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Abstract-A realistic study of the LV-control of a high-purity distillation column is presented. Linear 
controllers designed based on a linearized model of the plant are found to yield acceptable performance also 
when there is model-plant mismatch. The mismatch can be caused by uncertainty on the manipulated inputs, 
nonlinearity and variations in reboiler and condenser holdup. The presence of input uncertainty makes the 
use of a steady-state decoupler unacceptable. The effect of nonlinearity is strongly reduced by using the 
logarithm of thecompositions. A simple diagonal PI-controller is not sensitive to model-plant mismatch, but 
yields a response with a sluggish return to steady-state. 

1. INTRODUCIION 1.2. Nonlinearity 

In this paper we study the high-purity distillation 
column in Table 1 using reflux (L) and boilup (v) as 
manipulated inputs to control the top (y& and bottom 
(x~) compositions. This column was analyzed pre- 
viously by the authors (Skogestad and Morari, 1986), 
but the objective of that previous paper was to study 
general properties of ill-conditioned plants rather than 
to study distillation column control which is the 
objective of this paper. The LV-configuration is chosen 
because this is the choice of manipulated inputs most 
commonly used in industrial practice. This does not 
necessarily mean that this is the best configuration, 
and, for example, the (L/D) (v/B)-configuration may 
be preferable (Shinskey, 1984; Skogestad and Morari, 
1987~). 

High-purity distillation columns are known to be 
strongly nonlinear (e.g. Moczek et al., 1963; Fuentes 
and Luyben, 1983), and any realistic study should take 
this into account. Our approach is to base the con- 
troller design on a linear model. The effect of non- 
linearity is taken care of by analyzing this controller for 
linearized models at different operating points. 

Furthermore, all simulations are based on the full 
nonlinear model. 

1.3. Logarithmic compositions 

The linear model in terms of unscaled compositions, 
y, and x,, is 

The distillation column used in this paper was 
chosen to be representative of a large class of moder- 
ately high-purity distillation columns. The goal of this 
paper is to provide a realistic control design and 
simulation study for the column (Fig. 1). To be realistic 
at least the issues of (1) uncertainty and (2) nonlinearity 
must be addressed. 

However, all plant models and controllers in this paper 
are in terms of scaled compositions 

Here x”,and 1 - y”,are the amounts of impurity in each 

1.1. Uncertainty 

Skogestad and Morari (1986) showed that the 
closed-loop system may be extremely sensitive to input 
uncertainty when the LV-configuration is used. In 
particular, inverse-based controllers were found to 
display severe robustness problems. Therefore, in this 
paper the uncertainty is explicitly taken into account 
when designing and analyzing the controllers by using 
the Structured Singular Value (,u) introduced by Doyle 
(1982). We also find that p provides a much easier way 
of comparing and analyzing the effect of’ various 
combinations of controllers, uncertainty and disturb- 
ances than the traditional simulation approach. 

product at the nominal 
plant, GS, is defined by 

The relative scaling in eq. 2 is automatically obtained 
by using logarithmic compositions 

because 

Y, = ln(l -yD) 

X,= lnxg 

TPresently: Chemical Engineering, Norwegian Institute of 
Technology (NTH), N-7034 Trondheim, Norway. 

dY, dY,= -- 
1-YD’ 

dX,=dxs. 

XB 

(1) 

(2) 

operating print. The scaled 

@= G. (3) 

(3) 

(4) 

33 



34 SIGURD SKOGESTAD and MANFRED MORARI 

Table 1. Steady-state data for distillation column at operat- 
ing points A and C 

Binary separation, constant molar flows, feed liquid 

Column data: 
Relative volatility a = 1.5 
No. of theoretiml trays N=40 
Feed tray (1 = reboiler) N, = 21 
Feed composition Z, = 0.5 

Operating variables: 
A C 

YD = 0.99 0.90 
xs = 0.01 0.002 

D/F = 0.500 0.555 

L/F = 2.706 2.737 

Steady-state gains (unscaled compositions): 

A c 

0.878 -0.864 1.604 

>( 

- 1.602 

G(0) = 1.082 - 1.096 0.01865 - 0.02 148 

B.x, 

Fig. 1. Two product distillation column with single feed and 
total condenser. 

Ryskamp (198 1) has suggested that the use of logarith- 
mic compositions (Y, and X,) may reduce the effect of 
nonlinearity. This has also been confirmed more 
recently by Skogestad and Morari. They found that the 
use of logarithmic compositions effectively eliminates 
the effect of nonlinearity at high frequency (Skogestad 
and Morari, 1987a)and also reduces its effect at steady- 
state (Skogestad and Morari, 1987b). For control 
purposes the high frequency behavior (initial response) 
is of principal importance. Consequently, if logarith- 
mic compositions are used we expect a linear controller 

to perform satisfactorily when we are also far removed 
from the nominal operating point for which the 
controller was designed. Another objective of this 
paper is to confirm that this is indeed true. 

In most cases the column is operated close to its 
nominal operating point and there is hardly any 
advantage in using logarithmic compositions which in 
this case merely corresponds to a resealing of the 
outputs. However, if, for some reason, the column is 
taken far from this nominal operating point, for 
example, during startup or due to a temporary loss of 
control, the use of logarithmic compositions may bring 
the column safely back to its nominal operating point, 
whereas a controller based on unscaled compositions 
(yD and xB) may easily yield an unstable response. 

