
ANALYSIS AND CONTROL OF DISTILLATION COLUMNS

Sigurd Skogestad, Chem. Eng., Norwegian Inst. of Tech. (NTH), N-7034 Trondheim, Norway

The emphasis in this paper is on the analysis of the dynamic behavior of distillation columns. The
dynamic behavior of a distillation column is approximated with a two time constant model.
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where gij is the steady-state gain. The response to changes in the external 
ows is approximately �rst order
with time constant �1. This dominant time constant can be estimated using a simple mixing tank model for
the column (Moczek et al., 1963).

�1 �
�(�N

i=1Mixi)

Df�yD + Bf�xB
=

\change in component holdup inside column(mol)"

\imbalance in supply of this component (mol=s)"
(1a)

Here � represents the di�erence between two steady states. For high purity binary separations and small
pertubations to the column (linear model valid, � ! 0) Skogestad and Morari (1987) have derived an
analytical expression for �1 from (1a)
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MI
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MDyD(1� yD)
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MBxB(1� xB)

Is
(1b)

Here MI is the total holdup inside the column, and MD and MB are the condenser and reboiler holdups.

S = yD(1�xB)
(1�yD)xB

is the separation factor and Is = DyD(1 � yD) + BxB(1 � xB) is the \impurity sum". Note

that Is may be extremely small for columns with both products of high purity (1 � yD and xB both small)
resulting in very large linearized values of �1.

The response to changes in the internal 
ows (keep D and B constant) is also �rst order, but its time
constant �2 is generally signi�cantly smaller than �1. It can be estimated by matching the initial response.
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The main advantage of the simple model (7) is that it gives a good description of both the low- and high-
frequency behavior of distillation columns. Such models were not available in the literature. The traditional
approach has been to use a model which matches the steady-state gains, but which is not necessarily accurate
for high-frequencies. The other extreme is to match the high-frequency gains (Rademaker et al., 1975, p.
137). (7) provides a link between the low- and high-frequency regions.

In the paper it is shown that the high-frequency behavior is generally much less e�ected by changing
operating conditions than the steady-state. This partially explains why highly nonlinear distillation columns
may be controlled satisfactory using linear controllers. In particular, the initial response is nearly independent
of operating conditions if relative (logarithmic) compositions are used. This suggests that ln(1�yD) and lnxB
should be used as controlled outputs for columns where yD or xB may vary signi�cantly.
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1. INTRODUCTION
How should we go about designing a system for composition control of a distillsation column? Three

separate steps are involved: 1) Modelling the column. 2) Choice of control con�guration. 3) Controller
design/implementation. Step 2 involves choosing the two controlled variables which should be used for
composition control, and it probably the most important step in the procedure above. Traditionally, the
LV-con�guration has been preferrded (Using re
ux L and boilup V for composition control), but the use of
"direct material balance control" (eg., the DV-con�guration) has also been proposed for a number of years.

More recently, the ratio con�gurations, in particular the L
D

V
B -con�guration has been proposed as most aplli-

cable over the broadest range of columns (Shinskey, 1984). In another paper (Skogestad and Morari, 1987b)
we discuss the issue of control con�guration selection in detail. Unfortunately, we do not have space to discuss
these issues here, and this paper will instead be devoted to the modelling issues. For control purposes, it
is important to have a simple model, but which at the same time gives a good description of the elements
which may restrict the controllability of the process. In particular, this includes issues like inverse responses
and time delays (RHP-zeros) and sensitivity to model-plant mismatch (model uncertainty). The Relative
Gain Array (RGA) has proven to be a simple and reliable indicator of a multivariable plants's sensitivity to
model-plant mismatch (Skogestad and Morari, 1986), and Shinskey has used it for years for choosing control
con�gurations for distillation columns. For a 2� 2 plant G = fgijg the RGA is de�ned as follows

RGA = f�ijg =

�
�11 1� �11

1� �11 �11

�
; �11 =

�
1�

g12g21
g11g22

�
�1

The steady-state values of the RGA for distillation columns have been studied extensively (Shinskey, 1984).
In this paper we also derive formulas for the RGA at high frequency (initial response). In summary, the
main objective of this paper is to obtain basic insight into the dynamic behavior of distillation columns. All
simulations in this paper are based on the assumptions of constant molar 
ows, immediate 
ow responses and
constant relative volatility. The three columns in Table 1 (Column A, C and D) are used as examples. The
holdup on the trays (including the condenser and the reboiler) is Mi=F = 0:5min for all examples.

