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épstract

It has been shown previously (Morari, 1983) that the quality of control
achievable for a certain system (its dynamic resilience) is limited by the
nonminimum phase characteristics of the plant, constraints on the manipulated
variables and model uncertainty. Model uncertainty requires the controller to
be detuned and performance to be sacrificed. The goal of this paper is to
quantify this well known qualitative statement. A general discussion of the
model uncertainty problem is followed by the derivation of simple bounds on
the nominal performance imposed by the robust stability condition for some
uncertainty descriptions. These bounds are relatively easy to evaluate and
should be effective tools for screening alternate designs in terms of their
resilience characteristics. It is shown that the use of the minimized
condition number as a sensitivity measure implicity assumes that the relative
errors of the transfer matrix elements are independent and have similar

magni tude bounds.



I. INTRODUCTION

Most chemical plants are designed on the basis of steady state
considerations, and the control system is designed separately in a later stage
of the project. This separation 1s acceptable provided there exists methods
which can be used at the design stage to assess the "controllability" of the
plant, i.e. to indicate if it will be possible later on to design a control
system which yields reasonable closed 1loop performance. Until recently such
methods did not exist, and as a result the expected performance is often not
achieved in the operating plant. In some cases a simple change at the initial
design stage could have resulted in a noontrollable" plant.

Previously, the neontrollability" assessment has been based on
simulations. This approach is complex and requires a complete dynamic model
of the plant. Usually a number of case studies are performed with different
choice of inputs, disturbances, operating conditions, controller structures and
controller parameters. All those choices might bias the ncontrollability"
assessment in an erroneous manner.

Morari (1983a) suggested to make the problem of noontrollability"
assessment independent of the problem of controller selection. This is done
by finding the best closed loop control performance achievable for a plant for
all possible constant parameter linear controllers. This target or bound on
the achievable closed 1loop performance is defined as the plants dynamic

resilience. Thus "dynamic resilience" is an expression of the system inherent

limitation on the dynamic response of the closed loop system which is not
biased by specific choices for controllers.

The limitations imposed by non-minimum phase elements (RHP zeros, time
delays) and constraints have been discussed in quantitative detail by Morari

(1983a) and Holt and Morari (1985). To achieve perfect control the plant has
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to be invertible. Non-minimum phase elements make it impossible to invert the
plant and retain (internal) stability of the closed-loop system. The effect of
constraints on performance is related to how close the plant is to being
singular. If the minimum singular value of the plant, g_(ﬁ), is small, the
system is nearly singular. This means that the plant has a very small gain
for a particular input direction. To achieve perfect control the controller
will have to provide very high input signals in this direction, thus possibly
violating the constraints on the size of the inputs.

The objective of this paper is to study the effect of model uncertainty
on the dynamic resilience. Model uncertainty requires the controller to be
detuned and performance to be sacrificed. The goal is to quantify this well
known qualitative statement and to derive expressions relating achievable
closed loop performance and uncertainty. It is important that these
performance bounds are simple in order to give the engineer insight into what
may be causing the problem and how to alter the design to get a more
"ocontrollable" plant.

The paper is organized as follows: Section II gives an introduction to
how uncertainty affects stability and performance, Section IIT introduces a
general framework for handling uncertainties and states necessary and
sufficient conditions for robust stability in terms of the structured singular
value y (Doyle, 1982a,b). Section IV discusses the use of the condition number
as a sensitivity measure. An overview of notation is given in Appendix 1, and
some properties of y are given in Appendix 2.

1I. Uncertainty, Stability and Performance

1. The Effect of Uncertainty

Before discussing how uncertainty 1imits the achievable performance

(dynamic resilience), a digression on why feedback is used for control in the
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first place is of interest. Obviously, for stable plants if there were no
uncertainties of any kind, feedforward control would be all that was needed.
Feedback is used to be able to control the plant in spite of unmeasured
disturbances and model uncertainty. One particular example is the use of
integral action in order to get perfect steady state control. Without knowing
the steady state gain exactly, perfect control may be achieved through
feedback. Also, it is well known (Horowitz, 1963), that the sensitivity of the
output of the system with respect to model uncertainty may be reduced (at
least over some frequency range) by using feedback.

However, even though feedback may be used to reduce the effect of
uncertainty, it is intuitively obvious that there is a limit on how much
uncertainty we can tolerate pefore we have to detune the system and sacrifice
performance. Thus uncertainty may impose ]imitations on the achievable
performance (dynamic resilience). We want to find quantitatively how
uncertainty affects closed-loop performance.

Let us first define some terms:

Model uncertainty: We assume the plant is linear and time invariant, but

that its exact mathematical description is unknown. However, it is known to
be in a specified meighborhood" of the "nominal" system, whose mathematical
nmodel" is available. This neighborhood defines the "set of possible plants".

Performance: "performance” is the measure with which we rate the closed

loop system (Fig. 1). High performance 1is desirable and low performance
undesirable. M"Achievable performance" is the "upper bound" on performance
which is possible for any controller under some set of conditions. A "lower
bound" on performance is some minimum performance requirements the system has

to meet.
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Nominal stability/performance: The closed 100p stability/performance of

the nominal system.

Robust stability: The closed loop system is stable for all plants in the

muncertainty set".

Robust performance: The closed loop system satisfies some performance

specifications for all plants in the "uncertainty set'.

In the context of how uncertainty affects performance, there are at least
three problems of interest:

Problem 1: Effect of robust stability requirement on nominal
performance: How does the requirement of stability for all plants in the
uncertainty set limit the nominal performance?

Problem 2: Effect of robust performance specification on nominal
performance: How does the requirement of a given lower bound on performance
for all plants in the uncertainty set, bound the nominal performance?

Problem 3: Achievable robust performance: Design the best possible
controller: What is the best performance which can be achieved by gll.plants
in the uncertainty set.

