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Abstract

A realistic study of the LV-control of a high-purity dis-
tillation column is presented. Linear controllers designed
based on a linearized model of the plant are found to yield
acceptable performance also when there is model-plant mis-
match. The mismatch can be caused by uncertainty on
the manipulated inputs, nonlinearity and variations in re-
boiler and condenser holdup. The presence of input un-
certainty makes the use of a steady-state decoupler unac-
ceptable. The effect of nonlinearity is strongly reduced by
using the logarithm of the compositions. A simple diagonal
PI-controller is not sensitive to model-plant mismatch, but
yields a response with a sluggish return to steady-state.

1. INTRODUCTION

In this paper we study the high-purity distillation col-
umn in Table 1 using reflux (L) and boilup (V) as ma-
nipulated inputs to control the top (yp) and bottom (zp)
compositions. This column was analyzed previously by the
authors (Skogestad and Morari, 1986a), but the objective of
that paper was to study general properties of ill-conditioned
plants rather than distillation column control. The goal of
this paper is to provide a realistic control design and sim-
ulation study for the column. To be realistic at least the
issues of 1) uncertainty and 2) nonlinearity must be ad-
dressed.

Uncertainty

Skogestad and Morari (1986a) showed that the closed-
loop system may be extremely sensitive to input uncer-
tainty when the LV-configuration is used. In particular,
inverse-based controller were found to display severe ro-
bustness problems. In this paper the uncertainty is explic-
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Figure 1. Two product distillation column

itly taken into account when designing and analyzing the
controllers by using the Structured Singular Value () in-
troduced by Doyle (1982). We also find that u provides a
much easier way of comparing and analyzing the effect of
various combinations of controllers, uncertainty and distur-
bances than the traditional simulation approach.
Nonlinearity

High-purity distillation columns are known to be
strongly nonlinear (e.g. Moczek et al., 1963), and any real-
istic study should take this into account. Our approach is
to base the controller design on a linear model. The effect
of nonlinearity is taken care of by analyzing this controller
for linearized models at different operating points. Further-
more, all simulations are based on the full nonlinear model.
Logarithmic Compositions

In another paper (Skogestad and Morari, 1987a) we
study the dynamic behavior of distillation columns in gen-
eral. One conclusion from that paper is that the high-
frequency behavior is only weakly affected by operating
conditions when the scaled transfer matrix is considered

1
dyf, _ S dL s _ l—y; 0
(dzf,) = \awv) ¢ 7 0 1—14:; ¢

All plant models and controllers in this paper are for the
scaled plant. G¥ is obtained by scaling the outputs with
respect to the amount of impurity in each product

Binary separation, constant molar flows, feed liquid.
Column Data:

Relative Volatility a=15

No. of theoretical trays N = 40

Feed tray (1=reboiler) Np =21
Feed composition zp =05
Operating variables:
A C
Yp = 0.99 0.90
zp = 0.01 0.002
D/F = 0.500 0.555
L/F = 2.706 2.737

Steady-state gains (unscaled compositions):
dyp \ _ dL/ F
(“B) =60 (‘W/F
A
0.878 —0.864) ( 1.604

G(o) = (1.032 —1.096 / \ .01865

Table 1. Steady-state data for distillation column at o;;e-rating
points A and C.
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Here £ and y are the compositions at the nominal oper-
ating point. This relative scaling is automatically obtained
by using logarithmic compositions

Yp=In(1-yp), Xp=Inzp (3)
because 4 d
dYp = -2 dXp=—2 (4)
1-yp zp

Furthermore, the use of logarithmic compositions (Yp and
Xp) effectively eliminates the effect of nonlinearity at high
frequency (Skogestad and Morari, 1987a) and also reduces
its effect at steady-state (Skogestad and Morari, 1987b).
For control purposes the high frequency behavior (initial
response) is of principal importance. Consequently, if loga-
rithmic compositions are used we expect a linear controller
to perform satisfactorily also when we are far removed from
the nominal operating point for which the controller was de-
signed. Another objective of this paper is to confirm that
this is indeed true.

2. THE DISTILLATION COLUMN

Steady-state data for the distillation column are given
in Table 1. The following simplifying assumptions are
made: al) binary separation, a2) constant relative volatil-
ity, a3) constant molar flows and a4) constant holdups on
all trays and perfect level control. The last assumption re-
sults in immediate flow response, that is, we are neglecting
flow dynamics. This is somewhat unrealistic, and in order
to avoid unrealistic controllers, we will add “uncertainty”
at high frequency to include the effect of neglected flow dy-
namics when designing and analyzing the controllers (see
Section 3).