1.4. Choice of nominal operating point 

The design approach suggested by the above dis- 
cussion is to design a linear controller based on a 
linearized model for some nominal operating point. 
What operating point should be used’? If an operating 
point corresponding to both products of high and 
equal purities is chosen (i.e. 1 - yD = xB is small), it is 
easily shown (Skogestad and Morari, 1987a, b; Kapoor 
et al., 1986) that the values of the steady-state gains and 
the linearized time constant will change drastically for 
small perturbations from this operating point. We may 
therefore question if acceptable closed-loop control 
can be obtained by basing the controller design on a 
linearized model at such an operating point. Kapoor et 
al, (1984) indicate that this is not advisable and that a 
model based on a perturbed operating point should 
be used. However, as we just discussed, the high- 
frequency behavior, which is of primary importance 
for feedback control, shows much less variation with 
operating conditions. Therefore, provided the model 
gives a good description of the high-frequency be- 
havior, we also expect to be able to design an 
acceptable controller when the nominal point has both 
products of high purity. This is also confirmed by the 
results in this paper. 

A main conclusion of this paper is therefore that 
acceptable closed-loop performance may be obtained 
by designing a linear controller based on a linear model 
at any nominal operating point. If large perturbations 
from steady state are expected then logarithmic com- 
positions should be used to reduce the effect of 
nonlinearity. 

2. THE DISTILLATION COLUMN 

Steady-state data for the distillation column are 
given in Table 1. The following simplifying assump- 
tions are made: (al) binary separation, (a2) constant 
relative volatility, (a3) constant molar flows and (a4) 
constant holdups on all trays and perfect level control. 
The last assumption results in immediate flow re- 
sponse, that is, we are neglecting how dynamics. This is 
somewhat unrealistic and in order to avoid unrealistic 
controllers, we will add “uncertainty” at high 
frequency to include the effect of neglected flow 
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dynamics when designing and analyzing the con- 
trollers (see Section 3). 

We investigate the column at two different operating 
points. At the nominal operating point, A, both 
products are hi&-purity and 1 - y$ = xi = 0.01. 
Operating point C is obtained by increasing D/F from 
0.500 to 0.555 which yields a less pure top product and 
a purer bottom product; 1 - & = 0.10 and x& 
= 0.002 (subscript C denotes operating point C while 
no subscript denotes operating point A). We will study 
the column for the following three assumptions re- 
garding reboiler and condenser holdup 

Case 1: Almost negligible condenser and reboiler 
holdup (M,/F = M$F = 0.5 min). 

Case 2: Large condenser and reboiler holdup (M,/F 
= 32.1 min, MB/F = 11 min). 

Case 3: Same holdup as in Case 2, but the com- 
position of the overhead vapor ( yr) is used as 
a controlled output instead of the com- 
position in the condenser (yD). 

These three cases will be denoted by subscript 1, 2 
and 3, respectively. The holdup on each tray inside the 
column is MJF = 0.5 min in all three cases. 

2.1. Modelling 
Nominal operating point (A). A 41st order linear 

model for the columns is easily derived based on the 
data given in Table 1 (see Skogestad and Morari, 
1987a) 

The scaled steady-state gain matrix is 

G'(O) = 1;;-; ( . - 86.4 
- 109.6 

(5) 

(6) 

which yields the following values for the condition 
number and the l,l-element in the RGA 

~(GS(0))=rr(GS(O))/_o(GS(O)) = 141.7 &,(GS(0))=35.1. 

However, v(G’) and & 1 (G’) are much smaller at high 
frequencies as seen from Fig. 2. 

Case 0: A very crude model of the column was 
presented by Skogestad and Morari (1986) (time in 
min) 

Model 0: G,(s) = &G(O). 

This model gives the same values of y(G) and ,I1 1 (G) at 
all frequencies, and is therefore a poor description of 
the actual plant at high frequency. In our previous 
study (Skogestad and Morari, 1986) the controller 
design was based on this simplified model, and one 
objective of this paper is to study how these controllers 
perform when a more realistic model is used. 

Case 1: For the case of negligible reboiler and 
condenser holdup the following simple two time- 
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Fig. 2. Column A, Case 1 (G = Gf). The condition number of 
the plant is about 10 times lower at high frequencies than at 

steady state. 

constant model yields an excellent approximation of 
the 41st order linear model (Skogestad and Morari, 
1987a). 

Gf(s) = 

87.8 87.8 1.4 ___ 
1+ ZlS 1+ 71s 

+- 
1 +r21 

108.2 - 108.2 1.4 --- 
1+71s 1 +r1s l+r*s 

03) 

with tI = 194 min and 72 = 15 min. 
This model has only two states as seen from the 

minimal realization in the Appendix. G,(s) uses two 
time constants: r1 is the time constant for changes in 
the external flows. It corresponds to the dominant time 
constant and may be estimated, for example, by using 
the inventory time constant of Moczek et al. (1963). TV 
is the time constant for changes in internal flows 
(simultaneous change in L and V with constant 
product rates, D and B) and can be estimated by 
matching the high-frequency behavior as shown by 
Skogestad and Morari (1987a). The simple model (8) 
matches the observed variation in condition number 
with frequency (Fig. 2). 

Cases 2 and 3: The effect of the reboiler and 
condenser holdups (Case 2) can be partially accounted 
for by multiplying G, (s) by diag {( 1 + rDs)- I, (1 
+T~s)-'}, where in our case 7D = M,/V,. = 10 min 
and tg = MB/LB = 3 min. However, sometimes the 
top composition is measured in the overhead vapor 
line (Case 3), rather than in the condenser. Cl(s) 
provides a good approximation of the plant in such 
cases. 
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In order to obtain a better low-order model 
for Case 2 and 3, we performed a model reduction 
[Balanced Realization, Moore (1981)] on the full 41st 
order model. A good approximation was obtained with 
a 5th order model as illustrated in Fig. 3. The state- 
space realizations of these models [Gs (s) and G;(s)] are 
given in Appendix. 