In Problem 1 and 2 a lower bound on robust performance is specified (for
Problem 1 this lower bound is simply the requirement of robust stability), and
we are considering the effect of this on the nominal performance. The goal is
to derive some simple bounds on the nominal system which when satisfied will
give the desired robust performance. Such bounds are thus intended to assist
the engineer in designing a controller for the nominal system while achieving
the specified performance for all plants in the uncertainty set.

In Problem 3 we do not care in particular about the performance of the
nominal system. The problem in this case is to find a upper bound on robust

performance using any linear controller. This problem is addressed by Doyle



-6~
(1984). The solution involves actually finding the optimal controller by
maximizing the performance, i.e. by minimizing a weighted "y-norm" of the
transfer matrix from disturbances to errors. This is a complicated
mathematical and numerical problem which will not be addressed in this paper.
This paper will be concerned with Problem 1. The problem is important in
the case the plant is operating most of the time close to its nominal point,
put with occasional perturbations. In this case we may not care about the
performance when perturbations occur as long as the system remains stable.
Furthermore, for Problem 1 we will be able to derive reasonably simple bounds
on the achievable nominal performance. Simplicity is desired in order for the
engineer to gain insight into why a particular design is sensitive to
unicertainty.

>, Causes of Model Uncertainty

To find quantitative bounds on the achievable performance imposed by
uncertainty a description of the uncertainty is needed. This is in general not
a trivial problem, but the usefulness of the bounds which are derived is
obviously closely related to how well the modelled uncertainty captures to
actual uncertainty. Before going into detail on how to describe the
uncertainty mathematically, a qualitative discussion on the causes of the
uncertainty is of interest.

A11 real processes are nonlinear. In this paper linear transfer functions
are used to represent the plant, and muncertainty” is introduced by linearizing
the nonlinear plant at various operating points. This may lead to a linear
model with "uncertain" coefficients.

In other cases the process may be represented quite accurately by linear
models. However, different operating conditions can lead to changes of the

parameters in the linear model. For example increased throughput/flowrates
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will usually result in smaller deadtimes and time constants.

Consequently, in many cases parts of the muncertainty" are well known.
However, there will always exist "true" uncertainties even though the |
underlying process is essentially linear: The model parameters are never
known exactly and at high frequencies even the model order is unknown. This
last form may often be approximated in some crude manner using munstructured”
uncertainty (Doyle and Stein, 1981).

Associated with each element of a transfer matrix are generally
uncertainties of all the three kinds discussed above. The overall result is
that for each element the frequency response (i.e. magnitude phase) at each
frequency lies in some region in the complex plane. The shapes and sizes of
these regions vary greatly, and the usefulness of the derived performance
1imitations obviously depends on how well the modelled uncertainty matches the
actual region. Furthermore, the uncertainties in the elements may not be
independent, i.e. there will be a correlation at each frequency between where
each element is in its region. Such correlations will arise frequently, €.8.
when a linear constant parameter model is used to represent different
operating (equilibrium) points. As shown by examples later, the correlation of
the uncertainties must be represented properly in order to avoid excessively
conservative performance bounds.

IIT1. Mathematical Framework for Handling Uncertainty and Robust
Stability

This section will address Problem 1 stated in the previous section: How
does the robust stability requirement 1imit the nominal performance? The main
objective is to familiarize the reader with the work of Doyle (1982a, 1982b,
198Y4). His framework for describing uncertainty is very useful because it

provides necessary and sufficient conditions for robust stability (and robust



performance).

From the qualitative discussion of uncertainty in the previous section, we
conclude that uncertainty models for each process will vary greatly, and that
a general framework for describing uncertainty is needed.

The most general description is to define the set I of all possible
plants. The set may contain a finite number of plants, or it may be an
infinite set. For a given controller, stability and performance may be checked
for each plant Pell. However, this kind of uncertainty description is obviously
too general to be useful in most cases.

Doyle's framework handles many uncertainty descriptions found in practice
except cases with finite sets of plants. It is assumed that the set of
possible plants may be written in terms of perturbations (uncertainty) on the

nominal system. Each perturbation Aj is assumed to be norm-bounded

9(ag) <1 ¥ w (1)
i.e. A; is any stable rational transfer matrix which is bounded as in (1). For
perturbations of size 1x1 the perturbation has to be confined to the unit disc

|Ail < 1 Yo (2)

This means that without any reformulations real parameter variations must be
handled by complex parameter variations. The use of the singular value 0 to
bound Aj is required to obtain necessary and sufficient conditions in the
theorem which follows.

The perturbations (uncertainties) which may occur at different places in
the feedback system (e.g. Fig. 2) can be collected and put into one large block
diagonal perturbation matrix

A = diag{A;, ... An} (3)
for which we have

5(a) <1 ¥ o )
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The blocks Aj in (3) can have any size and may also be repeated for example in
order to handle correlations between the uncertainties in different elements.
The interconnection matrix M contains the transfer functions from the output
of the perturbations A to their inputs as shown in Figure 3. Constructing M is
conceptually straightforward, but may be tedious for specific problems.

We want to derive conditions on M in order to guarantee robust stability.

Assume the nominal system with no perturbations (4=0) is stable, i.e. assume in
particular M is stable. Then the closed 1loop system will be robustly stable
if and only the system in Fig. 3 is stable for all perturbations, i.e. if and
only if det(I+AM) does not encircle the origin as s traverses the Nyquist D
contour for all possible A. Because the set of plants is norm bounded this is
equivalent to

det(I+AM) # O Yo, ¥A, d(a) <1 (5)
Equation (5) by itself is not very useful since it is only a yes/no condition
which must be tested for all possible perturbations. What is desired, is a
condition on the matrix M, preferably on some norm of M. This is supplied by

the following theorem (Doyle, 1982b).

Theorem 1. Necessary and Sufficient Condition for Robust Stability. Assume

the nominal system (A=0) is stable. Then the closed 100p system is stable for

all A, o(A) < 1 if and only if

u(M) <1 Yo (6)

The function y, called the Structured Singular Value (SSV), is defined in order

to get the tightest possible bound on M such that (5) is satisfied. The SSV u
was introduced by Doyle (1982a), and a more precise definition of p and some of
its properties are given in Appendix 1. It is important to note that p(M) will

depend both on the matrix M and on the structure of the perturbations 4. nu(M)
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is a generalization of the spectral radius p(M) and maximum singular value (M)
in that u(M) = p(M) when the perturbation A is totally structured (A=8I,|8{<1)
and p(M) = o(M) when the perturbation is unstructured (A is a full matrix).

