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Abstract—This paper aims to address the robust control
problem of rigid spacecraft attitude maneuvers in the presence
of inertia matrix uncertainty and external disturbance. A back-
stepping based adaptive sliding mode control (B-ASMC) design is
proposed as a solution, where the upper bounds of the paramet-
ric uncertainty and disturbance are not required in advance.
Compared to current adaptive sliding mode control (ASMC)
design, the B-ASMC design has two advantages. Theoretically,
the asymptotical stability of the attitude states rather than the
sliding function is guaranteed. Practically, the over-adaptation
problem in current ASMC design is alleviated and the system
performance is improved. Detailed design principle and rigorous
closed-loop system stability analysis are provided. A large angle
attitude maneuver is employed in the numerical simulation to
verify the effectiveness of the proposed algorithm.

Index Terms—attitude maneuver, adaptive sliding mode con-
trol, backstepping, over-adaptation.

I. INTRODUCTION

With the development of aerospace technologies, more
and more space missions require that the involved spacecraft
implements attitude maneuvers with large angles. Design of
an attitude control system for such case poses a challenging
problem, including the nonlinear characteristics in the attitude
dynamics & kinematics, modeling uncertainty and unexpected
external disturbances. Thus, in order to guarantee the control
performance, it is necessary to employ nonlinear robust control
methods. Sliding mode control (SMC) is a powerful nonlinear
control method that is well known for its strong robustness.
SMC can provide many good properties, such as insensitivity
to model uncertainty, disturbance rejection, and fast dynamic
response, which make it a welcome approach for spacecraft
attitude control [1]–[4].

According to the equivalent control concept, current SMC
algorithms generally consist of two parts, the continuous
equivalent control component and the discontinuous switching
control component. In order to satisfy the reaching condition,
the switching gain should be larger than the upper bounds
of the model uncertainty and disturbance. However, those
bounds are hard to find in many practical situations. Therefore,
conservative design is generally adopted, where the switching
gain is selected sufficiently large, such as those in [1]–[4].
Nonetheless, a large switching control component may aggra-
vate the chattering problem which could excite the unmodelled
dynamics and may lead to instability.

To eliminate the need of uncertainty and disturbance

bounds, adaptive scheme is integrated into SMC design, which
is known as the ASMC technique. At the initial stage, it
is assumed that the lumped uncertainty was bounded by a
linear function of the state-norm. Correspondingly, adaptive
laws were designed for the linear function coefficients, as
suggested in [5]–[7]. In particular, in [7], an ASMC algorithm
was proposed for the attitude stabilization of a rigid spacecraft,
where the lumped uncertainty is assumed to be bounded
by a linear function of the norms of angular velocity and
quaternion. Subsequently, the lumped uncertainty was assumed
to be bounded by an unknown constant and consequently
a simple adaptive law was proposed for the switching gain
calculation in [8]. Subsequent results can be found in many
applications such as internal combustion engines [9], induction
servomotor [10], planetary gear-type inverted-pendulum [11],
etc. However, on the basis of Barbalat lemma, all the ASMC
algorithms mentioned above can only guarantee that the sliding
function is asymptotically stable but not the system states. And
the system performance has not been taken into account.

On the other hand, the backstepping design technique has
been widely used to control nonlinear systems with matched
or unmatched uncertainties in recent years (see [12] and
references therein). The key feature of backstepping design
is that it stabilizes the system states through a step-by-
step recursive process. Once the final step is completed, the
stability of the entire system is guaranteed naturally. However,
conventional backstepping design mainly assume that the
lumped uncertainty is constant or slowly changing. When the
derivative of the lumped uncertainty cannot be regarded as
zero, backstepping design with integral adaptive laws are no
longer applicable. Recently, there has been continuous efforts
to combine the backstepping technique with the SMC method,
such as [13]–[15]. Unfortunately, a prior knowledge of the
lumped uncertainty bound is required.

Considering the characteristics of both the ASMC method
and the backstepping technique, it is natural to combine
those two design methodologies to preserve their advantages
and at the same time overcome their drawbacks mentioned
above, which leads to the proposed B-ASMC design. In this
paper, we focus on the robust attitude control for a rigid
spacecraft, where the inertia matrix uncertainty and external
disturbance are considered. Noticing the cascade structure of
the attitude control system, the attitude controller is designed
in the backstepping framework, where the ASMC algorithm is
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designed in the final step to deal with the lumped uncertainty.
By virtue of the backstepping design procedure, the proposed
B-ASMC algorithm can guarantee the asymptotical stability of
the closed-loop system not just the sliding function. Moreover,
the system performance can be improved by the proposed
algorithm.