Operating point C. We will return with a discussion 
of the model for this case in Section 6 when we also 
discuss the control of this plant. 

2.2. Simulations 

The design and analysis of the controller are based 
on the linear models G, (s), G,(s) and G,(s). However, 
except for the four simplifying assumptions al-a4 
stated above, all simulations are carried out with the 
full nonlinear model. (In some cases the changes are so 
small, however, that the results are equivalent to linear 
simulations.) To get a realistic evaluation of the 
controllers, input uncertainty must be included 
(Skogestad and Morari, 1986, 1987d). Simulations are 
therefore shown both with and without 200/, un- 
certainty with respect to the change of the two inputs. 
The following uncertainties are used 

AL = (1 +A,)AL=, A1 = 0.2 

AV = (1 +Az)AVcr A2 = -0.2 (9) 

Here AL and A Vare the actual changes in manipulated 
flow rates, while AL, and A V, are the desired values as 
computed by the controller. A, = - A2 was chosen to 
represent the worst combination of the uncertainties 
(Skogestad and Morari, 1986, 1987d). 

3.CONTROLTHEORY 

3.1. Robust performance and robust stability 

The objective of using feedback control is to keep the 
controlled outputs (in our case y, and xe) “close” to 
their desired setpoints. What is meant by “close” is 
more precisely defined by the performance specifi- 
cations. These performance requirements should be 
satisfied in spite of unmeasured disturbances and 
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Fig. 3. Column A, Case 2. Relative difference between the 5th 
order model G,(s) (Appendix) and the 41st order plant 
G2rull(s). The 5th order model provides an excellent approxi- 
mation within the frequency range of interest (w < 1 min- ‘). 

model-plant mismatch (uncertainty). Consequently, 
the ultimate goal of the controller design is to achieve 
Robust Performance (RP): The performance specifi- 
cation should be satisfied for the worst case combi- 
nation of disturbances and model-plant mismatch. 

To check for RP we will use the Structured Singular 
Value p (Doyle, 1982). ,U ofa matrix N (denoted p(N) or 
p*(N)) is equal to l/c(A) where 5(A) is the magnitude of 
the smallest perturbation needed to make the matrix (I 
+ AN) singular. p(N) depends both on the matrix N 
and of the structure (e.g. diagonal or full matrix) of the 
perturbation A. 

As stated, achieving robust performance is the 
overall goal. The implications of this requirement are 
easier to understand if we consider some subobjectives 
which have to be satisfied in order to achieve this goal: 

Nominal Stability (NS). The model is assumed to be 
a reasonable approximation of the true plant. 
Therefore the closed loop system with the controller 
applied to the (nominal) plant model has to be stable. 

Nominal Performance (NP). In addition to stability, 
the quality of the response should satisfy some mini- 
mum requirements-at least when the controller is 
applied to the plant model. We will define performance 
in terms of the weighted Ha-norm of the closed-loop 
transfer function S. 

NPo&(w,S) < 1 Vw,S = (Z+GC-‘. (10) 

This is a generalization of classical frequency domain 
specifications to multi-variable systems. Perfect dis- 
turbance rejection is obtained when S = 0. 

The weight w p is used to specify the frequency range 
over which the output errors are to be small. To get 
consistency with the notation used below define 
*(wpS) = p(NNP) such that (10) becomes 

NPep(N,,) < 1 Vu (11) 

where N,, = w,S, and p is computed with respect to 
the structure of a “full” matrix Ap. 

Robust Stability (RS). The closed loop system must 
remain stable for all possible plants as defined by the 
uncertainty description. For example, assume there is 
uncertainty with respect to the actual magnitude of the 
manipulated inputs (which is always the case!). The 
perturbed plants, G,, are then given by 

G,=G(Z+A,), A1=(“,’ iz) (12) 

where A,(s) is the relative uncertainty for input i. We 
will consider the case when the magnitude of this 

uncertainty is equal for both inputs ’ 

IAil < Iwr( jw)I, i = 1, 2. (13) 

The robust stability requirement can be checked using 
p. In this particular case (Skogestad and Morari, 1986) 

RS--p(N,s) < 1, VW . (14) 
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where N,, = w,CGS and cc is computed with respect to y*(G) as y*(G)+ co. Since l[Alli is much easier to 
the diagonal 2 x 2 matrix A,. compute than y*(G), it is the preferred quantity to use. 

Robust Performance (RP). The closed loop system 
must satisfy the performance requirements for all 
possible plants as defined by the uncertainty descrip- 
tion. As an example we may require (10) to be satisfied 
when G is replaced by any of the possible perturbed 
plants G, as defined by the uncertainty description (12). 