The matrix M is a function of the nominal system only and the condition
u(M) £ 1 limits the possible nominal transfer functions. However, if M is not
a transfer function of particular interest to the engineer, then the bound w(M)
< 1 does not provide much insight. Also, to find M a model of the
perturbations is needed. In Section IV we will look at cases where the bound
u(M) < 1 reduces to simple conditions in terms of the nominal plant P.

At this point it is not at all obvious that the uncertainty description
(1)-(4) above, indeed gives a useful framework for handling uncertainty, also
it is not clear how to find the matrix M. Hopefully this will become clearer
through the following two examples.

Example 1. Input and Output Multiplicative Uncertainty

Consider the system in Fig. 2 which has input and output multiplicative
uncertainty with respect to the model of the plant P. The perturbation block
A1 represents the multiplicative input uncertainty, possibly due to uncertain
actuator (valve) dynamics. s1(w) is a scalar weighting function which gives the
size and frequency dependency of the input uncertainty. The block A4g
represents the multiplicative output uncertainty, e.g. due to measurement
uncertainty or uncertainty in the dead time involved in one or more of the
measurements. From what was assumed above, A1 and 4p will probably be
diagonal perturbation matrices, since there is little reason to assume that the
actuators or measurements influence each other. However, sOme€ of the
unmodelled dynamics in the plant P itself, which has crossterms, may be
approximated by putting them into A1 or Ap, thus making elther one of them a

nfull" matrix.
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Note that for MIMO systems using multiplicative uncertainty at the input
(A7) or the output (Ag) of the plant makes a difference, i.e. these two
uncertainty descriptions give sets with different "shape" around the nominal
plant. This means that we may start from one uncertainty description and get
bounds for the other, but that any such change will introduce conservativeness
by adding plants not present in the original set. For SISO systems
multiplicative input and output uncertainty cannot be distinguished.

To examine the performance constraints imposed by this uncertainty

description, let A = diag{A1, AO} and rearrange the system in Fig. 2 into the

form in Fig. 3. We find the interconnection matrix M

_&7(w)CP(1+CP) ™ s (W) C(I+E0) ™ |
R I,

5o(w)B(I+CP) ™ ~8p(w)BC(I+PC) ™
and robust stability is guaranteed for 3(A) < 1 if and only if u(M) <1 at all
frequencies. Although this condition indirectly 1imits the allowed nominal
closed loop transfer functions, it does not give a transparent bound which
gives insight into how uncertainty limits performance. Such transparent bound
may be found for example, when we assume that there is only one kind of
uncertainty occurring, i.e. if A7 = O or Ap = 0.

Case 1. Multiplicative Output Uncertainty. In this case Ap = O and using

(7) yields the following condition

Robust stability ¥ AQ, a(Ag) <1

. = 1
iff  u(H) < ) Yo (8)
where

fi = Bc(+PC)™? 9)

Here H is the nominal transfer function from setpoints (r) to outputs (y) (see
Fig. 1). Condition (8) gives a "clean" bound in terms of H, which is a transfer

matrix directly related to performance, and this is one of the reasons output
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uncertainty is a "popular” choice for describing uncertainty. u(i:l) depends both
on H and the structure of A,. If the perturbation A, is a diagonal matrix, u(ﬁ)
must be used. In this case use of §(H) may discard acceptable designs as
shown in Fig. 4. However, if A, is a "full" matrix w(H) = o(H) and we get a
non-conservative condition in terms of 3(H):

Robust Stability, ¥ Ag, Ag full matrix, a(ag) <1

e o) < gy W (10)
This condition was first presented by Doyle and Stein (1981). Condition (10)
indicates that the system has to be detuned and performance sacrificed
whenever &g(w) > 1. (8) and (10) are necessary conditions only if the actual
uncertainty description fits the modelled description. In other cases they may
be arbitrarily conservative.

Case 2. Multiplicative Input Uncertainty. In this case Ag = 0, and

assuming A7 is a full matrix, (7) yields the condition

Robust Stability ¥ Ay, Ap full matrix, 8(ap) <1
R By 1
iff O(CP(I*CP) ) _<_ m Yo (11)

Here CP(I+CP)~* is the transfer matrix from a disturbance entering at the input
of the process to the output of the controller. Usually this transfer matrix
is not of primary interest for judging the overall performance. To get a more
myseful" bound the following identity may be used

CB(1+CP)~! = PP (12)
and the following condition which is only sufficient for robust stability can

be derived from (11)

Robust Stability ¥A, A full matrix, g(ap) <1

. - 1 1
{ —= ¥ 1
if O(H) A 'Y(P) m w ( 3)

Here Y(F) = 3(P)/o(P) is the condition number of the plant. This bound may be
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arbitrarily conservative even if we make the restrictive assumption that the
uncertainty is actually described in terms of a norm pounded input uncertainty.
(13) has been used to introduce the condition number as a sensitivity measure
with respect to uncertainty (Morari, 1983), but this is at best misleading.
Note that the condition number drops out entirely and we get a much tighter
bound if we assume H = nI or if the system is SISO. We will discuss later in
which situations the condition number may be used as a sensitivity measure.

Example 2: Independent Uncertainty in the Transfer Matrix Elements

In many cases the uncertainties are most easily described in terms of
uncertainties of the individual transfer matrix elements. This kind of
uncertainty description may arise from an experimental identification of the
system. If the uncertainties vary greatly from one element to another, an
uncertainty description of the multiplicative type (as in the last example)
will tend to be very conservative as much additional uncertainty has to be
included to arrive at the appropriate set.