II. PRELIMINARIES

A. Mathematical Model

Consider a thruster control rigid spacecraft, whose attitude
dynamics is governed by the following equation:

Jω̇b + S(ωb)Jωb = Tb + Td (1)

where J ∈ R
3×3 is the spacecraft inertia matrix, ωb ∈ R

3

denotes the angular velocity vector of FB , the body-fixed
frame, with respect to FI , the inertia frame. S(·) is the skew-
symmetric matrix operator, which is operated as follows:

S(α)β = α× β

where α and β are the vectors in R
3. Tb ∈ R

3 is the vector of
control torque provided by the thrusters, Td ∈ R

3 is the time-
varying external disturbance vector, including environmental
and non-environmental disturbance torques. Furthermore, the
inertia matrix uncertainty is considered. Let J = Ĵ+ΔJ with
ΔJ the uncertainty caused by the change in mass properties
and Ĵ = diag(J1, J2, J3) the nominal inertia matrix. Then (1)
is described as:

Ĵ ω̇b + S(ωb)Ĵωb = Tb + Td −ΔJω̇b − S(ωb)ΔJωb (2)

According to the structural feature in (2), one can merge all
the elements caused by inertia matrix uncertainty and external
disturbance as the lumped uncertainty, i.e., let d = Td −
ΔJω̇b − S(ωb)ΔJωb. Correspondingly, the attitude dynamics
is rewritten as:

Ĵ ω̇b + S(ωb)Ĵωb = Tb + d (3)

From (3), it is clear that the lumped uncertainty is matched
to the system. Without loss of generality, it is assumed that d
is smooth and satisfies ‖d‖∞ < dmax with dmax the unknown
upper bound and ‖ · ‖∞ the vector infinity-norm.

As for the attitude representation, quaternion and modi-
fied Rodrigues parameters (MRPs) are the two most popular
parameters. Quaternion is characterized by its global non-
singularity. However, the use of quaternion requires an extra
parameter, which leads to a non-minimal parameterization [4].
For the attitude maneuver whose principal angle is within
(−2π, 2π), MRPs can provide a nonsingular minimal attitude
description. Moreover, by introducing the shadow MRPs and
a switching mechanism, MRPs turn out to be a nonsingular,
bounded, minimal attitude representation. Therefore, MRPs
are utilized in this paper, whose kinematics is:

σ̇b = M(σb)ωb (4)

where σb ∈ R
3 denotes the inertial MRPs vector of FB with

respect to FI . M(σb) is the Jacobian matrix in the form of

M(σb) =
(1− ‖σb‖2)I3 + 2S(σb) + 2σbσ

T
b

4
with ‖ · ‖ the

vector 2-norm and I3 the 3 × 3 identity matrix. Moreover,
MT (σb)M(σb) = m(σb)I3 with m(σb) = (1 + ‖σb‖2)2/16.
The transition matrix from FI to FB in terms of σb is:

R(σb) = I3 +
8S(σb)S(σb)− 4(1− ‖σb‖2)S(σb)

(1 + ‖σb‖2)2 (5)

In this paper, the attitude reorientation control problem is
considered. Our goal is reorienting the spacecraft from an
arbitrary stationary attitude to a desired attitude with zero
angular velocity. Denoting the attitude variables of FD, the
desired frame, as σd ∈ R

3 and ωd ∈ R
3, the error attitude

variables are defined as follows:

σe =σb ⊕ σ∗
d (6)

ωe =ωb −R(σe)ωd (7)

where σe ∈ R
3 is the error MRPs, ⊕ is the MRPs produc-

tion operator, characterizing the successive rotations. For two
MRPs expressed in their corresponding frames, e.g., σ1 ∈ R

3

and σ2 ∈ R
3, it is operated as follows:

σ1 ⊕ σ2 =
(1− ‖σ2‖2)σ1 + (1− ‖σ1‖2)σ2 − 2S(σ1)σ2

1 + ‖σ2‖2‖σ1‖2 − 2σT
2 σ1

σ∗
d is the inverse of σd, which is extracted from R−1(σd) and

σ∗
d = −σd, R(σe) and R(σd) are the transition matrices from

FD to FB and from FI to FD, and their expressions in terms
of σe and σd can be obtained by replacing σb by σe and σd

in (5). As ωd = 0, one has ωe = ωb. Therefore, the error
attitude dynamics is expressed same as (3). As mentioned in
[17], if the attitude variables pairs (σb, ωb) and (σd, ωd) satisfy
the MRPs kinematics formulation described in (4), then the
error attitude variables pair (σe, ωe) also satisfies the MRPs
kinematics formulation. Then, the attitude control system is
governed by the following equations:{

Ĵ ω̇b + S(ωb)Ĵωb = Tb + d

σ̇e = M(σe)ωb

(8)

B. Problem Statement

The control objective can be summarized as follows: design
a robust control algorithm to steer the attitude variables pair
(σb, ωb) from (σb(0), 0) to (σd, 0) (or equivalently render
lim
t→∞σe = lim

t→∞ωb = 0) when the lumped uncertainty upper
bound dmax is unknown in advance.