We investigate the column at two different operating
points. At the nominal operating point, A, both products
are high-purity and 1 — y$ = z§ = 0.01. Operating point
C is obtained by increasing D/F from 0.500 to 0.555 which
yields a less pure top product and a purer bottom product;
1—y%o = 0.10 and 7% = 0.002 (subscript C denotes op-
erating point C while no subscript denotes operating point
A). We will study the column for the following two assump-
tions regarding reboiler and condenser holdup:

Case 1: Almost negligible condenser and reboiler holdup
(MD/F =Mp/F =05 min).

Case 2: Large condenser and reboiler holdup (Mp/F =
32.1 min, Mp/F = 11 min).

These two cases will be denoted by subscripts 1 and 2,
respectively. The holdup on each tray inside the column is
M;/F= 0.5 min in both cases.

2.1 Modelling

Nominal operating point (A). A 41st order linear
model for the columns is easily derived based on the data
given in Table 1 (see Skogestad and Morari, 1987a)

(22)=ct (%) (5)

The scaled steady-state gain matrix is

sy _ | 878 —86.4
G7(0) = [108.2 ~100.6

which yields the following values for the condition number
and the 1,1-element in the RGA

(6)

3(G*(0))
2(G%(0)

However, 7(G°) and A11(G®) are much smaller at high
frequencies as seen from Fig.2.

4(G5(0)) = =141.7  Ay(G5(0)) = 35.1
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Fig. 2. Column A, Case 1 (G = G{). The condition number
of the plant is about 10 times lower at high frequencies
than at steady state.

Case 1. For the case of negligible reboiler and con-
denser holdup he following simple two time-constant model
yields an excellent approximation of the 41st order linear

"model (Skogestad and Morari, 1987a).

117.8 — 187.8 + 1.4

18 +r 1+

Model 1: GS(s) = ' ST ()
108.2 —108.2 _ _1.4

14710 14718 147138

with r; = 194 min and 7 = 15 min. G;(s) uses two time
constants: 7, is the time constant for changes in the exter-
nal flows. It corresponds to the dominant time constant and
may be estimated, for example, by using the inventory time
constant of Moczek et al. (1963). 7 is the time constant
for changes in internal flows (simultaneous change in L and
V with constant product rates, D and B) and can be esti-
mated by matching the high-frequency behavior as shown
by Skogestad and Morari (1987a). The simple model (8)
matches the observed variation in condition number with
frequency (Fig.2).

Case 2. In order to obtain a low-order model for this
case we performed a model reduction (Balanced Realiza-
tion, Moore (1981)) on the full 41st order model. A good
approximation,G2(s), was obtained with a 5th order model.

Operating point C. We will return with a discussion
of the model for this case in Section 6 when we also discuss
the control of the plant.

2.2 Simulations

The design and analysis of the controller are based on
the linear models G, (s) and G(s). However, except for the
four simplifying assumptions al-a4 stated above, all simula-
tions are carried out with the full nonlinear model. To get
a realistic evaluation of the controllers input uncertainty
must be included. Simulations are therefore shown both
with and without 20% uncertainty with respect to the

change of the two inputs. The following uncertainties are
used



AL=(1+A,)AL, A;=02
AV = (1 + Ag)AVc, Ay =-0.2 (9)

Here AL and AV are the actual changes in manipulated
flow rates, while AL, and AV, are the desired values as
computed by the controlier. A, = —A; was chosen to
represent the worst combination of the uncertainties (Sko-
gestad and Morari, 1986b).

3. CONTROL THEORY

3.1 Robust performance and robust stability

The objective of using feedback control is to keep the
controlled outputs (in our case yp and zp) “close” to their
desired setpoints. What is meant by “close” is more pre-
cisely defined by the performance specifications. These per-
formance requirements should be satisfied in spite of un-
measured disturbances and model-plant mismatch (uncer-
tainty). Consequently, the ultimate goal of the controller
design is to achieve Robust Performance (RP): The perfor-
mance specification should be satisfied for the worst case
combination of disturbances and model-plant mismatch.
The implications of this requirement are easier to under-
stand if we consider some subobjectives which have to be
satisfied in order to achieve this goal:

Nominal Stability (NS): The closed loop system with

the controller applied to the (nominal) plant model has to
be stable.
Nominal Performance (NP): We will define perfor-

mance in terms of the weighted sensitivity function S:

NP & &(wpS)<1 Yw, S=(I+GC)"! (10)

The weight wp is used to specify the frequency range over
which the errors are to be small. To get consistency with
the notation used below define 8(wpS) = u(Nnp) such
that (10) becomes

NP & p.(NNp) <1 Vw (11)

where Nyp = wpS, and u is computed with respect to the
structure of a “full” matrix Ap.