2. DYNAMIC COMPOSITION RESPONSE OF DISTILLATION COLUMNS
The dynamic response of most distillation columns (Fig. 1) is dominated by one large time constant,

which is nearly the same, regardless of where a disturbance is introduced or where composition is measured.
This is well known both from plant measurements (McNeill and Sachs, 1969) and from theoretical studies
(Moczek et al., 1963). Furthermore, the value of this time constant is largely una�ected by the 
ow dynamics.
It is somewhat surprising that the response of a distillation column with, for example, 100 trays, corresponding
to at least a 100th order model, may be adequately described by a simple �rst-order model. Skogestad and
Morari (1987a) and others (Moczek et al., 1963, Wahl and Harriot, 1970) have studied this in more detail.
They found that the main reason for the low-order behavior is that all the trays have essentially the same
composition response. This leads to the conclusion that the distillation column can be approximated by one
large mixing tank, for which the time constant �1 is given by

�1 �
�(�N

i=1Mixi)

Df�yD + Bf�xB
=

\change in component holdup inside column(mol)"

\imbalance in supply of this component (mol=s)"
(1a)

Here � represents the di�erence between the �nal (subscript f) and initial (subscript 0) steady state. For
example, �yD = yDf � yD0. For high-purity binary separations and small pertubations to the column (linear
model valid, �! 0) Skogestad and Morari (1987a) have derived an analytical expression for �1 from (1a)

�1 �
MI

lnS � Is
+
MDyD(1� yD)

Is
+
MBxB(1� xB)

Is
(1b)

Here MI is the total holdup inside the column, and MD and MB are the condenser and reboiler holdups.

S = yD(1�xB)
(1�yD)xB

is the separation factor and Is = DyD(1 � yD) + BxB(1 � xB) is the \impurity sum". The

�rst term in (1b), which represents the contribution from changing the holdup inside the column, dominates
for columns with both products of high purity (1� yD and xB both small). Note that Is may be extremely
small in such cases resulting in very large values of �1. This agrees with the observations of eg. Kapoor et al.
(1985).

The agreement between (1) and observed responses is very good in many cases. This is illustrated by Fig.
2A and 2B which show the response to small increases in re
ux L (V constant) and boilup V (L constant)
for column A. This column has 40 theoretical trays plus a condenser and the exact model is 41st order. This
response is compared with a �rst order response with time constant 194 minutes corresponding to the linear
model �

dyD
dxB

�
=

1

1 + 194s

�
0:878 �0:864
1:082 �1:096

��
dL
dV

�
(2)
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The agreement is so good that the dotted line corresponding to this approximation is hardly visible. The
value of the time constant (194 min) was found using (1a) and its value in this case it is almost identical to
the inverse of the smallest eigenvalue of the linearized model.

It is clear from the derivation of (1) (Skogestad and Morari, 1987a) that �1c applies only to cases when
there is a change in the total holdup �Mixi of some component in the column. Furthermore, from the total
component material balance (FzF = DyD +BxB) we derive

Df�yD +Bf�xB = �(FzF )� yD0�D � xD0�B (3)

From (3) we see that the denominator of (1a) is non-zero only if there is a change in the �(FzF );�D or �B,
that is, if there is a change in the external material balance. If we change the internal 
ows only (for example,
increase the re
ux L and the boilup V keeping the product 
ows B and D constant), then the numerator of
(1a) will be small, and the denominator will be identically zero. Consequently, (1) does not apply in such
cases.