3.3. The RGA and input uncertainty (Skogestad and 
Morari, 1987d) 

Again, consider uncertainty on the plant inputs as 
given by (12). The loop transfer matrix, GpC, for the 
perturbed plant may be written in terms of its nominal 
value, CC: 

RPo6(wp(Z+G,C)-‘) < 1 VW, VG,. (15) 

This definition of Robust Performance is of no value 
without a simple method to test if condition (15) is 
satisfied for all possible perturbed plants G, generated 
by (12) and (13). Again it turns out that the structured 
singular value p gives a condition which is relatively 
easy to check: 

G,C = GC(Z + C-‘A,C). (19) 

G& is closely related to performance because of (15). 
For 2 x 2 plants the error term C-IA& in (19) may be 
expressed in terms of the RGA of the controller 

C-‘A& = 

where 

RP =p(NRP) d I, VW Wa) 

[ 

A, 1 (C)A, + 22 i (C)A, &&$A, -AZ) 

-&i(C) 2 (A, -A,) &,(C)A, +&,C)A, 
I 

(20) 

N 
w,CSG w&S 

RP = w,SG w,S > 
(I6b) 

and p is computed with respect to the structure 
diag {AI, A,} where A1 is 2 x 2 diagonal matrix and ALP 
is a full 2 x 2 matrix. 

3.2. The RCA 

Let x denote element-by-element multiplication. 
The RGA of the matrix G (Bristol, 1966) is defined as 

A(G) = G x (G-l)? (17) 

The RGA is independent of input and output scaling. 
The RGA of the plant is commonly used as a tool for 
selecting control configurations for distillation col- 
umns (Shinskey, 1984). However, in this paper we will 
make use of the RGA of the controller as a measure of a 
system’s sensitivity to input uncertainty (Skogestad 
and Morari, 1987d). Before stating this result, we will 
point out the close relationship between large plant 
RGA-elements and a high condition number. The 
condition number of the plant is r(G) = a(G)/g(G) 
which is the ratio between the plant’s maximum and 
minimum gain (see Notation). A plant with a large 
value of y(G) is “ill-conditioned” and has a strong 
“directionality” since the plant gain depends strongly 
on the input direction. y(G) is strongly dependent on 
how the inputs and outputs are scaled. The minimized 
scaled condition number y*(G) is obtained by minimiz- 
ing y(S,GS,) over all possible input and output scal- 
ings, S, and S,. There is a very close relationship 
between y* and the absolute sum of the elements in the 
RGA; [/A/l1 = X:i,il&l. For 2 x 2 plants (Nett and 
Manousiouthakis, 1987; Grosdidier et al., 1985) 

(18) 

Consequently, for 2 x 2 plants the difference between 
these quantities is at most one and 11 A I I 1 approaches 

If any element in C-‘A,C is large compared to 1, the 
loop transfer matrix G& is likely to be very different 
from the nominal (GC) and poor performance or even 
instability is expected when A, # 0. Controllers with 
large RGA-elements should generally be avoided, 
because otherwise the closed-loop system is very 
sensitive to input uncertainty (Skogestad and Morari, 
1987d). 

It should be added that it is the behavior of G,C at 
frequencies close to the closed-loop bandwidth (where 

ai(G@ x 1) which is of primary importance for the 
stabtlity of the closed-loops system. Therefore, it is 
particularly bad if the controller has large RGA- 
elements in this frequency range. 

Znuerse-based controller. To have “tight” control it 
is desirable to use an inverse-based controller C(s) 

= c(s)G- l(s) where c(s) is a scalar. In this case GC = cl 
and G,C = c( Z + C-IA&) and performance is clearly 
going to be poor when the controller has large RGA- 
elements. Furthermore, since A(C) = A(G-‘) = AT(G), 
the controller will have large RGA-elements whenever 
the plant has. Consequently, inverse-based controllers 
should never be used for plants with large RGA- 
elements. In particular, this applies to LV-control of 
high-purity distillation columns which always yields 
large RGA-elements. 

Conrrol of plants with large RGA-elements. We 
clearly should not use an inverse-based controller for a 
plant with large RGA-elements. On the other hand, a 
diagonal controller is insensitive to uncertainty 
(C- ‘A& = A,), but is not able to correct for the strong 
directionality of the plant, which implies that perform- 
ance has to be sacrificed. This is confirmed by the 
results presented below. 
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4. FORMULATION OF THE CONTROL PROBLEM 

4.1. Performance and uncertainty specifications 
The uncertainty and performance specifications are 

the same as those used by Skogestad and Morari 
(1986). 

than one. We will show below that this is the case, for 
example, if an inverse-based controller is used for our 
distillation column. 

4.3. Controllers 
Uncertainty. The only source of uncertainty con- We will study the distillation column using the 

sidered is uncertainty on the manipulated inputs (L following six controllers: 

and v) with a magnitude bound (1) Diagonal PI-controller. 
5s+l 

w,(s) = 0.2 - . 
0.5s + 1 (21) 

The possible perturbed plants G, are obtained by 
allowing any dL = dL,(l f lw,l) and dV= dV,(l 
+ 1~~1). (Actually, the perturbations are allowed to be 
complex, mainly for mathematical convenience). (21) 
allows for an input error of up to 20 “/0 at low frequency 
as is used in the simulations (9). The uncertainty in (21) 
increases with frequency. This allows, for example, for 
a time delay of about 1 min in the response between the 
inputs, Land V, and the outputs, yaand xs. In practice, 
such delays may be caused by the flow dynamics. 
Therefore, although flow dynamics are not included in 
the models or in the simulations, they are partially 
accounted for in the p-analysis and in the controller 
design. 

Performance. Robust performance is satisfied if 

1 
a@,,) = a((1 + GpC)- I) < lwpl (15) 

is satisfied for all possible plants, G,. We use the 
performance weight 

lOs+l 
wp(s) = 0.5 7. (22) 

A particular S which exactly matches the bound (15) 
at low frequencies and satisfies it easily at high 
frequencies is S = 2Os/2Os + 1. This corresponds to a 
first-order response with closed-loop time constant 
20 min. 