Robust Stability (RS). The closed loop system must
remain stable for all possible plants as defined by the un-
certainty description. For example, assume there is un-
certainty with respect to the actual magnitude of the ma-
nipulated inputs (which is always the case!). The possible
plants, G, are then given by

Gp=G(I+Ay), A;=(%‘ Aoz) (12)

where A;(s) is the uncertainty for input i. We will consider
the case when the magnitude of uncertainty is equal for
both inputs

1Ad < lwr(iw)l, §=1,2 (13)

The robust stability requirement can be checked using u.
In this particular case (Skogestad and Morari, 1986a)

RS & u(Nrs)<1l, Vw (14)

where Nrs = wyCGS and p is computed with respect to
the diagonal 2 x 2 matrix A;.
Robust Performance (RP): For RP we require (10) to

be satisfied when G is replaced by any of the possible per-
turbed plants G, as defined by the uncertainty description
(12).

RP & a(wp(I+G,C)"Y)<1 Yw, VG, (15)

The structured singular value s provides a computationally
useful condition for checking whether (15) is satisfied:

RP & u(Ngrp)<1l, Yw (16a)
where
_ W[CSG w;CS
Npp = ( wpSG  wpS ) (16b)

and px is computed with respect to the structure
diag{Ar,A,;} where Ar is 2 x 2 diagonal matrix and Ap
is a full 2 x 2 matrix.
3.2 The RGA

Let x denote element-by-element multiplication. The
RGA of the matrix G (Bristol, 1966) is defined as

AQ) =G x (G™H)T (17)

The RGA is independent of input and output scaling. The
RGA of the plant is commonly used as a tool for selecting

control configurations for distillation columns (Shinskey,'

1984). However, in this paper we will make use of the RGA
of the controller as a measure of a system’s sensitivity to
input uncertainty (Skogestad and Morari, 1986b).

Again, consider uncertainty on the plant inputs as
given by (12). The loop transfer matrix, G,C, for the per-

turbed plant may be written in terms of its nominal value,
GC:

G,C=GC(I+C 'ALC) (18)

G,C is closely related to performance because of (15). For

2 x 2 plants the error term C~!A,C in (18) may be ex-
pressed in terms of the RGA of the controller:

AuAr+2Az182  Au (A - Ag)
CTAC =
“AnB (A - Az)  AAr+ A2

(19)
If any element in C~'A[C is large compared to 1, the
loop transfer matrix G,C is very different from the nominal
(GC) and poor performance or even instability is expected
when Ay # 0. We see from (19) that controllers with large
RGA-elements should always be avoided, because otherwise
the closed-loop system is very sensitive to input uncertainty.

It should be added that it is the behavior of G,C
at frequencies close to the closed-loop bandwidth (where
0;(GpC) =~ 1) which is of primary importance for the sta-
bility of the closed-loops system. Therefore, it is particu-
larly bad if the controller has large RGA-elements in this
frequency range.

Inverse-Based Controller. To have “tight” control it
is desirable to use an inverse-based controller C(s) =
¢(s)G~1(s) where ¢(s) is a scalar. In this case A(C) =
A(G~') = AT(G) and the controller will have large RGA-



elements whenever the plant has. Consequently, inverse-
based controllers should always be avoided for plants with

large RGA-elements. In particular, this applies to LV-

control of high-purity distillation columns which always

yields large RGA-elements.

Control of Plants with Large RGA-Elements. We
clearly should not use an inverse-based controller for a plant
with large RGA-elements. On the other hand, a diagonal
controller is insensitive to uncertainty (C~1A;C = Ay),
but is not able to correct for the strong directionality of
the plant, which implies that performance has to be sacri-
ficed. This is confirmed by the results presented below.

4. THE CONTROL PROBLEM

4.1 Performance and Uncertainty Specifications

The uncertainty and performance specifications are the
same as those used by Skogestad and Morari (1986a).
Uncertainty. The only source of uncertainty considered is
uncertainty on the manipulated inputs (L and V) with a
magnitude bound

5s+1

wi(s) = 02557

(20)

The possible perturbed plants G, are obtained by allowing
any dL = dL (1t |wy|) and dV = dV (1t |w|). (20) allows
for an input error of up to 20% at low frequency as is used
in the simulations (9). The uncertainty in (20) increases
with frequency. This allows, for example, for a time delay
of about 1 min in the response between the inputs, L and
V, and the outputs, yp and zp. In practice, such delays
may be caused by the low dynamics. Therefore, although
flow dynamics are not included in the models or in the sim-
ulations, they are partially accounted for in the p-analysis
and in the controller design.