The simplest form of element uncertainty is to assume that each element
Pij in the plant P is independent, but confined to a disc with radius aij(w)
around Eij in the Nyquist plane (Fig. 5), i.e.

\pij‘ﬁij\ < aij(u)) ¥ (14)
This corresponds to treating each element as an independent SISO plant. For
SISO systems additive and multiplicative (relative) uncertainty are equivalent.
The two main limitations of the uncertainty description (14) are
1. The discs shape is potentially conservative, e.g. for pure time delay
error.
>. Correlations between the elements cannot be handled (potentially very
conservative).

By neonservative" we mean that the modelled set of uncertainties will be
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larger than the actual set.

Defining the complex perturbation Ajj:
PSP gy
By = ~ap; |aig] <1 (15)
we may represent the uncertainty as a weighted additive uncertainty on the

nominal plant

ﬁilall A,za‘z

~ Ay22y2
P - P = = 16
Ann@nn (16)
or equivalently (Fig. 6)
P - P = EAL (7)
where Ae Cn?Xn® is diagonal
A = diag{Ayihiz «o- Apn) o \Aij| <1 (18a)
and E ¢ ROXN® and L e RN*XD
B
1001 VoA -‘
: 11001 “an
E = , L = (18b)
110001 az
a,¥ .
L 4nn

Using this uncertainty description the system in Fig. 6 may be rearranged into
the form in Fig. 3 with the interconnection matrix
M = LC(I+PC)T'E = LPTMHE (19)
From Theorem 1 follows the necessary and sufficient condition for robust
stability
w(LP'HE) <1 Yu (20)
In principle this equation may be used to generate all nominal closed
loop transfer matrices fi for which the closed loop system is robustly stable.

Alternatively, it may be used to check if particular designs meet the robust
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stability requirement. However, at the design stage when the dynamic
resilience is to be determined, H is not known, but rather the restrictions on
H imposed by the uncertainty are of interest. In order to obtain an explicit
bound on H from (20) assume H = hi, i.e. choose C = c(s)P~?. This controller
choice yields a decoupled closed loop transfer function with identical

responses. From (20) follows:

Robust Stability

ier o) = A ¢ —ame Vo (21)
~ w(LPT'E)

Again, this bound shows that the system has to be detuned and performance
sacrificed when the uncertainty is large, i.e. in this case when u(Lﬁ"E) > 1.
u(LPT'E) is a measure of the dynamic resilience which takes into account both
the size of the uncertainty and the sensitivity of the plant to uncertainty.
IV. Additive Norm Bounded Uncertainty

The robust stability condition u(M) < 1 stated in Theorem 1 is in principle
all that is needed to study robust stability for systems with norm bounded
uncertainty. However, as stated before, we are looking for simpler conditions
which may be used to gain additional insight into why and when uncertainty
causes robustness problems for a particular system. It is hoped that this
insight will indicate to the design engineer how the system has to be modified
to improve its resilience characteristics.

In the following we will consider a less general uncertainty description
given in terms of weighted additive uncertainty on the nominal plant. We will
derive conditions which are consequently less general than Theorem 1, but
which yield additional insight, and may be used to interpret the condition
number as a sensitivity measure. The results in this section also fit in
nicely with previous work (Morari, 1983, crosdidier, et al., 1985) and show

that those results may be extended and placed into the framework used in this
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paper.

Consider a generalization of the uncertainty description presented in
Example 2. Assume that the uncertainty may be written as an additive weighted
norm bounded uncertainty on the plant (Fig. 6), i.e.

p-P =EA, 5(a) <1 (22)
where E and L are weighting transfer matrices. E and L do not have to be
square or nonsingular but do generally have to be stable. We may define a
corresponding norm bounded set of plants, I,

My = {P: p-P - EAL, ¥A such that a(a) <1} (23)

As shown in Example 2, any uncertainties given in terms of norm bounds on

the individual elements (i.e. \Pij‘ﬁij\ < ajj) may be written in this form. Also
uncertainties which are not by themselves additive perturbations on the plant
may in some cases be written in the form (22). For example, the
multiplicative input uncertainty of Example 1 may be written in this form if

we assume the input uncertainty to be the only kind of uncertainty and choose

the weights E = P and L =1
The major restrictions on writing the uncertainty in the form (22)
1. Uncertainties entering at several places in the system cannot be handled.
In particular this implies:
1a. Different kinds of uncertainty descriptions cannot be combined. The
multiplicative input and output uncertainty together (Example 1)
cannot be put in the form of (22).
1b. Most uncertainties stemming from real parameter variations cannot
be written in the form of (22).
o, Some uncertainty descriptions with only one kind of uncertainty cannot be

handled, e.g. the uncertainty description in Fig. T.

1. The Determinant Condition
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The determinant condition in terms of P-P follows directly from Theorem
1.

Theorem 2. Determinant Condition for Robust Stability. Assume the uncertainty

may be written as a norm bounded set of plants Ty, i.e. p-P = EAL. Assume the
nominal system 1is closed loop stable. Then robust stability is achieved for
all §(A) < 1 if and only if

det(I+(P-P)P—*H) £ 0 ¥, ¥Pe Tl (24)

or  iff  wLPTME) <1 Wu (25)

Proof': See Appendix 3.
The sufficiency of condition (24) for this kind of uncertainty is obvious from
the Nyquist criterion when applied to the IMC structure (Morari et. al., 1985).
The necessity is a consequence of the assumed norm bounds on the additive
uncertainty. Condition (24) itself is not very useful but it will be used

later to derive conditions involving the condition number of P. For H = hI we

may simplify (25) and derive a necessary and sufficient bound on |ﬁ\ for robust
stability which shows how performance must be sacrificed in the case of

uncertainty
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5] < s Vo (26)
— w(LP™*E) :

As the uncertainty expressed in terms of L and E increases, generally
increases, and |E| has to be reduced and performance deteriorates. A result
which gives further insight into what kind of uncertainties cause problems can
be derived directly from Thm. 2 for the mathematical idealization of "perfect
control™:

Corollary 2.1. Perfect Control (H=I): Robust stability ¥Pe Ip

iff  det(PP~!) #0  ¥u, ¥Pe Il 7
iff  wPTE) <1 Ve (28)
Condition (27) indicates that in the case of a norm bounded uncertainty on
the plant perfect control is possible if and only if P is nonsingular (detP #
0) for ¥Pe N, ¥w. P will be singular (detP = 0) for a particular w if P has a
zero on the imaginary axis. It is well known (Morari, 1983) that perfect
control (f=I) of the nominal plant P is possible only if P is minimum phase.
Corollary 2.1 confirms that for perfect control of the actual plant P to be
possible, zeros must not cross into the RHP in the frequency range where H =
1.
For stable plants the following necessary and sufficient condition for

robust stability with integral control may be derived from Corollary 2.1.