4.2. Analysis of controllers 
Comparison of controllers is based mainly on 

computing p for robust performance @sp). Simu- 
lations are used only to support conclusions found 
using the p-analysis. The main advantage of using the 
p-analysis is that it provides a well-defined basis for 
comparison. On the other hand, simulations are 
strongly dependent on the choice of setpoints, un- 
certainty, etc. 

The value of p,, is indicative of the worst-case 
response. If pRP > 1 then the “worst case” does not 
satisfy our performance objective, and if pRp < 1 then 
the “worst case” is better than required by our 
performance objective. Similarly, if pNp -z 1 then the 
performance objective is satisfied for the nominal case. 
However, this may not mean very much if the system is 
sensitive to uncertainty and psp is significantly larger 

C,,(s) = ?(I + 75~)~; _te4). (23) 

This controller was studied in Skogestad and 
Morari (1986) and it was tuned in order to achieve 
as good a performance as possible while maintain- 
ing robust stability. 

(2) Steady-state decoupler plus two 
the inverse of the crude model 

C,,,(s) = 0.7 (I + 75s) G’(O)-’ 
S 

O.Ol( I+ 75s) 27.96 
= 

S 27.60 

PI-controllers [i.e. 

(7)l. 

- 22.04 

> -22.40 - (24) 

This controller was tuned to achieve good nominal 
performance. However, the controller has large 
RGA-elements (&i(C) = 35.1) at all frequencies 
and we expect the controller to be extremely 
sensitive to input uncertainty. 

(3) Inverse-based controller based on the linear model 
G;(s) for Case 1. 

ClinJS) = y G:(S)- ‘a 

At low frequency this controller is equal to C,,(s). 
Note that C,,,(s) and Gf(s)r have the same RGA- 
elements. Therefore from Fig. 2 we expect Cl&) 
to be sensitive to input uncertainty at low 
frequency, but not at high frequency. 

(4, 5 and 6) p-optimal controllers based on the models 
G,(s), G1 (s) and G2 (s). The controllers are denoted 
C,,(s), C,,(s) and C,,(s), respectively and their 
state-space descriptions are given in Appendix. 

These controllers were obtained by minimizing 
sup,,u(N& for each model using the input un- 
certainty and performance weights given above. The 
numerical procedure used for the minimization is the 
same as outlined in Skogestad and Morari (1986). The 
p-plots for RP for the p-optimal controllers are of 
particular interest since they indicate the best 
achievable performance for the plant. Bode-plots of the 
transfer matrix elements for Cl,(s) and C+(s) are 
shown in Fig. 4. Note the similarities between these 
controllers and the simple diagonal PI-controller (23). 

At low frequency (s -+ 0) the six controllers are 
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w(min-l) 

A: Clfi,(a) 

10 
2 

lo= 
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10 
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B: C2p(9) 

Fig. 4. Magnitude plots of elements in p-optimal controllers 
C,,(s) and C,,(s). Dotted line: C,,(s). 

approximately 

The value of 11A (C)[l, as a function of frequency is 
shown for the six controllers in Fig. 5. As expected, the 
p-optimal controllers have small RGA-elements, 
which make them insensitive to the input uncertainty. 
For example, CzI1 is nearly triangular at low frequency 
and consequently has A z I. 

5. RESULTS FOR OPERATING POINT A 

In this section we will study how the six controllers 
perform at the nominal operating point A for the three 
assumptions regarding condenser and reboiler holdup 
[corresponding to the models G1 (s), Gz(s) and Go]. 
The p-plots for the 18 possible combinations are given 
in Fig. 6. The upper solid line is p(NRP) computed from -. 
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The dotted line is p(N,& [eq. (14)]. A number of 
interesting observations can be derived from these 
plots. These are presented below. In some cases the 
simulations in Figs 7-9 are used to support the claims. 

5.1. Discussion of controllers 
C,(s). The simple diagonal PI-controller performs 

reasonably well in all cases. pNp is higher than one at 
low frequency, which indicates a slow return to steady- 
state. This is confirmed by the simulations in Fig. 8 for 
a feed rate disturbance; after 200 min the column has 
still not settled. Operators are usually unhappy about 
this kind of response. The controller is insensitive to 
input uncertainty and to changes in reboiler and 
condenser holdup. 

COinY(s). This controller uses a steady-state de- 
coupler. The nominal response is very good for Case 1 
(Fig. 7), but the controller is extremely sensitive to 
input uncertainty. In practice, this controller will yield 
an unstable system (Skogestad and Morari, 1986). 

C, &s). This controller is based on the model 
G,(s) and therefore gives an excellent nominal 
response for Case 1 (Fig. 6). This is also confirmed by 
the simulations in Fig. 7; the response is almost 
perfectly decoupled with a time constant of about 
1.4 min. Since the simulations are performed with the 
full-order model, while the controller was designed 
based on the simple two time-constant model, Gr (s) (8), 
this confirms that G,(s) yields a very good approxi- 
mation of the linearized plant when the reboiler and 
condenser holdups are small. The controller is sensitive 
to the input uncertainty as expected from the RGA- 
analysis. Also note that the controller performs very 
poorly when the condenser and reboiler holdups are 
increased. This shows that the controller is very 
sensitive also to other sources of model-plant 

(16). The lower solid line is p(NNp) = c?((I + GC)- ‘). mismatch. 
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Fig. 6. p-plots of Column A. Upper solid line: p(N aP) for robust performance; lower solid line: p(NNP) for 
nominal performance; dotted line: ~(Nas) for robust stability. The RP-, NP- or RS-requirement is satisfied if 

the corresponding p-curve is less than one at all frequenctes. 