This is indeed con�rmed by simulations. Fig. 2C shows the response to a simultaneous increase in L and
V (D and B constant). The response is much faster than expected from the value �1 = 194 min. In fact, an
excellent �t is obtained using a time constant �2 = 15 min, corresponding to the linear model

dL = dV :

�
dyD
dxB

�
=

1

1 + 15s

�
0:014
� 0:014

�
dV (4)

(The gains 0.014 and -0.014 are derived from (2) using dL=dV.) Consequently, similar to what is known
for the steady state (Rosenbrock, 1962), there is a fundamental di�erence in column behavior for changes in
external and internal 
ows. One objective of this paper is to study this in more detail, and to develop simple
column models which display this behavior.

All results in this paper (gains, RGA-values, etc.) are for re
ux L and boilup V as manipulated inputs.
Distillate (D) and bottom 
ow (B) are manipulated to keep constant holdups in the accumulator/condenser
(MD) and the column base/reboiler (MB). This does not imply that the LV con�guration is the preferred
choice for control purposes. The choice is made because the column model is most naturally written in terms
of L and V as manipulated inputs.

3. A MODEL BASED ON INTERNAL AND EXTERNAL FLOWS
The steady-state model using L and V as manipulated inputs is

�
dyD
dxB

�
=

�
g11 g12
g21 g22

� �
dL
dV

�
(5)

In order to model explicitly the di�erence in dynamic behavior between internal and external 
ow changes we
will consider V and D as manipulated inputs for the moment. To get a dynamic model we make the following
assumption:

Modelling assumption. The reponse to changes in the external 
ows (D) is �rst-order with time
constant �1. The response to changes in internal 
ows (V) is �rst-order with time constant �2.

With this assumption and assuming constant holdups (perfect level control) and constant molar 
ows
such that dD(s) = dV (s) � dL(s), we derive the following dynamic model from (5):

�
dyD
dxB

�
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�
g11 + g12 �g11
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��
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dD=(1 + �1s)

�
(6)

Switching back to L and V as manipulated inputs yields
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This simple model is obviously not an accurate description of all distillation columns, but it is usually adequate
for controller design. The model is best when the reboiler and condenser holdups are small. The model's
main advantage is its simplicity and that it gives a reasonable description of both the low- and high-frequency
behavior.

�1 may be estimated as shown above (Eq. (1)). �2=�1 can be estimated by matching the high-frequency
behavior as shown in Section 7. �1 is also simple to obtain from plant data or simulations. �2 may also be
obtained from simulations (without 
ow dynamics) of changes in the internal 
ows (Fig. 2C). In most cases
it will be very di�cult to obtain �2 from plant data, since it is almost impossible, in practice, to carry out
test runs for changes in the internal 
ows without changing the external 
ows (because of uncertainty and
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disturbances in feed rate, boilup, etc.). Also note from Fig. 2A and B that the small time constant (�2) is
not detectable from the response to changes in re
ux (L) and boilup (V). Both these responses are almost
perfectly �tted by a �rst order response with time constant �1.
Example. Column A. With the values �1 = 194 min and �2 = 15 min proposed in Section 2, (7) becomes

�
dyD
dxB

�
=

1

1 + 194s

0
@ 0:878 �0:8641+12:1s1+15s

1:082 �1:0961+17:3s
1+15s

1
A� dL

dV

�
(8)

The agreement between this model and the exact 41st order model is excellent for small perturbations as seen

from the simulations in Fig. 2. The relative error ��((G � ~G) ~G�1) (here �� is the maximum singular value)

between the two time constant model (8) (denoted by ~G) and the full linear 41st order model (denoted by G)

is shown as a function of frequency in Fig. 3. It is clear that ~G (8) is an excellent approximation of G up to
about a frequency of 1 min�1. On the other hand, the one time constant model (2) which has �1 = �2 = 194
min, gives a very poor approximation as seen from the dotted line in Fig. 3.