Corollary 2.2. Integral Control. (H(0)=I): Assume P {s stable. Robust

stability may be achieved
iff  det(P(O)P(0)™*) > 0  ¥Pe Tip (29a)
iff  wLPE) <1, w=0 (29D)

Proof. See Appendix 3.
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Note that Corollary 2.2 uses only steady state information about the
plant. This is important since this is often the only information which is
available to the engineer. Robust stability under integral control implies
that the steady state performance will be perfect for any plant P in the

uncertainty set Pell, i.e. robust performance at steady state is guaranteed.

This is in contrast to the other conditions derived above which were only in
terms of the nominal performance, meaning that performance might be
arbitrarily poor for P # P.

2. The Condition Number as a Sensitivity Measure

It has been argued previously in a qualitative manner (Morari, 1983,
Grosdidier et al., 1985) that the minimized condition number Y*(P) is a measure
of sensitivity to model uncertainty. Furthermore, there is a direct
relationship between large elements in the Relative Gain Array (RGA) and Y*(P)
(Grosdidier et al., 1985), and largé elements in the RGA are often claimed to
indicate sensitivity to model uncertainty. In this section it will be shown
that the minimized condition number Y¥(P) is a useful measure only if the
relative errors of the transfer matrix elements are independent and have

similar magnitude bounds. This is a restrictive assumption in many cases.

Theorem 3. Condition Number Criterion. Assume H = diag{ﬁi}. Robust stability

is achieved

it |hy| < Yo, Vi (30a)

PmaX.Y;(ﬁ)
which is satisfied

it |hg| < ] Vo, ¥ (30b)

Ppax/D Y*(P)

Proof: See Appendix 3.

rmax is the largest relative error (uncertainty) bound on the magnitude of any
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of the elements of the transfer matrix P:

rpax(w) = miajx ri j(w) (31a)
where
.._B..
r{j =max PiyPij (31b)
Pe Tp | Pij

v*(P) is the minimized condition number and Y*,(P) is the minimized
nabsolute” condition number as defined in Appendix 1. The minimized condition

numbers are similar in magnitude since
Y B)wvm < Y¥B) < Y L(B) (32)
In general Y*a(ﬁ) and Y*(P) may be found by numerical optimization, but this is

undesirable. For 2x2 systems the following analytical expression is available

for Y*,(P) (Appendix 3):

1/2
- 1+[A
(|A]-2|A] “cos ¢/2+1)
and for Y*(P) when P is real (w=0) (Grosdidier et al., 1985)
1+A1/2
Y*(P) = 21—A172\ ! A>0 (CL))
1 A<O

where A is Rijnsdorps interaction measure (Rijsdorp, 1965)
PEELALLCIR YN (35)
pllp22

A relationship between Y*¥(P) and the induced 1- and =-norms of the RGA has

been conjectured by Grosdidier et al. (1985):
Y*(F) < 2 max[||RGA||;, | |RGA||=] (36)

Generally, this bound is violated for systems of dimension Ux4 or higher.
However, for 2x2 systems this bound holds even for Y*a(ﬁ) and we have the

stronger result:
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Theorem 4 (2x2): Y*3(P) < ||RCA||a (37

Proof: See Appendix 3.

||*|]a is the norm defined as the sum of all the magnitudes of the

elements, i.e.

lella = 2 |l (38)
1,]

Note that for 2x2 systems | |RGA| |a = 2| |RGA}|, = 2| |RGA| |=- Numerical examples
for 3x3 and Uxi systems support the following extension to systems with higher

dimensions:

Conjecture 1_(nxn): Y*,(F) < ||RGA]|a + 2 (39)

For real matrices and high condition numbers | |RGA| |a approaches Y*a(ﬁ).
The bound (39) appears to be most conservative for small condition numbers.
Theorems 3 and 4 and Conjecture 1 provide at least a partial explanation

of why ill conditioned multivariable systems with large RGA should be avoided

already at the design stage: When Y*a(Y*) or equivalently ||RGA||a is large,

then the performance mesured in terms of |E| is very restricted (c.f. (30))

even if the model uncertainty rpax 1is small. The uncertainty description (31
can be very conservative and inappropriate at times. However a small fraction
of any model error is always "random" and for that type of error (31) is

suited quite well. Conditions (30) are attractive because they are independent
of the scaling of the system inputs and outputs. An expression similar to

(30b) which introduces gﬁ?) as a sensitivity measure for additive errors on the
elements was presented by Morari and Skogestad (1985). However, contrary to
the relative error, the additive error is strongly dependent on the scaling of
the system. Defining uncertainty in terms of relative error of the elements

is simple and convenient since it is the kind of uncertainty description
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immediately understandable to the engineer.

The disadvantage of Thm. 3 is that it is only sufficient. If condition
(30a) were very conservative use of the condition number as a sensitivity
measure could be quite misleading. Theorem 5 shows that, at least for 2x2
systems, this is not the case when the relative error bounds are equal:

Theorem 5 (2x2). Assume H = hI and assume the relative errors of the elements

of P are independent and have equal magnitude bounds r. Then condition (30a)

in Theorem 3 is necessary and sufficient for robust stability, i.e.

Robust Stability iff || < —p—= Vo (40)
- rY a(P)

Proof: See Appendix 3.