Cc,,(s). This is the p-optimal controller from our However, the controller is seen to perform very poorly 
previous study (Skogestad and Morari, 1986) which when the holdup in the reboiler and condenser is 
was designed based on the very simplified model GO(s). increased, which shows that the controller is very 
The controller performs surprisingly well on the actual sensitive to other sources of model inaccuracies (for 
plant (Cl(s)) when the holdups are negligible. which it was not designed). 
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Fig. 7. Column A, Case 1. Closed-loop response to small setpoint change in yD. Solid lines: nouncertainty; 
dotted lines: 20% uncertainty on inputs L and V (eq. 9). 

-6 I 
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TIME (min) 

A: CPI(S) 

-61 
0 50 100 150 200 

TIME (min) 

B: Cl,(s) 
Fig. 8. Column A, Case 1. Closed-loop response to a 30% 
increase in feed rate. Solid lines: no uncertainty; dotted lines: 

20% uncertainty on inputs L and V (eq. 9). 

Cl,(s). This is thep-optimal controller when there is 

negligible holdup (Gr(s)), and the RF-condition is 
satisfied for this case since pLRP x 0.95. The nominal 
performance is not as good as for the inverse-based 
controller C,i,(S); we have to sacrifice nominal per- 
formance to make the system robust with respect to 
uncertainty. The controller shows some performance 
deterioration when the reboiler and condenser hold- 
ups are increased (Case 2). This is not surprising since 
the added holdup makes the response in y, and xs 
more sluggish; the open- loop response for y, changes 
from approximately l/l + 194s to l/(1 + 194s)(l + 10s) 
(recall discussion following (S)]. As expected, the 
controller is much less sensitive to changes in con- 
denser holdup if overhead composition is measured in 
the vapor line (Case 3). Overall, this is the best of the six 
controllers. 

CzP(s). This is the ,u-optimal controller for the case 
with considerable reboiler and condenser holdup, and 
with y, measured in the condenser (Gz(s)). psP ss 1.00 
for this case. The nominal response is good in all cases 
(Fig. 6), but the controller is very sensitive to un- 
certainty when the plant is G,(s) or G,(s) rather than 
G2(s). This is clearly not desirable since changes in 
condenser and reboiler holdup are likely to occur 
during normal operation. The observed behavior is not 
surprising since the controller includes lead elements at 
w sz 0.1 (Fig. 4B) to counteract the fags caused by the 
reboiler and condenser holdups. If these lags are not 
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Fig. 9. Column A. Effect of reboiler and condenser holdup on closed-loop response. No uncertainty. 

present in the plant [Gl(s) or G3@)], the “derivative” 
action caused by the lead elements result in a system 
which is very sensitive to uncertainty. 

5.2. Conclusions 
-The p-optimal controller Co,(s) applied to the plant 

G,(s) yields PRp z 1.06 (Skogestad and Morari, 
1986) while the p-optimal controller Cl,(s) applied 
to the plant Gi (s) yields p,, x 0.95. Thus, somewhat 
surprisingly, the achievable performance is not 
much better for G1 (s) than for Go(s), even though 
Go(s) is ill-conditioned and has large RGA-elements 
at all frequencies, while G,(s) only has large RGA- 
elements at low frequencies (Fig. 1). This seems to 
indicate that large RGA-elements at low frequency 
imply limitations on the achievable control perform- 
ance and partially justifies the use of steady-state 

values of the RGA for selecting the best control 
configuration (Shinskey, 1984). 

-However, the use of the more detailed model G1 (s), 
rather than G,(s), is still justified since the resulting 
p-optimal controller is much less sensitive to 
changes in reboiler and condenser holdup (which 
will occur during operation). 

-The two time-constant model G1 (s) approximates 
the full-order model very closely as seen from 
Fig. 7C, the response is almost perfectly decoupled 
when there is no uncertainty. 

-To avoid sensitivity to the amount of condenser and 
reboiler holdup, the overhead composition should 
be measured in the overhead vapor, rather than in 
the condenser. In practice, temperature measure- 
ments inside the column are often used to infer 
compositions, and the dynamic response of these 
measurements is similar to that when the condenser 
and reboiler holdup is neglected. 
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-The simple model G2(s) is useful for controller 
design also when the reboiler and condenser holdup 
is large. 

-The main advantage of the p-optimal controllers 
over the simple diagonal PI-controller is a faster 
return to steady-state. This comes out very clearly in 
Fig. 8 which shows the closed-loop response to a 
30”/, increase in feed rate. 

-Strictly speaking, it is the peak value of p(NRp) for 
robust performance which should be considered. 
However, additional insight may be gained by 
studying p(NRp) as a function of frequency. A small 
(large) value of p(iVRP) at low frequency generally 
implies a fast (slow) return to steady state. Similarly, 
a small (large) value of &VRP) at high frequency 
implies a good (poor) initial response. These in- 
terpretations become clear by comparing the first 
column of the p-plots in Fig. 6 with the correspond- 
ing simulations in Fig. 7. 