Note that without the seemingly negligible \correction terms" 1+12:1s
1+15s and 1+17:3s

1+15s the responses to changes

in the internal 
ows would have a time constant of 194 min instead of the observed 15 min (Fig. 2C). In
the literature each transfer matrix element in (8) is often approximated by a �rst-order lag with time delay

(ge��s=(1 + �s)) where g is obtained by matching steady-state data. It is clear that, unless special care is
taken, it is very unlikely that such a model will be able to capture the di�erence in time constants between
external and internal 
ows.

4. OBSERVATIONS OF INITIAL RESPONSE
Fig. 4 and 5 show the response in product compositions to small and large changes in the external (Fig.

4) and internal 
ows (Fig. 5): The initial responses �yD
�L and �xB

�L are almost independent of the magnitude of

�L, although the steady-state behavior is entirely di�erent. �yD
�L and �xB

�L are the responses to a unit change
in �L, and we will call them the unit responses. Fig. 5 indicates that the initial unit response is independent

of the magnitude of �L and �V .
However, are these initial unit responses also independent of operating conditions? Within a linear frame-

work, one way of studying the e�ect of changing operating conditions, is to study how the linearized model
changes with operating conditions. To this end consider column A and C. These actually represent the
same column, but at two entirely di�erent operating conditions. The product composition for column A are
1� yD = xB = 0:01. Column C is obtained by changing D/F from 0.500 to 0.555, which yields 1� yD = 0:10
and xB = 0:002. The steady-state values of the scaled gains are drastically di�erent for columns A and C.
(The unscaled gains are even more di�erent). Fig. 6 shows the relative di�erence between the linearized
scaled models for column A and C; the models are almost identical at higher frequencies. This implies that,
even though the steady-state behavior is quite di�erent, the initial response in terms of scaled (logarithmic)
compositions is similar. The objective of the reminder of the paper is to explain these observations.

5. PREDICTED INITIAL RESPONSE
In this section we want to explain why

1) The initial unit response of �xi (�xi may be �yD or �xB) is independent of the magnitude of �L and
�V .

2) The initial unit response of �xi is independent of the operating point if relative (logarithmic) compositions
are used.
Assume constant molar 
ows and constant holdup. The component material balance for tray i at steady-

state is
Mi _xi = 0 = Li(xi+1 � xi) + Vi(yi�1 � yi) (9)

Assume a step change is made in Li and Vi such that the 
ows for t > 0 are Li + �Li and Vi + �Vi.
Immediately following this change the values of the product compositions are unchanged. Thus we have for
t = 0+:

Mi _xi = (Li +�Li)(xi+1 � xi) + (Vi +�Vi)(yi1 � yi) (10)

Subtracting the steady-state (9) yields (Rademaker et al., 1975, p.129)

(t = 0+) : Mi _xi = (xi+1 � xi)�Li + (yi�1 � yi)�Vi (11)

_xi given by this equation is equal to the initial slope of the response for �xi. Note that (11) is linear in �Li
and �Vi. This explains why the initial unit responses are independent of the magnitude of �L and �V as
was observed in Fig. 4 and 5.
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We now want to prove claim 2) above. To this end use the steady-state relationship (9) to rewrite the
expression (11) for the initial slope of the response.

_xi
xi

=
d lnxi
dt

=
1

Mi
(
xi+1
xi

� 1)

�
�Li �

Li
Vi
�Vi

�
(12a)

Alternatively
_xi
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d ln(1 � xi)

dt
=

1

Mi
(1�

1� xi+1
1� xi

)

�
�Li �
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Vi
�Vi

�
(12b)

Consider a binary mixture and let xi denote the mole fraction of light component. It is easily shown that
the near the bottom of the column the ratio xi+1

xi
in (12a) is 1) almost the same for any tray i and 2) only

weakly dependent on operating conditions. Similarly, the ratio 1�xi+1
1�xi

in (12b) is nearly constant near the

top of the column. Consequently, if the logarithm of the composition is used then the initial unit responses
are nearly independent of operating conditions and the entire top or bottom of the column has almost the
same response. On the other hand, the slope of the initial unit response is not independent of the operating
point if composition are measured in terms of mole fractions.

