
INTRODUCTION

The implementation of thermodynamic models is a tedious task. The models
are quite complex (multicomponent mixtures) and the data base issue may
also cause some confusion (i.e. origin of data, scientific units, standard
states, etc.) Whereas the current trend is to develop, and promote, advanced
program interfaces (ASPEN, FACT, etc.), a viable alternative could be to
export dedicated software. Rather than implementing an N-component
model which is restricted runtime to, say, a 3-component system, we can
export the 3-component model with parameters and physical data into a
stand-alone computer program (MATLAB). This strategy offers maximum
flexibility to the programmer, provided of course that a set of construction
rules exist which ensure feasibility of the exported model.
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THERMODYNAMIC ALGEBRA

The proposed construction rules are based on the observation that all(?)
thermodynamic models can be derived from the algebraic expression:

Presume we need the Helmholtz energy and its derivatives for the system
NO-N2O-NO2.. Using the SRK equation of state, the thermodynamic
description would look like:

function [S] = ModTVN_ideal_idealgas_58097724(x)

pcirc = [101325.0;101325.0;101325.0];
R     = 8.314511984;
T     = x(1);
V     = x(2);
i     = [3,4,5];
n     = x(i);
NR    = sum(n)*R;
NRT   = NR*T;
e     = [1;1;1];
p     = R*log(R*T*(n./pcirc)/V);
g_1   = n'*p;
g_2   = -NRT/V;
g_i   = T*p;
H_11  = NR/T;
H_21  = -NR/V;
H_i1  = p + R*e;
H_22  = NRT/V^2;
H_i2  = -R*(T/V)*e;
H_ii  = R*T*diag(e./n);
S.g   = [g_1;g_2;g_i];
S.H   = [H_11,H_21',H_i1';H_21,H_22,H_i2'; …
         H_i1,H_i2,H_ii];

CONCLUSIONS

A fully consistent Helmholtz object has been defined in terms of seven
primitive model classes and three algebraic operators (* and + and ^). It has
been shown how the object can be exported to XML, LaTeX and Matlab. All
the output formats encapsulate the functionality and the parameters needed
to calculate the gradient vector and the Hessian matrix of the Helmholtz
energy for the given system.

DISCUSSION

In the infancy of this project it was attempted to develop the code in C++.
This attempt failed for two reasons: 1) C++ is a huge language which gives
the programmer access to both imperative, functional and object oriented
programming within one language formalism. This makes it very hard to
settle for a concise programming style. 2) C++ is a compiled language with
rigid class structures which makes the code highly sensitive to changes in the
class design and the basic data types. This proved to be a big drawback in the
early stages of the development (when the design changed every week).
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%Iterate on (negative) pressure and chemical potentials.
while norm(dv./(xv+xl))>1e-7
  V  = Surface(xv);
  L  = Surface(xl);
  dv = [0;inv(L.H(i,i)+V.H(i,i))*(L.g(i)-V.g(i))];
  s  = min(1,-0.8/min([dv./xv;-dv./xl]));
  xv = xv + s*dv;
  xl = xl - s*dv;
end
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2:  CANONICAL REPRESENTATION (RUBY CODE)

4a: VLE  FLASH  CALCULATION

3a:  EXPORT  HIGH   LEVEL  MATLAB  CODE

 N T N U N T N U

n  = ['nitric-oxide','nitrous-oxide','nitrogen-dioxide']
n1 = n[0..0]
n2 = n[1..-1]
A  = Surface(n) * (
       Helmholtz(n) * [
         StandardState(n) * [
           MuT_cp(n1,:poly3,'ig',:reid77) * (
             MuT_hg(n1,:h0,'ig',:reid87) +
             MuT_hg(n1,:g0,'ig',:dippr96)
           ),
           MuT_cp(n2,:dippr,'ig',:dippr96) * (
             MuT_hs(n2,:h0,'ig',:reid87) +
             MuT_hs(n2,:s0,'ig',:dippr96)
           )
         ],
         EquationOfState(n) * (
           ModTVN_ideal(n,:idealgas,'gas')
         ),
         EquationOfState(n) * (
           ModTVN(n,:srk,'gas',:reid77) **
                     (:m_gd,['gas','a','mfac'],:reid87)
         )
       ]
     )
puts A.to_matlab
puts A.to_latex
A.from_xml(A.to_xml).to_xml == A.xml     # Returns true !!

3b:  EXPORT  LaTeX  DOCUMENTATION
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1:  THERMODYNAMIC MODEL

This description is quite adequate at the highest information level, but once
the model is going to be implemented there are several questions to be
answered:

•Where are the physical data taken from ?

•What is the standard state ?

•Which heat capacity function is used ?

•Which modification of SRK is used ?

4b:  ENTHALPY-PRESSURE  CALCULATION

h = -t*A.g(1) + A.g(n)’*x(n);
p = -A.g(2);
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The symbols A, B and C stand for thermodynamic objects of the type:
Helmholtz, EquationOfState, ModTVN (ideal gas, SRK, etc.),
StandardState, MuT_cp (heat capacity integral), MuT_hg (enthalpy
and Gibbs energy of formation), MuT_hs (enthalpy of formation and
entropy), etc. The exponent n specifies a function modifier. An
underlying class inheritance scheme guarantees  that the objects are
combined in a thermodynamically feasible manner (semantic check). In
addition, the following operator conventions must also be obeyed
(syntax check):

OPERATOR OVERLOADING

The construction rules are implemented using a technique called operator
overloading. Most modern programming languages (C++, Phyton, Ruby,
etc.) has this feature, which makes it possible to define the action A*B on
any pair of algebraic objects A and B. Thus, the syntax of the expression is
under full control of the programming language (nice because we do not
have to invent a new grammar), while the semantics is under control of  the
programmer (who can concentrate on the operator properties). This com-
bines the best of two worlds and makes it possible to write a very clean
interface to the function object f(x).

FUTURE WORK

In this example the thermodynamic contributions were assembled into a
Helmholtz energy surface. The proposed methodology can be extended to
Legendre and Massieu transformations [2,3], and thus make a completely
general thermodynamic surface (arbitrary coordinates). Finally, the surfaces
can be combined into an equilibrium manifold including phase and reaction
equilibrium calculations. In all cases gradient and Hessian information will
be available. Automatic differentiation of the calculated variables with
respect to model parameters is also possible. This is essential for parameter
optimisation and sensitivity analysis.

“chain”

“patch”

EXPORTED CODE

The object f(x) is stored in an onion-like structure where each shell defines a
thermodynamic contribution which holds its own component list, a database
and the function code. The function code is stored in a standard data tree
with operators sitting on the branch nodes and vectors,  matrices, etc. on the
leaf nodes. From this standard representation it is straightforward to export
the object into XML, LaTeX, Matlab, etc.

“tell”

Ruby [4] was finally chosen for its compact class abstraction and very clean
syntax. This choice has had a fair degree of success, but the models should
definitely been implemented in a pure functional language like Haskell.
However, there seems to be little activity in functional programming and it is
not clear how this issue should be resolved.