6. EFFECT OF NONLINEARITY (RESULTS FOR 

OPERATING POINT C) 

In this paper we do not treat nonlinearity as 
uncertainty as was attempted in Skogestad and Morari 
(1986). The reason is that this approach is not rigorous 
and is also easily very conservative because of the 
strong correlation between all the parameters in the 
model which is difficult to account for. Furthermore, 
we know from the insights presented by Skogestad and 
Morari (1987a) that the column is actually not as 
nonlinear as one might expect. Though the steady- 
state gains may change dramatically, the initinl re- 
sponse (the high frequency behavior), which is of 
principal importance for feedback control, is much less 
affected. In particular, this is the case if relative 
(logarithmic) compositions are used (Skogestad and 
Morari, 1987a). To demonstrate this we compute p and 
show simulations for some of the controllers when the 
“plant” is G;(s) rather than G’(s). 

6.1. Modelling 
G,(s) corresponds to the same column as G(s), but 

the distillate flow rate (D/F ) has been increased from 
0.5 to 0.555 such that yD = 0.9 and xg = 0.002 (see 
Table 1). For Case 1 (MD/F = MB/F = 0.5 min), the 
following approximate model is derived when scaled 
compositions (dyJO.1, dxJ0.002) are used: 

i 

16.0 - 16.0 0.023 

G:,(s)= 1 

-+- 

+z-ls 1 +-r1s 1 +szs 93 . - 9.3 1.41 (27) 

with T, = 24.5 min and t2 = 10 min. 
The steady-state gains and time constants are en- 

tirely different from those at operating point A(8). Also 
note that at steady state L1 1 (G(0)) = 35.1 for Column 
A, but only 7.5 for Column C. However, at high 
frequency the scaled plants at operating points A and C 

are very similar. (8) and (27) yield: 

-0.36 
_ 0.65 d1 l(oo) = 3.2 (28a) 

G&(a) 1 (. 0.65 
- 

0.65 = 
; 

= 
o 38 - 0.52 

Rll(oo) 3.7. (28b) 

Therefore, as we will show, controllers which were 
designed based on the model G’(s) (operating point A) 
do in fact perform satisfactory also when the plant is 
Gz (s) rather than GS(s). Recall that the use of a scaled 
plant is equivalent to using logarithmic compositions 
(Y, and X,). The variation in gains with operating 
conditions is much larger if unscaled compositions are 
usd-both at steady-state (Table 1) and at high 
frequencies: 

G,(m) 
0.01 0.45 

=- 
S 

( 0.56 -0.36 > - 0.65 (29a) 

- 6.5 
-0.10 > * (2%) 

6.2. F-Analysis 
The p-plots with the model Gas) and four of the 

controllers are shown in Fig. 10 (all four controllers 
yield nominally stable closed-loop systems). At high 
frequencies the ,+values are almost the same as those 
found at operating point A. The only exception is the 
inverse-based controller Cl&S) which was found to be 
robustly stable at operating point A, but which is not at 
operating point C. Again, this confirms the sensitivity 
of this controller to model inaccuracies. Performance 
is clearly worse at low frequencies at operating point C 
(Fig. 10) than at operating point A (Fig. 6). This is 
expected; the controllers were designed based on 
model A, and the plants are quite different at low 
frequencies. 

The p-optimal controller C,,(s) satisfies the robust 
performance requirements also at operating point C 
when the reboiler and condenser holdups are small. 
Consequently, with the use of scaled (logarithmic) 
compositions, a single linear controller is able to give 
acceptable performance at these two operating points 
which have quite different linear models. The main 
difference between C,,,(s) and the diagonal PI- 
controller is again that the p-optimal controller gives a 
much faster return to steady-state. This is clearly seem 
from Fig. 11A. 

6.3. Logarithmic versus unscaled compositions 
Figure 10 shows how controllers designed based on 

the scaled plant G’(s) at operating point A, perform for 
the scaled plant (different scaling factors!) at operating 
point C; this is equivalent to using logarithmic com- 
positions (Y, and X,). However, we know from (29) 
that the plant model shows much larger changes if 
absolute (unscaled) compositions (y,and xe) are used. 
We therefore expect the closed-loop performance to be 
entirely different at operating points A and C when 
unscaled (absolute) compositions are used. This is 
indeed confirmed by Fig. 11B which shows the closed- 
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Fig. 10. P-Plots for column C. Upper solid line: p(N,,); lower solid line: AN,,); dotted line: p(N&. 

loop response to a small setpoint change in xs at 
operating point C. Fig. 11B should be compared to 
Fig. 11A which shows the same response, but using 
logarithmic compositions as controlled outputs. In 
Fig. 11B (absolute compositions) the response for xBis 
significantly more sluggish and the response for yD is 
much faster than in Fig. 11A (logarithmic com- 
positions). This is exactly what we would expect by 
comparing (29a) and (29b): The high-frequency gain 
for changes in yD is increased by an order of magnitude 
and the gain for changes in xs is reduced by an order of 
magnitude. However, recall from (28) that the gain 
shows very small changes if logarithmic compositions 
are used. 