Performance. We use the performance weight

10s +1
wp(s) = 0.5— - (21)

A particular S which exactly matches the RP-bound (15) at
low frequencies and satisfies it easily at high frequencies is
S = 205/20s+1. This corresponds to a first-order response
with closed-loop time constant 20 min.
4.2 Controllers

We will study the distillation column using the follow-
ing five controllers:

1) Diagonal PI-controller.

0.01 24 0
ij(s) = T(1+758) < 0 _2.4) (22)
The controller was tuned in order to achieve as good a
performance as possible while maintaining robust sta-
bility (see Fig.3).
2) Steady-state decoupler plus two Pl-controllers.

. (1 +875s)

Cotme(s) = 0. SO (23)

This controller was tuned to achieve good nominal per-
formance. However, the controller has large RGA-

elements (Ay;(C) = 35.1) at all frequencies and we
expect the controller to be extremely sensitive to in-
put uncertainty.

3) Inverse-based controller based on the linear model

G5 (s) for Case 1 (Eq. 8).
Cuinels) = 2G5 (6) (24

Note that Ciiny(s) and G5 (s)T have the same RGA-
elements. Therefore, from Fig.2 we expect Ciiny(s) to
be sensitive to input uncertainty at low frequency, but
not at high frequency.

4 and 5). p-optimal controllers, Cy,(s) and Ca,(s).
These controllers were obtained by minimizing
sup,, 4#(Nrp) for each model G,(s) and G2z(s) using
the input uncertainty and performance weights given
above.

5. RESULTS FOR OPERATING POINT A

In this section we will study how the five controllers
perform at the nominal operating point A for the two as-
sumptions regarding condenser and reboiler holdup. The
u-plots for the 10 possible combinations are given in Fig.3.
The upper solid line is 4(Nrp) computed from (16). The
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Fig. 8. p-plots for Column A. Upper solid line: 1(Ngp) for ro-
bust performance; Lower solid line: u#(Nyp) for nom-
inal performance; Dotted line: u(NRpg) for robust sta-
bility. The RP-, NP- or RS-requirement is satisfied if
the corresponding pu-curve is less than one at all fre-
quencies.
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Fig. 4. Column A, Case 1. Closed-loop response to small set-
point change in yp. Solid lines: no uncertainty; Dotted
lines: 20% uncertainty on inputs L and V' (Eq. 9).

lower solid line is u(Nyp) = 8((I + GC)~!). The dotted
line is u(Ngs) (Eq. (14)). A number of interesting observa-
tions can be derived from these plots. These are presented
below. In some cases the simulations in Fig.4-5 are used to
support the claims.
Discussion of Controllers

Cp(s). The simple diagonal PI-controller performs
reasonably well in all cases. gy p is higher than one at low
frequency, which indicates a slow return to steady-state.
This is confirmed by the simulations in Fig.5 for a feed rate
disturbance; after 200 min the column has still not settled.
The controller is insensitive to input uncertainty and to
changes in reboiler and condenser holdup.

Coinv(8). This controller uses a steady-state decoupler.

The nominal response is very good for Case 1 (Fig.4), but
the controller is extremely sensitive to input uncertainty.
In practice, this controller will yield an unstable system
(Skogestad and Morari, 1986a).

Clinv(s). This controller gives an excellent nominal

response for Case 1 (Fig.3). This is also confirmed by the
simulations in Fig. 4; the response is almost perfectly de-
coupled with a time constant of about 1.4 min. Since the
simulations are performed with the full-order model, while
the controller was designed based on the simple two time-
constant model, G, (s) (8}, this confirms that G,(s) yields a
very good approximation of the linearized plant when the
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Fig. 5. Column A, Case 1. Closed-loop response to a 30% in-
crease in feed rate. Solid lines: no uncertainty; Dotted
lines: 20% uncertainty on inputs L and V' (Eq. 9).

reboiler and condenser holdups are small. The controller
is sensitive to the input uncertainty as expected from the
RGA- analysis.

