed loop” (control error).
Some errors in the “open loop” estimation may have only minor influence in closed
loop. One disadvantage with the closed loop test is that it depends heavily on the

controller chosen.

Although the py-analysis has some difficulties of representing noise, it was found to be
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most suitable for studying the performance of the estimators for this ill-conditioned

plant.

In conclusion, we believe that our study presents a number of results which may prove
useful in practical control of distillation columns. Temperature measurements are reliable
and without delay, and the need for on-line GC measurements, which are very unreliable,
may be eliminated. However, a less frequent update based on, for example, using off-line
GC may be needed. We also believe that our comparisons of various estimators, and the

analysis of sensitivity to input error, are of interest from a general point of view.
NOMENCLATURE.

d - disturbances

D - distillate flow rate

d - external inputs in p-analysis

F - feed flow rate

F; ,F' - Gain matrixes from inputs to secondary measurements (temperatures)
Gi, G' - Gain matrixes from inputs to primary outputs.
K - estimator matrix

Ky - Kalman filter gain

L - reflux flow rate

N - number of theoretical trays

NF - location of feed tray

p - loading vector (direction of principal component) or no. of y-variables
PCR - Principal Component Regression.

q - no. of @-varibles

qr - fraction liquid inn feed

¢ - principal component (score), latent variable

T - matrix of scores

u - manipulated inputs (= (L, V)T)

v - process noise (disturbance)

V - process noise covariance matrix.

V - boilup rate from reboiler

w - measurement noise

w; - input uncertainty weight

wy - performance weight
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W - measurement noise covariance matrix.

¢p - mole fraction of light component in bottom product
y - output vector = (yp,zg)T

yp - mole fraction of light component in distillate

zp - mole fraction of light component in feed
Greek symbols

« - relative volatility

A - uncertainty block

7(A) - condition number of matrix A

# - Structural Singular Value

w - frequency (min~1)

0i(A) - The ’th largest singular value of matrix A
§ - secondary measurements (temperature vector)

0 - vector of all available information
O - data matrix of
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