The simulations in Fig. 12 are with no flow dynamics 
and in practice we expect the system to be unstable at 
operating point C if unscaled (absolute) compositions 
are used; the loop gain for ye is increased by a factor of 
about 10 compared to the design conditions at operat- 
ing point A. This conclusion is supported by the 
following analysis: Assume we use the diagonal con- 
troller C&s) and are only controlling top composition 
(yD) using reflux (L). Then the analysis reduces to a 
SISO-problem. At operating point A the loop transfer 

function for this loop is (unscaled compositions) 

0.878 2.4(1+ 75s) 
A: gltc(s) = 1$-194s s 

This corresponds to a closed-loop bandwidth 
(\gIIc(jw,)l * l)ofaboutw, = 0.81 mitt-‘-Thephase 
of g1 *c at this frequency is about - 90°C. The system 
will therefore become unstable if 90” = 7r/2 rad ad- 
ditional phase lag is added at this frequency. 
Consequently, the maximum allowed deadtime is 0, 
= 1.57/0.81 = 1.93 min. Next, consider operating 
point C 

C: BllC(~) = 1+1&s 
2.4( 1 + 75s) 

s 

Here o, x 11.7 min- r and the phase is again about 
- 90”. This gives a maximum allowed deadtime of only 
8,= 1.57/11.7 = 0.13 min. There may not actually 
be deadtime in the system, but the presence of other 
sources of phase lag (valve dynamics, measurements 
dynamics, etc.) will most certainly result in an unstable 
system. 
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- Cl,(S) - - - CPT(S) 

-0.02 ,pt 
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TIME (min) 

A: Logarithmic compositions 
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TIME (min) 

B: Absolute compositions 

Fig. 11. Column C, Case 1. Closed-loop response to small 
setpoint change in xg (xaincreases from 0.002 to 0.0021) using 
diagonal PI-controller (dotted line) and the p-optimal con- 
troller for column A (solid line). (A) Logarithmic com- 
positions as controlled outputs (equivalent to using scaled 
compositions); (B) absolute (unscaled) compositions as con- 

trolled outputs. No uncertainty. 

-2 ,....,..“J”“J”“J”“~ 

0 20 40 60 80 100 
TIME (min) 

Cl, (3) 
- - - CPI(S) 

Fig. 12. Transition from operating point A to C (Case 1) 
using controllers C,, (solid line) and C,, (dotted line). 
Logarithmic compositions are used as controlled outputs to 
reduce the effect of nonlinearity. Desired trajectory is a first- 
order response with time constant 10 min. No uncertainty. 

6.4. Transition from operating point A to C 
Figure 12 shows a transition from operating point A 

(Y, = X, = 4.605) to operating point C (Y, = 2.303, 
X, = 6.215) using logarithmic compositions as con- 
trolled outputs. The desired setpoint change is a first 

order response with time constant 10 min: 

AY,_ = 2*303 - 1.609 

1)1os’ 
AX,~=-----_. 

1+ 10s 

The closed-loop response is seen to be very good. The 
diagonal controller C,(s) and the p-optimal controller 
C,,(s) give very similar responses in this particular case. 
(However, the p-optimal controller generally performs 
better at operating point C as is evident from Fig. 10 
and 11.) This illustrates that a linear controller, based 
on the nominal operating point A, can perform 
satisfactory for large deviation from this operating 
point when logarithmic compositions are used. 

7. CONCLUSIONS 

A single linear controller is able to give satisfactory 
control of this high-purity column at widely different 
operating conditions. One reason for this is the use of 
logarithmic compositions which effectively counter- 
acts the nonlinearity in the plant. However, even if a 
absolute compositions are used, a single linear con- 
troller performs satisfactory if the deviations from 
steady-state are reasonably small. 

Using the composition in the overhead vapor, yr, as 
a controlled output makes the system less sensitive to 
variations in the condenser holdup. 

A simple diagonal controller was found to be robust 
with respect to model-plant mismatch, but gives a 
sluggish return to steady-state. This particular part of 
the response is improved using the p-optimal con- 
troller. inverse-based controllers, and in particular 
those based on a steady-state decoupler, are very 
sensitive to model-plant mismatch and should not be 
used with the LV-configuration for this high-purity 
column. 
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~a(‘3 

Y(G) 
r*(G) 

NOTATION (ALSO SEE FIG. 1) 

linear transfer function model of plant 
linear controller 
maximum singular value of G corresponding to 
the maximum 2-norm gain at each frequency 

i?(G) = maxm (jw) 
U#O llullz 

IIu((~ = 
Ji 

C Iui(’ (2-norm of vector u) 

minimum singular value of G corresponding to 
the minimum 2-norm gain at each frequency 

= Ti(G)/_a(G) condition number of G 
= min y(SI GS2) minimum condition number of 

G (S, and S, are diagonal “scaling” matrices 
with real, positive entries) 
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A(G) = {dij} = G x (G-‘)rrelative gain array (RGA) 
of matrix G (x denotes element-by-element 
multiplication, also called the Schur or 
Haddemard product) 

llhlll = Ci,j I&I ‘- norm (sum of element magnitudes) 
of matrix A 

p(N) structured singular value of matrix N (Doyle, 

1982) 

Subscripts 
0 crude model (7) of column 
132 cases for condenser and reboiler holdup 

(Section 2). L--small holdup, 2-large holdup 
3 y, as controlled output and large holdup 
c operating point C (no subscript denotes operat- 

ing point A) 

P perturbed (with input uncertainty A,) 
P performance 

Superscripts 
S scaled compositions (eq. 2) 
0 nominal conditions 
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APPENDIX: STATESPACE REALIZATIONS OF PLANTS 
AND CONTROLLERS 

Below are shown state-space realizations of G(s) = C(sZ 
- A) - ‘B + D using ‘packed” form 

A B 

[ 1 C D 

where D in all cases is a 2 x 2 matrix. The plant models and 
controllers are for the scaled plant, that is. correspond to using 
logarithmic compositions. All controllers were designed based 
on operating point A and when unscaled (absolute) com- 
positions are used as controlled outputs the controllers should 
be multiplied by 
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