Conjecture 2 (nxn): Theorem 5 holds also for systems of higher dimensions.

Conjecture 2 1is pbased on numerical results for 3x3 and Ux4 systems. An
equivalent statement of Conjecture 2 is
Y*,(B) = upc(P) (1)

where upo(ﬁ) = u(LP7*E) for complex perturbations with equal relative errors r
- 1. Note from (31) that the perturbations on the elements of P are assumed
to be complex. This is reasonable at nonzero frequencies but does not make
much physical sense at steady state (w=0) where P is real. Conjecture 2 will
obviously be conservative at w = 0 since complex perturbations cannot occur.
Fortunately, for 2x2 systems it turns out that Y*(®) gives the desired measure
of sensitivity with respect to gggl_perturbations, i.e.

ex2:)  YX®) = upr(P) (42)
where upr(ﬁ) = u(LP7?E) for real perturbations with equal relative errors r =1f

Corollary 2.2 and (42) may be combined into the following theorem:

Theorem 6. (2x2) Integral Control (H(0)=1)
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Assume the relative error of the elements in P(0) are independent and
real and have equal magnitude bounds r. Then for open loop stable systems

Robust stability may be achieved iff Y*(P(0)) < 1/r (43)

Proof': See Appendix 3.
Theorem 6 is unique to 2x2 systems as numerical examples show IO such
relationship for systems of higher dimensions. If the magnitude bounds on the
relative errors are not equal and rpax 1S substituted for r, Theorem 6 and
Conjecture 2 provide sufficient conditior? for robust stability.

Theorem 6 and Conjecture 2 give very clear interpretations of the
minimized condition numbers as sensitivity measures: y*(P(0)) and ¥4 (P(3w))
are accurate measures of sensitivity only if the plant uncertainties are given

in terms of independent norm-bounded elements with equal relative error

bounds. For other uncertainty structures the minimized condition number may
be a very misleading sensitivity measure, and bounds on the uncertainties such
as (30) may be arbitrarily conservative. This is illustrated in the following

example.

Example 3. Integral Control of High Purity Distillation Column

This example represents a pinary distillation column with inputs L (reflux
flowrate) and V (vapor flowrate from reboiler). The feed composition Zp =
0.42L, reflux ratio L/D = 17, number of trays N = 110, relative volativity a =
1.15, and the nominal top and bottom compositions (outputs) are yp = 0.993 and
xg = 0.005. Using the approximate relationships of Shinskey (198Y4) we derive

the linearized gains for the nominal plant

3XB 3XB

B(0) = [0.8031 ososk] | |Gov Gl
1.2376 -1.2345 3D e

| Gry Gk

and | |RGA| |a = TH5-2, *E0) = T45.2, Y(FO) = 815.1



-ol-

From the high condition number, one might conclude that the closed 1loop
performance is very sensitive to model uncertainty. This would be true if the
uncertainty had the form of independent element errors, but not necessarily
otherwise. Let us look at conditions for using integral action (H(I)=0) for two
different assumptions about the uncertainty. To illustrate this point:

Case 1: The elements are assumed independent and norm bounded with
equal relative error T. As expected from Theorem & the SSV u (real
perturbations) and the y¥-test both give the same result: Robust stability
with integral action is possible if and only if r < 1.34 x 1073,

Case 2: A more realistic uncertainty description for this high purity

distillation column is

b -8 ]l

The reason for the highly structured uncertainty is that any upset in the
column will keep xp(1-¥yD) nearly constant (Skogestad et al., 1985).

Using the SSV u (Corollary 2.2 with real perturbations) we find that a
control system with integral action can be designed for which the closed loop
system 1is robustly stable if and only if 6 < 6.7, i.e. the elements may even
change sign. (This may not be true in practice because the uncertainty
description above is an approximation). Thus despite the high condition number
the system is not sensitive at all to this physically motivated model error.
V. Conclusions

To guarantee robust stability model uncertainty requires feedback
controllers to be detuned and performance to be sacrificed. ToO which extent
detuning is necessary depends on the size of the uncertainty and the
sensitivity of the plant. The Structured Singular Value u(M) is by definition

the best measure of the effect of uncertainty on performance:



-05-
Robust stability iff u(M) <1 ¥ (6)

However, the issue here is not control system design but process design.
From this point of view systems whose closed loop stability and performance
are very sensitive to model error are undesirable because they are either
impossible to control or require that enormous effort be put into the design
of the control system. Condition (6) assumes that a control system has
already been designed and is therefore unsuitable for screening purposes at
the design stage. If some mild assumptions are made on the type of model
uncertainty and the control structure, achievable performance can be related
directly to characteristics of the system itself. We will assume throughout
the following summary that the nominal closed loop system is decoupled (H=hI)
with identical responses. This is a reasonable assumption at low frequencies,
and leads to the least conservative bounds.
I) Uncertainty: P - P = EAL

A = diag{aj}, §(83) <1

E, L stable
Robust stability iff
> 1
[ [ E—— (21)
u(LPT'E)
II) Uncertainty: PP ¢ rij
Pij
r = max UIjij
max % ij
1. Robust stability if
~ 1
h|  ——5—=¢ Yu (30a)
| l PmaxY a(P)

2. 2x2 systems, rjj =T ¥i, j.

Robust stability iff
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= 1

3. 2x2 systems, rij=7r ¥i,j, integral control (H(0)=I).