C1.(s). This is the p-optimal controller when there is

negligible holdup (G,(s)), and the RP-condition is satisfied
for this case since upp & 0.95. The nominal performance is
not as good as for the inverse-based controller Cy;p0(s); we
have to sacrifice nominal performance to make the system
robust with respect to uncertainty. The controller shows
some performance deterioration when the reboiler and con-
denser holdups are increased (Case 2). This is not surpris-
ing since the added holdup makes the response in yp and
zp more sluggish.

Ca,(s). This is the u-optimal controller for the case

with large reboiler and cond. holdup . ugpp = 1.00 for this
case. The nominal response is good in both cases (Fig.3),
but the controller is very sensitive to uncertainty when the
plant is Gy(s) rather than Ga(s}. This is clearly not de-
sirable since changes in condenser and reboiler holdup are
likely to occur during normal operation.

6. EFFECT OF NONLINEARITY
( RESULTS FOR OPERATING POINT C)

6.1 Modelling
For Case 1 the following approximate model is derived
when scaled compositions (dyp/0.1,dzp/0.002) are used:

16.0 16.0 + 0.023
GS (3) 14118 1470 14730 1= 24.5 min
C1 = .
9.3 -9.3 _ _1.41 T2 = 10 min
14718 1470 147138 .

25
The steady-state gains and time constants are entix'ely(difz
ferent from those at operating point A (8). Also note that
at steady state A;;(G(0)) = 35.1 for Column A, but only
7.5 for Column C. However, at high-frequency the scaled
plants at operating points A and C are very similar. (8)
and (25) yield:

- 1 /045 —0.36
1/065 —0.65

Therefore, as we will show, controllers which were designed
based on the model G5(s) (operating point A) do in fact
perform satisfactory also when the plant is G&(s) rather
than G¥(s). The variation in gains with operating con-
ditions is much larger if unscaled compositions are used -
both at steady-state (Table 1) and at high frequencies:

0.01 (0.45 —0.36
Gi(e0) = =3 (0.56 -o.ss) (27)
001 /65 —65
GC‘(w)_T(o.os —0.10) (270)

6.2 u-Analysis

The p-plots with the model GZ (s) are shown in Fig.6.
Performance is clearly worse at low frequencies at operating
point C (Fig.6) than at operating point A (Fig.3). This is

aid
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Fig. 6. p-plots for column C. Upper solid line: u(Ngp); Lower
solid line: u(Nyp); Dotted line: u(Nrs).

expected; the controllers were designed based on model A,
and the plants are quite different at low frequencies.

The p-optimal controller Cy,(s) satisfies the robust
performance requirements also at operating point C when
the reboiler and condenser holdups are small. Conse-
quently, with the use of scaled (logarithmic) compositions,
a single linear controller is able to give acceptable perfor-
mance at these two operating points which have quite dif-
ferent linear models.

6.3 Logarithmic Versus Unscaled Compositions

Fig.6 shows how controllers designed based on the
scaled plant G5(s) at operating point A, perform for the
scaled plant (different scaling factors!) at operating point
C: this is equivalent to using logarithmic compositions (Yp
and Xp). However, we know from (27) that the plant model
shows much larger changes if absolute (unscaled) composi-
tions (yp and zp) are used. We therefore expect the closed-
loop performance to be entirely different at operating ponts
A and C when unscaled (absolute) compositions are used.
This is indeed confirmed by Fig.7.
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Fig. 7. Column C, Case 1. Closed-loop response to small set-
point change in £p (Zp increases from 0.002 to 0.0021)
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Fig._ 8. Transition from operating point A to C (Case 1)

6.4 Transition from Operating Point A to C

Figure 8 shows a transition from operating point
A (Yp = Xp = 4.605) to operating point C (Yp =
2.303, Xp = 6.215) using logarithmic compositions as con-
trolled ouputs. The diagonal controller Cpr(s) and the
u-optimal controller Cy,(s) both yield very good responses
in this particular case (However, the u-optimal controller
generally performs better at operating point C as is evident
from Fig.6 and 7.).

7. CONCLUSIONS

A single linear controller is able to give satisfactory
control of this high-purity column at widely different op-
erating conditions. One reason for this is the use of log-
arithmic compositions which effectively counteract for the
nonlinearity in the plant. However, even if a absolute com-
positions are used, a single linear controlier performs sat-
isfactory if the deviations from steady-state are reasonably
small.

A simple diagonal controller was found to be robust
with respect to model-plant mismatch, but gives a sluggish
return to steady-state. This particular part of the response
is improved using the u-optimal controller. Inverse-based
controllers, and in particular those based on a steady-state
decoupler, are very sensitive to model-plant mismatch.
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