III. MAIN RESULTS

A. Conventional ASMC Algorithm Design

In this section, the ASMC algorithm is applied to the
attitude control problem under consideration and its major
drawback will be revealed. First, define the following nonlinear
sliding function s ∈ R

3:

s = ωb + λ
MT (σe)

m(σe)
σe (9)
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where λ > 0 is the sliding function gain and m(σe) can be
obtained by replacing σb in (4) by σe.

According to the design principle presented in [8], following
ASMC algorithm can be obtained:

Tb = S(ωb)Ĵωb − λĴ
4M(σe)− 2σeσ

T
e

1 + ‖σe‖2 ωb − d̂sgn(s) (10a)

with d̂ the estimation of dmax which is given by

d̂ = c

∫ t

0

‖s‖1dτ (10b)

where c > 0 is the adaptive gain, sgn(·) is the sign function
and ‖s‖1 = sT sgn(s) denotes the vector 1-norm of s.

By selecting the Lyapunov candidate function in the form
of

V =
1

2
sT Ĵs+

1

2c
d̃2

where d̃ = d̂− dmax denotes the estimation error, it is easy to
obtain that the time derivative of the above Lyapunov function
is

V̇ = sT d− dmaxs
T sgn(s)

≤ −η‖s‖1
(11)

where η = dmax−‖d‖∞. On the basis of the Barbalat lemma,
one can conclude that lim

t→∞ s = 0.
There are two major problems of the above ASMC algo-

rithm. Theoretically speaking, lim
t→∞ s = 0 cannot rigorously

guarantee lim
t→∞ωb = lim

t→∞σe = 0, i.e., the asymptotic stability
of the closed-loop system is not actually achieved. Practically
speaking, the ASMC algorithm does not consider the dynamics
of the reaching phase, which may arise an over-adaptation
of the switching gain with respect to the lumped uncertainty
bound and lead to an undesirable system performance. In the
following, we try to address those problems by combining the
ASMC technique with the backstepping design and present
the B-ASMC algorithm.

B. B-ASMC Algorithm Design

As demonstrated in [18], an important property of the
system in (8) is that it describes the attitude control system
in a cascade interconnection, which accords with the strict
feedback form in backstepping design. With this in mind, it is
possible to design the ASMC algorithm in the backstepping
framework and use its key feature to guarantee the stability of
the closed-loop system.

First, in the attitude kinematics subsystem, treat the angular
velocity as an independent input, then there exists a state
feedback stabilizing control law ω∗

b (σe) in the form of

ω∗
b (σe) = −kσ

MT (σe)

m(σe)
σe = −kσ

4

1 + ‖σe‖2σe (12)

with kσ > 0. Now, consider a Lyapunov candidate function
for the attitude kinematics subsystem with the form of Vσ =
‖σe‖2/2 = σT

e σe/2. From (8) and (12), the derivative of the
above Lyapunov candidate is

V̇σ = −kσσ
T
e σe ≤ 0 (13)

If the angular velocity ωb is identical to ω∗
b (σe), the attitude

kinematics subsystem response is characterized by

σe = exp(−kσ(t− ti))σe(ti) (14)

with ti the time when ωb = ω∗
b (σe), which implies a good

error MRPs response would be achieved.
Then, in order to guarantee ωb can track ω∗

b (σe), a coordi-
nated transformation is utilized. Let z = ωb−ω∗

b (σe) ∈ R
3, the

attitude control system described by σe and z is represented
as:{
Ĵ ż = Tb − S (ω∗

b (σe) + z) Ĵ (ω∗
b (σe) + z) + d− Ĵ ω̇∗

b (σe)

σ̇e = M(σe)z +M(σe)ω
∗
b (σe)

(15)
where ω̇∗

b (σe) can be analytically expressed as

ω̇∗
b (σe) = −kσ

4M(σe)− 2σeσ
T
e

1 + ‖σe‖2 (ω∗
b (σe) + z)

Here, using the ASMC methodology, the attitude control
law for the attitude dynamics subsystem is designed as:

Tb =S (ω∗
b (σe) + z) Ĵ (ω∗

b (σe) + z) + Ĵ ω̇∗
b (σe)

