Presume we need the Helmholtz energy and its derivatives for the system
NO-N,O-NO,. Using the SRK equation of state, the thermodynamic
description would look like:

This description is quite adequate at the highest information level, but once
the model is going to be implemented there are several questions to be
answered:

*\Where are the physical datataken from ?
*What is the standard state ?

*\Which heat capacity function isused ?
*\Which modification of SRK isused ?

On the Principles of Thermodynamic Modelling

NTNU

INTRODUCTION

The implementation of thermodynamic models is a tedious task. The models
are quite complex (multicomponent mixtures) and the data base issue may
aso cause some confusion (i.e. origin of data, scientific units, standard
states, etc.) Whereas the current trend is to develop, and promote, advanced
program interfaces (ASPEN, FACT, etc.), a viable aternative could be to
export dedicated software. Rather than implementing an N-component
model which is restricted runtime to, say, a 3-component system, we can
export the 3-component model with parameters and physical data into a
stand-alone computer program (MATLAB). This strategy offers maximum
flexibility to the programmer, provided of course that a set of construction
rules exist which ensure feasibility of the exported model.

THERMODYNAMIC ALGEBRA

The proposed construction rules are based on the observation that all(?)
thermodynamic models can be derived from the algebraic expression:

f (X) = A(X) + B(x)* C(x)"

1: THERMODYNAMIC MODEL

A+ A9+ AT
a N

A
A

T. Haug-Warberg

Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway

The symbols A, B and C stand for thermodynamic objects of the type:
Helmholtz, EquationOfState, ModTVN (ideal gas, SRK, etc.),
StandardState, MuT _cp (heat capacity integral), MuT _hg (enthalpy
and Gibbs energy of formation), MuT _hs (enthalpy of formation and
entropy), etc. The exponent n specifies a function modifier. An
underlying class inheritance scheme guarantees that the objects are
combined in athermodynamically feasible manner (semantic check). In
addition, the following operator conventions must also be obeyed
(syntax check):

A+B = B+ A
A+(B,+B,) = A+B +B,
B*C 1 C*B
B*(C*D) = B*C*D
B*(C,+C,) = B*C,+B*C,

2. CANONICAL REPRESENTATION (RUBY CODE)

['nitric-oxide','nitrous-oxide'
n[0. . O]

n[1..-1]

2oL Function ¥ : j
ur f ace(n) * damne
Hel mholtz(n) * [=
St andar dSt at e(n)/* |
g
g

, ' nitrogen-di oxi de']

MUT cp(nl,:poly3,'ig,:reid77) * (
MUT _hg(nl,:hoO,"i . rei d87) +
MUT _hg(nl,:qg0,'iqg,:dippr9o6)

),

MUT cp(n2,:dippr,'ig,:dipprasg) *_(
MUT hs(n2,:h0,'iqg",:reid87) +
MUT _hs(n2,:s0,'i1qg",:dippr9oo6)

)

],
Equati onOF State(n) * (Databasejl

(1 Chaj n”

[Property).

ModTVN i deal (n, :ideal gas, ' gas')

“tell”

3a: EXPORT HIGH LEVEL MATLAB CODE

function [S] =

ModTVN | deal | deal gas 58097724(x)

pcirc = [101325.0; 101325. 0; 101325. 0] ;

R = 8.314511984;

T = x(1);

iV f?gzzli - " Reversible \7
. S export and

NR = sum(n)*R; Import of XML

NRT = NR*T;

o - [1:1 1] _code (not snown) |

P = Rl og(R*T*(n./pcirc)/V);

g_1 = n *p;

g2 = -NRT/V

g | = T*p; ~ . N
H1l = NR/T: Gradient and

H21 = -NRV: Hess an of

Hil =p + Re;

H22 = NRT/VA2. Helmholtz energy
Hi2 = -R(T/V)*e;

Hii = RT*diag(e./n);

S.g =1[9.19.2;9.i];

S H =[H11,H21' ,Hil;H21,H22 Hi2;:

Hil,Hi2, Hii];

4a: VLE FLASH CALCULATION

Wterate on (negative) pressure and chem cal
while nornm(dv./(xv+xl))>le-7

potenti al s.

V = Surface(xv);
L = Surface(xl);
dv = [O;inv(L.H(i,1)+V.H(i,i1))*(L.g(i)-V.g(i))];
s =mn(l-0.8/ mn([dv./xv;-dv./xl]));
XV = XV + s*dv;
I = x|l - s*dv;
end

4b: ENTHALPY-PRESSURE CALCULATION

-t*A g(1) + A g(n)’ *x(n);
-A.g(2);

CONCLUSIONS

A fully consistent Helmholtz object has been defined in terms of seven
primitive model classes and three algebraic operators (* and + and). It has
been shown how the object can be exported to XML, LaTeX and Matlab. All
the output formats encapsulate the functionality and the parameters needed
to calculate the gradient vector and the Hessian matrix of the Helmholtz
energy for the given system.