To show that the ratio xi+1
xi

is nearly constant near the bottom of the column, assume that the equilibrium

line operating lines are linear.
yi = KBxi (13)

xi+1 =

�
V

L

�
B

yi +
B

LB
xB (14)

These assumptions are reasonable for high-purity columns. VB and LB denote the vapor and liquid 
ows in
the bottom of the column. Combining (13) and (14) yields

xi+1
xi

=

�
V

L

�
B

KB +
B

LB

xB
xi

(15)

The second term is negligible as we go up the column and it is also small near the bottom for columns with
V=B > 1 . We get

xi+1
xi

�

�
V

L

�
B

KB (16)

Thus xi+1
xi

is 1) independent of the tray location and 2) only weakly dependent on the operating point (since

KB and
�
V
L

�
B
are only weakly dependent on the operating point). Substituting (16) into (12a) yields

Bottom part

(t = 0+)
:

_xi
xi
�

1

Mi

��
V

L

�
B

KB � 1

��
�Li �

�
L

V

�
B

�Vi

�
(17a)

A similar expression is derived for the top part where (1� yi) � (1� xi)=KT

Top part

(t = 0+)
:

_xi
1� xi

�
1

Mi

�
1�

(V=L)T
KT

��
�Li �

�
L

V

�
T

�Vi

�
(17b)

Range of Validity. From the derivation of (17) we see that the approximation is most likely to hold for high-

purity columns with large re
ux. Note that for the case of constant relative volatility� we haveKB = KT = �.
This is used in the following example.
Example. Column A. The slopes of the initial unit response to �L obtained using (17a) and (17b) with

Mi=F = 0:5 min are
_xB
�L

=
xB
Mi

��
V

L

�
B

�� 1

�
=

0:01

0:5
(
3:21

3:71
1:5� 1) = 0:0060 (18a)

_yD
�L

=
1� yD
Mi

�
1�

(V=L)T
�

�
=

0:01

0:5
(1�

3:21=2:71

1:5
) = 0:0042 (18b)

These are very close to the observed values in Fig. 5B.
Implications for control purposes. Equations (17) show that the initial response in terms of logarithmic (rel-

ative) compositions is independent of operating point. The implication of these �ndings for control purposes
is obviously that

YD = ln(1� yD) and XB = lnxB (19)
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should be used as controlled outputs if signi�cant variations in product compositions are expected. This has
also been suggested previously by Ryskamp (1981), but without justi�cation.

6. RGA AT HIGH FREQUENCY

We want to estimate �11 =
�
1� g21=g22

g11=g12
(j!)

�
�1

at high frequency. Note that

g21
g22

=
(@xB=@L)V
(@xB=@V )L

and
g11
g12

=
(@yD=@L)V
(@yD=@V )L

(20)

At high frequency these ratios are given by the ratio between the slopes of the initial response of xB (and yD)
to changes in L and V. From (17a) and (17b) we get (these apply to the entire bottom and top part of the

column) g21
g22

(1) = �
�
V
L

�
B
and g11

g12
(1) = �

�
V
L

�
T
and we derive

g12g21
g11g22

(1) =
(L=V )T
(L=V )B

(21)

Note that this derivation does not depend on the amount of holdup in the column. For the case of constant
molar 
ows and feed as liquid (LB = LT + F; VT = VB) the RGA becomes

Feed liquid : �11(1) = 1 +
L

F
(22)

For the three examples the agreement between the RGA-values estimated from (22) and those obtained from
the full linearized model is amazing:

Column �11(1)observed 1 + L
F
(eq:22)