− kωĴz − d̂sgn(z)
(16a)

with

d̂ = c

t∫
0

‖z‖1dτ (16b)

Consider a Lyapunov candidate function for the attitude
dynamics subsystem in the form of

Vω =
1

2
zT Ĵz +

1

2c
d̃2 (17)

According to (16a) and (16b), the derivative of the above
Lyapunov function is

V̇ω = −kωz
T Ĵz + zT

[
d− d̂sgn(z)

]
+ (d̂− dmax)z

T sgn(z)

= −kωz
T Ĵz + zT d− dmaxz

T sgn(z)

≤ −kωz
T Ĵz − η‖z‖1 ≤ −kωz

T Ĵz

In order to obtain the control law for the entire system, we
should explore the interconnection between the virtual control
law in (12) and the attitude control law in (16a) and (16b).
Thus, the B-ASMC algorithm is presented as:

Tb =S (ω∗
b (σe) + z) Ĵ (ω∗

b (σe) + z) + Ĵ ω̇∗
b (σe)

−MT (σe)σe − kωĴz − d̂sgn(z)
(18a)

with

d̂ = c

t∫
0

‖z‖1dτ (18b)

Now, we are ready to state the following theorem:
Theorem 1: For the attitude control system described in

(8), the B-ASMC algorithm in (18a) and (18b) can globally
asymptotically stabilize the closed-loop system in the presence
that the lumped uncertainty upper bound dmax is unknown in
advance.
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Proof 1: Chose the Lyapunov function for the entire system
as

V = Vσ + Vω (19)

By taking the time derivative along the system trajectory,
one has:

V̇ =σT
e M(σe)z + σT

e M(σe)ω
∗
b (σe)

− kωz
T Ĵz − zTMT (σe)σe + zT [d− dmaxsgn(z)]

=− kσσ
T
e σe − kωz

T Ĵz + zT d− dmaxz
T sgn(z)

≤− kσσ
T
e σe − kωz

T Ĵz − η‖z‖1
≤− kσσ

T
e σe − kωz

T Ĵz

where we have used the fact that σT
e M(σe)z = zTMT (σe)σe

and ‖d‖∞ < dmax.
Let χ = kσσ

T
e σe+kωz

T Ĵz. It is obvious that χ is uniformly
continuous. By integrating the above equation from zero to t,
one has: ∫ t

0

V̇ dτ ≤ −
∫ t

0

χdτ ⇒ V (0) ≥
∫ t

0

χdτ (20)

Taking the limits as t → ∞ on both sides of (20) gives

∞ > V (0) ≥ lim
t→∞

t∫
0

χdτ (21)

On the basis of Barbalat lemma, we can obtain lim
t→∞χ = 0,

which implies that lim
t→∞σe = lim

t→∞ z = 0. As lim
t→∞σe = 0, one

has lim
t→∞ω∗

b (σe) = 0. According to the definition of z, it is
easy to obtain that lim

t→∞ωb = 0. As V is radially unbounded,
then we can obtain the conclusion.

C. Discussions

Here are some remarks:
Remark 1: By comparing the ASMC algorithm with the B-

ASMC algorithm, one can find that the transformed variable
z is actually the sliding function s. Therefore, if we rewrite
the B-ASMC algorithm in terms of σe and s, there are two
additional terms of the B-ASMC algorithm as compared to the
ASMC algorithm, −kωĴs and −MT (σe)σe.

The first term is used to improve the system performance
by specifying dynamics in the reaching phase. Such a strategy
belongs to the so called the reaching law method, which was
presented in [19]. The reaching law is a differential equation
which specifies the dynamics of the sliding function. When
it is used in the ASMC design, additional benefit can be
shown, which has not been fully explored in the literature.
For this case, the sliding function dynamics is governed by
Ĵ ṡ = −kωĴs − d̂sgn(s). As the initial value of d̂ is zero,
before the adaptation scheme can produce a large enough d̂
to satisfy the reaching condition, the term −kωĴs provides
a necessary damping to speed up the reaching phase. On
the other hand, it is well known that the basic idea of the
ASMC method lies in that the switching gain can be adjusted
by the departure from the sliding surface. However, from the
adaptive law in (10b), one can see that the integral action starts

from the very beginning and any departure from the sliding
surface will results in an increase of the switching gain d̂.
Therefore, if the initial system error is large, or equivalently
the initial system trajectory is located far from the sliding
surface, the resulting d̂ generated by the ASMC algorithm is
much larger than the necessary value. Due to the fact that
the chattering level is directly determined by the switching
gain, the chattering phenomenon is serious in current ASMC
design. However, by virtue of −kωĴs, such an over adaptation
problem would be weakened due to the fact that part of role
of impelling the system trajectory to the sliding surface has
been transferred from the −d̂sgn(s) term to the −kωĴs term.
The parameter kω serves as a tuning parameter dealing with
the trade-off between the chattering level and control torque
amplitude.