DISCUSSION

In the infancy of this project it was attempted to develop the code in C++.
This attempt failed for two reasons. 1) C++ is a huge language which gives
the programmer access to both imperative, functional and object oriented
programming within one language formalism. This makes it very hard to
settle for a concise programming style. 2) C++ is a compiled language with
rigid class structures which makes the code highly sensitive to changes in the
class design and the basic data types. This proved to be a big drawback in the

narlyvs ctanoe AF tho Aay 7ol onnmont (Wwhon the AdAoctan chancoad ayrory7 wwiool

Equati onOf State(n) * (
ModTVN(n, : srk,'gas',:reid77) **
(:mgd,['gas',"a'",'nfac'], :rei d87)

]

) SRK modification |
puts A to _natl ab

puts A to_ | atex
A fromxm (A to xm).to xm

== A xm

K-values for NO, NEO and NDE
150 I 1 I | I

100

K.ﬁwualue (yifxl}

S0

0
100 150 200 250 300 350 400
Temperature [K]

& Hp-diagram for NO, N,O and N02

Pressure [Pa]
51
I

0 Jl | | |
2.6 2.8 3 3.2
Enthalpy [J]

x?ﬂﬁ

Ruby [4] was finally chosen for its compact class abstraction and very clean
syntax. This choice has had a fair degree of success, but the models should
definitely been implemented in a pure functional language like Haskell.
However, there seems to be little activity in functional programming and it is
not clear how this issue should be resolved.

FUTURE WORK

In this example the thermodynamic contributions were assembled into a
Helmholtz energy surface. The proposed methodology can be extended to
Legendre and Massieu transformations [2,3], and thus make a completely
general thermodynamic surface (arbitrary coordinates). Finally, the surfaces
can be combined into an equilibrium manifold including phase and reaction
equilibrium calculations. In all cases gradient and Hessian information will
be available. Automatic differentiation of the calculated variables with
respect to model parameters is also possible. This is essential for parameter

\:“ patch”:|

Returns true !!

NTNU

OPERATOR OVERL OADING

The construction rules are implemented using a technique called operator
overloading. Most modern programming languages (C++, Phyton, Ruby,
etc.) has this feature, which makes it possible to define the action A*B on
any pair of algebraic objects A and B. Thus, the syntax of the expression is
under full control of the programming language (nice because we do not
have to invent a new grammar), while the semantics is under control of the
programmer (who can concentrate on the operator properties). This com-
bines the best of two worlds and makes it possible to write a very clean
Interface to the function object f(x).

EXPORTED CODE

The object f(X) is stored in an onion-like structure where each shell defines a
thermodynamic contribution which holds its own component list, a database
and the function code. The function code is stored in a standard data tree
with operators sitting on the branch nodes and vectors, matrices, etc. on the
leaf nodes. From this standard representation it is straightforward to export
the object into XML, LaTeX, Matlab, etc.

3b: EXPORT LaTeX DOCUMENTATION

Mod TV N-ideal-idealgas-58097724 : &« — S

101325.0 kg
m s2
o ___ 101325.0 kg
p m s2
101325.0 kg
m s2

|

R — 8314511984 kg m?
S K mol s?

e
|

1
e = 1
1
| RT (n = p°)
— A
e (R 500)
g1 — ’RTP
 —NRT
gz — Vs
g, =1p
NR
Hy 1 = 7
- — NR
Hyy = —
H; 1 = p
+ Re
NRT
Ho > = 2

f[fz'.,i = R’ (8 — n)D

g1
Sxg= | go
g'i
Hy, Hsy HY
S'x H = Ho1 Hoo H;;:,TQ
[[311 1[@2 [[?’?
ACKNOWLEDGEMENTS

Thanks to M.Sc. student Bjarn Tore Lgvfall a the Department of Chemical
Engineering a& NTNU for programming the export facilities, and to the
Modelling and Simulation group at the Corporate Reseacrh Centre, Norsk
Hydro Porsgrunn, Norway, for continuous support and interest in this project.

=

REFERENCES

lverson, K.E., Notation as a Tool of Thought, Commun. ACM, 23 (8), 444-465 (1980
Callen, H., Thermodynamics and an Introduction to Thermostatistics, 2nd ed., John
Wiley , New York (1985).

Beegle, B.L., Legendre Transforms and Their Applications in Thermodynamics,
AIChE J., 20 (6), 1194-1200 (1974).

Matsumoto, Y., Ruby in a Nutshell, O’ Reilly, (2001).