Robust stability may be achieved iff

[h©)] = 1 < (43)

1
rv*(F(0))

The minimized condition number Y*(Y*a) or equivalently the RGA is a
preliable indicator of closed loop sensitivity to model uncertainty only if the
relative errors of the transfer matrix elements are independent and have
similar magnitude bounds. Otherwise the uncertainty should be modeled as
suggested in case I). Then the appropriate SSY u is a good indicator of the
performance deterioration caused by model uncertainty.
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Appendix 1, Notation (see Fig. 1)

C(s)
P(s)
P(s)
1
|G|

RGA(G)

p(G)

3(G)

o(®)

Y(G)

Ya(G)

Y*(G)

p(G)

rational transfer matrix of fixed-parameter controller
nxn square rational transfer matrix of actual plant = {pij}
nxn square rational transfer matrix of nominal plant = {f)ij]

set of all possible plants, i.e. Pell

matrix G with all elements replaced by their absolute value

G(jw) X (G“(jm))T - Relative Gain Array of G. X represents the
Schur or Haddemard product (element by element multiplication).
spectral radius of G, i.e. magnitude of largest eigenvalue
maximum singular value or spectral norm of the transfer matrix G,

which is equal to the induced 2-norm

| |Gy} |-

3(G(jw)) = mad(——-— (jw)

| ul |2
Here ||+||. denotes the usual Eucledian spatial norm

minimum singular value of G

i) - min LS
0(G(jw)) in 9] 1s

We have the property o(G) = 1/6(G™")

(Jw)

5(G)/0(G) - condition number of G

5(|G])/0(G) - absolute condition number

minimized condition number, v*¥(G) = min ¥(S,GS,), where S, and S,
192

are real diagonal matrices

structured singular value (see Appendix 2).

The Laplace variable s or jw is omitted in most cases.
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Appendix 2. The SSV p and its properties

Definition (Doyle, 19820)1. The function u(M), called the structured singular
value (SSV) is defined at each frequency such that u"t(M) is equal to the
smallest & needed to make (I+AM) singular, i.e.

pTUM) = mién{éldet(hAM) - 0 for some 4, 5(A) < 8(w)} (A2—1)
A is a block diagonal perturbation matrix. n(M) depends on the matrix M and
the structure of the perturbations A. The definition of p may be extended by
restricting A to a smaller set, e.g. A real. The above definition is not in
itself useful for computing u since the optimization problem implied by it does
not appear to be easily solvable. Fortunately, Doyle (1982) has proven several
properties of u which makes it more useful in applications.

o-
Properties of u (Doyle, 1982)

1. The following bounds exists for u:
(M) < u(M) < (M) (A2-2)
(M) = p(M) in the case A = 6l u(M) = §(M) in the case A is
mnstructured", i.e. A is a full matrix.

5.  Let @ be the set of all unitary matrices with the same structure as A,

then

max p(UM) = p(M) (A2-3)
Ued/
This optimization problems is in general not convex.
3. Let @ be the set of real positive diagonal matrices D = {diag(diI;)}
where the size of each block (size of Ij) is equal to the size of the

blocks Aj. Then for 3 or fewer blocks
min O(DMD™}) = u(M) (A2-4)
De D

For 4 or more blocks numerical evidence suggest that this gives a tight

upper bound on p(M).

4. M) = JauM) , a is a scalar. (A2-5)
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For real matrices M with real, non-repeated perturbations, the search in

(A2-3)

cornerp

may be performed with real matrices U only, and only the

oints ("+1") need to be considered. For Eq. (29a) in Corollary 2.2

this implies that only cornerpoints for the possible P(0)'s need to be

checked.
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AEEendix 3

Proof of Theorem 2: Construct the interconnection matrix M for this

uncertainty description (rearrange Fig. 6 to get Fig. 3):

M = LC(1+BC)™! E = LPHE (A3-1)
The transfer matrix P—'H 'is stable because the nominal system with A = 0 is
assumed to be stable. Substituting (A3-1) into (5) we find

det(I+AM) = det(I+ALP™'HE) = det(I+EALP1H) = det(I+(P-P) P~1H) # 0  QED

Proof of Corollary 2.2:
Necessity: Cor. 2.1 provides the necessary condition

det(P(0)P(0)"%) # O  ¥Pe g (A3-2)
Because My is convex and Pelly (A3-2) is equivalent to

det(P(0)P(0)~*) > 0  ¥Pe Ty (29a)
sufficiency: If (29a), then conditions (24) and (25) of Thm. 2 and (26) are
satisfied for w = 0 with f(0) = I. For frequencies w # 0 and stable plants, H

can always be selected H = hI such that (26) holds.



..33..

Proof of Theorem 3

Assume a weighted additive uncertainty of the form P - P = EAL. Then we
have robust stability (Theorem 2) if and only if
det(I+(P-P)P~'H) # 0 ¥w, ¥Pe Ilj (24)
Define the scaled plant by
Pg = S,;PS, , Py = SiPS; (A3-3)
where S; and S, are real diagonal matrices. Substitute (A3-3) into (24) and
use the property det(I+AB) = det(I+BA) to get
det(I+(Pg-Pg)Ps™!8HS, ™) # 0, ¥Pe Iip (A3-4)
To eliminate S; and S,”! assume f is diagonal and apply the Small Gain Theorem
to (A3-4) to get
Robust stability for H = diagi{hj} if
- = =1
|y < [ }[)n:éan %} ?(-1@ Vo, W (A3-5)
The following Lemma bounds the npelative error" of a matrix in terms of the
relative errors of the elements
Lemma 1
Consider any set of plants I. Define the maximum and minimum relative

error in the elements

rpax(w) = { mai>3 rij(w)} (A3-62)
rminlw) = { mi_lr?j rij(w)} (A3-6b)
-
rij(w) =max 1) 2 (A3-6c)
Pe T Pij
Then
3(P-P) a(|B]) _
et 50 < Tmax 3 (F) < rgax VN (A3-7)

\?\ is the matrix formed by taking the absolute value of the elements in p. If
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the set of plants corresponds to a norm bounded set Mg with independent

elements we also have a lower bound

max -
Pellg  6(P)

5(|B])

— > (A3-8
3B = mn 378
Consequently if the relative error bounds of the elements are equal we have
equality

S -[{ o ) R 5(|B]>

Pell_ 5(F) ) (A3-9)

Proof of Lemma 1:

The upper bound is found by defining a larger norm bounded family T,

n - (pr | PP ¢ ppay () (A3-10)
Pij :
We get
[ Braloar |Pazlbar eees |P1n|bin
P-P = rpax : : (A3-11)
|Pn1lbn1 |Pnn | Ann

and §(P-P) has it maximum when all 435 = 1. Consequently, since Il & I,

—

tax §(P-F) < max  8(P-P) = rpmax 8(|P] (A3-12)
Pell = Pe Iy wax ((F| :
To get the right hand side of (A3-7) use the general property (Stone, 1962)
L 1Al < 5 < LAl (A3-13)
/n
where ||| |F denotes the Frobenius norm of the matrix A,
A e = (2 |aij|2)”2 (A3-14)
i,J '

Using the obvious property | 1Al |F = || |&] | IF we get
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o(Bh I Bl e _ = (43-15)
5(P) T ||| |@/n :

The lower bound (A3-8) is found by defining a smaller norm bounded family of

plants Iig which is included in IIg

pl 0—5 .
Mg = (P: |28 < rpgn(w)} (A3-16)
and since Ig = Iig we have
max 5(P-P) > max 3(P-P) = rpind(|P]) (A3-17)
Pellg — Pe I min | I :

This concludes the proof of Lemma 1.
Using the fact that relative errors are unchanged by the input and output

scaling defined in (A3-3), we use (A3-7) to conclude that the robust stability

condition (A3-5) will be satisfied if

|5_|< 1 8P) g 1
U Thax  olPd) Y(Ps)  Fmax Y4(Ps)

(A3-18)

This condition will guarantee robust stability for any choice of scaling.
Since rpax is independent of scaling we can make (A3-18) least conservative by
minimizing Ya(ﬁs) over all possible scaling matrices. This proves the first
condition (30a) in Theorem 3. The second statement is proved by applying
(A3-15).

Proof of Theorem 4:

For 2x2 systems the RGA becomes

A 1-) PP
RGA = [1—;‘1 - n] Ay - ﬁPnp‘_zz- - 11_A (A3-19)
'TAn 11 P11P22"Pi2P2a .
Consequently
A
|EGA a = 2(h s || 1-An ) = 2 AL (43-20)
| [1-A]

Using Eq. (33)
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. 14|72 1+2| 4|

2 (|A|-2|A|T/2cos¢/2+1)1/2 B |1-A]

172,

Al

< | |RGA| |a » QED(A3-21)

Proof of Theorem 5

Let P be a nonsingular 2x2 transfer matrix and consider the case of

independent elements with equal relative errors r.

Py (14r4,,) Da(14r8,) |
o | Pt 11 Elz 12 , |Aij‘ <1 (A3-22)
p21(1+rA2l) pzz(“’PAzz) :

First prove Eq. (41) which (using Corollary 2.1) is equivalent to the following

statement:
"the smallest r which makes detP = O isr = AN (A3-23)
Again define
PR AL LYY IPS (A3-24)
P11Pz2
and use
detP = 0 iff  (1+rA;)(1+rh,;) = A(1+ra,2)(1+rh2y) (A3-25)

The smallest r which satisfies (A3-25) is found for A,, = B2z = Ayy Dyz = B2y =
A, and we get
(1 +rAl)2 = A(1 +FA2)2

Introduce A, = eJ¢s, 4, = eld2 to find:

1—|A|1/2ej¢/2 - r|A|1/2 ej(%*¢2) - r el$?
Using geometrical arguments wWe see that the smallest r satisfying this
expression is found when the two terms on the right side are aligned, and we
get
- ([A]—Z[Al1/2c05¢/2 + 1)1/2
1+|a|1/2

(A3-26)

The derivation of the expression for Y*a(ﬁ) is very tedious but straightforward
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and follows the derivation for v*(P) (Grosdidier et. al, 1985). The derivation
shows that r given in (A3-26) is equal to 1/Y*a(§) which proves (U1).

%
Combining Eq. (41) and Eq. Q}é) gives Theorem 5.

Proof of Theorem 6

The proof is similar to that of Theorem 5, but the perturbations are
assumed to be real (—1<Aij<1) and all the elements in P are assumed to be
real. We want to find the smallest r which satisfies (A3-25).

Case 1: A <O

In this case (A3-25) cannot be satisfied for any r < 1, but it may clearly
be satisfied if r = 1 (e.g. choose A;, = -1 and A,, = -1). Consequently, the
smallest r which makes detP = O in this case is r = 1, and since Y*(ﬁ) = 1 for
A < 0 we have r = 1/Y¥(P).

Case 2a: A > 1

Only cornerpoints of (A3-25) need to be checked (see Appendix 2). Then it
is obvious that the smallest r which satisfies (A3-25) for A > 1 is the
solution of (choose Ay, = Az = 1, By = B2y = -1):

(1+r)2 = A(1-r)?
which has as its smallest root
/E-1 \h’il

r = — = — (A3‘27)
VE+1 1+/E

Case 2b: 0 < A <1

The smallest r which satisfies (A3-25) in this case is a solution of
(1-r?) = AQ1+r)?
which has as its smallest root
1-VB \1-/1‘

1+/A 1+/&

(A3-28)
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This is in fact equal to 1/Y¥(P) for A > 0 and proves statement (42). QED
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Figure 1.  Feedback system with controller C and plant P.

61A1 50A0

C

Figure 2. System with input and output uncertainties. This may be

rearranged into the form in Fig. 3.

—eee

Ak

Figure 3. Interconnection structure for uncertainties.
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Gain

Figure 4. u(ﬁ) is limited by the inverse of the magnitude of the output

multiplicative uncertainty (1/8q(w)). Use of G(H) requires a more

conservative controller design or less uncertainty.

Figure 5. Additive uncertainty on the elements. The disc represents the set

of possible pjj at a given frequency.
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Figure 6. System with weighted additive uncertainty.

Cad
1 C — P
A1
SN = { !
~NT7S A ——i
R
A ‘I/‘ v ‘_‘-—4 :
et e
5 =4
y additive

Example of uncertainty which cannot be represented b

Figure 7.
( wulhv L r\c-(" U a- ch‘;h-c‘\&rx (\" C).

uncertainty as in Fig. 6.