The second term, −MT (σe)σe, is used to guarantee the
asymptotical stability of the closed-loop system, which has
already been verified in the above proof.

Remark 2: In [20], the sliding motion with an infinite
frequency of the control switching is defined as the ideal
sliding. In ideal sliding, the system trajectory is strictly con-
strained on the sliding surface. Whereas, due to the switching
imperfection, i.e., the switching frequency is finite, sliding
motion only takes place in a small neighborhood of the sliding
surface, which is defined as the real sliding. Recalling the
adaptive law in (18b), the switching gain will converge to a
bounded value only in ideal sliding. However, in real sliding,
as the sliding function is not identically equal to zero, d̂
will become unbounded. For implementation in practice, the
adaptive law has to be modified to get a bounded switching
gain, such as the so-called σ-modification in [6]. In this paper,
the approach proposed in [20] will be used, where the adaptive
law in (18b) is modified as:

d̂ =

{
c
∫ t

0
‖s‖1sgn(‖s‖1 − ε)dτ if d̂ > μ∫ t

0
μdτ if d̂ ≤ μ

(22)

where μ > 0 is a very small scalar to ensure d̂ is positive
and ε > 0 is carefully chosen to deal with the trade-off in
control accuracy and bounded switching gain. Further details
on ε tuning can refer to [20].

IV. NUMERICAL SIMULATION

In this section, a large angle attitude maneuver is employed
to verify the effectiveness of the proposed B-ASMC algorithm
by comparing it with the ASMC algorithm.

The spacecraft inertia matrix for the controller design is
Ĵ = diag(48, 25, 61.8) (kg.m) and the uncertainty is 10% of
the nominal value. Td = [sin(0.2t), 2 cos(0.3t), 3 sin(0.4t)]

T×
10−1 (N.m) is the external disturbance. The initial attitude
variables of the spacecraft are σb(0) = [−0.2, 0.3, 0.1]

T

and ωb(0) = [0, 0, 0]
T

(rad/s). The desired attitude is
σd = [0.1, 0.2,−0.3]

T with the desired angular velocity ωd =
[0, 0, 0]

T
(rad/s). The B-ASMC parameters are kσ = 0.2,

kω = 0.6 and the adaptive gain is selected as c = 1. For
comparison, the ASMC parameter is λ = 0.2 = kσ and the
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adaptive gain is also selected as c = 1. The simulation results
are shown in Fig.1–Fig.5, where the superscripts x, y, z denote
the triaxial components of related vectors.
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Fig.1 and Fig.2 illustrate the evolutions of the reorientation
maneuver controlled by the ASMC algorithm and the B-
ASMC algorithm in terms of error MRPs and angular velocity,
with the corresponding control torque compared in Fig.3. From
Fig.1, we can see that the convergence of the error MRPs
controlled by the B-ASMC algorithm is faster than the ASMC
algorithm. The fact is that the control torque computed by
the ASMC algorithm is zero at the initial time according to
(10a) and (10b). Therefore, the convergence is very slow at
the beginning.

Fig.3 illustrates the control torque comparison, where the
chattering problem in the ASMC algorithm is more serious
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than the B-ASMC algorithm. By examining the switching
gains generated by the two control algorithms, as shown in
Fig.4, it is clear that the resulting d̂ updated by the B-ASMC
algorithm is much smaller than the ASMC algorithm, which
verifies that the B-ASMC algorithm can weaken the over
adaptation problem in the ASMC algorithm and the chattering
phenomena is correspondingly reduced. Moreover, d̂ generated
by the B-ASMC algorithm with different kω is illustrated in
Fig.5, from which we can see that the larger the kω is, the
smaller the d̂ will be and consequently the lower chattering
phenomena. However, it should be pointed out that large kω
will result in a large initial control torque, as shown in Fig.3.

V. CONCLUSION

This paper presents a B-ASMC design for the spacecraft
attitude control problem. The proposed algorithm solves the
theoretical inadequacy in current ASMC design, where the
asymptotical stabilities of the sliding function and the entire
closed-loop system are achieved. The system performance is
improved by virtue of two additional terms in the control law
as compared to current ASMC algorithms. Moreover, the over
adaptation problem in ASMC design is also considered and a
lower-chattering control signal is achieved. The issue of large
initial control torque requirement in B-ASMC will be a topic
of in the future work.
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