A 3:708 3:706
C 3:738 3:737
D 12:78 12:96

7. ESTIMATION OF �2
The ability to estimate the RGA at high frequency suggests that �2 may be estimated by matching the

RGA-value at high frequency. The two-time constant model (7) yields

g12g21
g11g22

(1) =

g21
�1
( g11+g12�2

� g11
�1
)

g11
�1
( g21+g22�2

� g21
�1
)
=

(1 + g12
g11

)� �2
�1

(1 + g22
g21

)� �2
�1

(23)

The ratio �2=�1 may be estimated by equating (23) and (21). For the case of constant molar 
ows and feed
liquid we derive

Feed liquid :

�
�2
�1

�
=

L

F

�
g12
g11

�
g22
g21

�
+

�
1 +

g12
g11

�
(24)

This ratio is 0.092, 0.420 and 0.218 for the three example columns. The ratio for columnA (0.092) is reasonably
close to the one (15=194 = 0:077) which was obtained in Section 2 and 3 when �tting the two-time constant
model to observed responses.

8. DISCUSSION
The main advantage of the simple model (7) is that it gives a good description of both the low- and high-

frequency behavior of distillation columns. Such models were not available in the literature. The traditional
approach has been to use a model which matches the steady-state gains, but which is not necessarily accurate
for high-frequencies. The other extreme is to match the high-frequency gains (Rademaker et al., 1975, p.
137). (7) provides a link between the low- and high-frequency regions. (7) was derived by considering
the fundamental di�erence between external and internal 
ows, both at steady state and dynamically. The
parameters in (7) are the steady state gains, the dominant �rst-order time constant �1 associated with the
external 
ows, and the �rst-order time constant �2 associated with the internal 
ows. �1 and �2 can be
estimated from the steady-state data using (1) and (24). (24) was derived based on matching the high-
frequency behavior.

The traditional approach to modelling distillation columns is to approximate each transfer function by a
�rst-order lag and a time delay (ge��s=(1+ �s)) where g is obtained by matching the steady-state gains. It is
very di�cult to obtain a good model for high-purity columns which captures the di�erence between external
and internal 
ows using this approach. Furthermore, it is unlikely that the correct behavior at high frequency
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(for example, the RGA) is obtained. Kapoor et al. (1986) have suggested to base the controller design on
a model for the \perturbed" steady-state. This model is more likely to yield a reasonable high-frequency
behavior. However, such \tricks" are unnecessary if one uses a model, for example (7), which accurately
describes both the low and high frequency behavior.
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Column zF � N NF 1� yD xB D=F L=F GS
LV �11(GLV )

A 0:5 1:5 40 21 0:01 0:01 0:500 2:706

�
87:8 �86:4
108:2 �109:6

�
35:1

C 0:5 1:5 40 21 0:10 0:002 0:555 2:737

�
16:023 �16:0
9:29 �10:7

�
7:53

D 0:65 1:12 110 39 0:005 0:10 0:614 11:862

�
24:585 �24:2
21:270 �21:3

�
58:7

Table 1. Steady-state data for distillation column examples. Also given: the scaled (outputs: dyD=1 � yoD and

dxB=x
o
B) gain matrix (GS

LV ) and and the 1,1-element of the RGA.

Figure captions.

Figure 1. Two-product distillation column with single feed and total condenser.
Figure 2. Column A. Responses to small changes in external (A & B) and internal (C) 
ows. Dotted lines for A &

B: First order model (2) with time constant �1 = 194 min. Dotted line for C: First order model (4) with
time constant �2 = 15 min.

Figure 3. ColumnA. Relative di�erence between low order model ~G and 41st order plant G . The two time constant
model (8) provides an excellent approximation, while the one time constant model (2) is poor at high
frequency.

Figure 4. Column A. Unit responses to a small and large increase in re
ux L. The initial unit response is almost
independent of the magnitude of �L, but the steady-state behavior is entirely di�erent.

Figure 5. Column A. Unit responses to a small and large increase in internal 
ows.
Figure 6. The scaled linear models for column A and C are entirely di�erent at low frequency, but almost identical

at higher frequencies.
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