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Abstract - In this paper we introduce new class of sys-
tem, so called singularly impulsive or generalized impulsive
dynamical systems with time delay. Dynamics of this system is
characterized by the set of differential and difference equations
with time delay, and algebraic equations. They represent the
class of hybrid systems, where algebraic equations represent
constraints that differential and difference equations with
time delay need to satisfy. In this paper we present model,
assumptions on the model, two classes of singularly impulsive
dynamical systems with delay - time dependenet and state
dependent. Further, we present Lyapunov and asymptotic
stability theorems for nonlinear time-dependent and state-
dependent singularly impulsive dynamical systems with time
delay.

I. INTRODUCTION

Modern complex engineering systems as well as biological
and physiological systems typically possess a multi-echelon
hierarchical hybrid architecture characterized by continuous-
time dynamics at the lower levels of hierarchy and discrete-
time dynamics at the higher levels of the hierarchy. Hence,
it is not surprising that hybrid systems have been the subject
of intensive research over the past recent years (see Branicky
et al. (1998), Ye et al. (1998 b), Haddad, Chellaboina and
Kablar (2001a-b)). Such systems include dynamical switching
systems Branicky (1998), Leonessa et al. (2000), nonsmooth
impact and constrained mechanical systems, Back et al.
(1993), Brogliato (1996), Brogliato et al. (1997), biological
systems Lakshmikantham et al. (1989), demographic sys-
tems Liu (1994), sampled-data systems Hagiwara and Araki
(1988), discrete-event systems Passino et al. (1994), intelligent
vehicle/highway systems Lygeros et al. (1998) and flight
control systems, etc. The mathematical descriptions of many
of these systems can be characterized by impulsive differ-
ential equations, Simeonov and Bainov (1985), Liu (1988),
Lakshmikantham et al. (1989, 1994), Bainov and Simeonov
(1989, 1995), Kulev and Bainov (1989), Lakshmikantham
and Liu (1989), Hu et al. (1989), Samoilenko and Perestyuk
(1995), Haddad, Chellaboina and Kablar (2001a-b). Impulsive
dynamical systems can be viewed as a subclass of hybrid
systems.

Motivated by the results on impulsive dynamical systems
presented in Haddad, Chellaboina, and Kablar (2001, 2005),
the authors previous work on singular or generalized sys-
tems, and results on singularly impulsive dynamical systems

published in Kablar(2003, 2010) we presented new class
of singularly impulsive or generalized impulsive dynamical
systems with time delay. It presents novel class of hybrid
systems and generalization of impulsive dynamical systems
to incorporate singular nature of the systems and time delays.
Extensive applications of this class of systems can be found
in contact problems and in hybrid systems.

We present mathematical model of the singularly impulsive
dynamical systems with time delay. We show how it can be
viewed as general systems from which impulsive dynamical
systems with time delay, singular continuous-time systems
with time delay and singular dicrete-time systems with time
delay, as well as without time delay,follow. Then we present
Assumptions needed for the model and the division of this
class of systems to time-dependent and state-dependent sin-
gularly impulsive dynamical systems with time delay with
respect to the resetting set. Finally, we draw some conclusions
and define future work.

In this paper for the class of nonlinear singularly impulsive
dynamical systems with time delay we develop Lyapunov and
asymptotic stability results. Results are further specialized to
linear case. Note that for addressing the stability of the zero
solution of a singularly impulsive dynamical system the usual
stability definitions are valid. Then we draw some conclusions
and define future work.

At first, we establish definitions and notations. Let R denote
the set of real numbers, let Rn denote the set of n × 1 real
column vectors, let N denote the set of nonnegative integers,
and let In or I denote the n×n identity matrix. Furthermore,
let ∂S, Ṡ, S̄ denote the boundary, the interior, and a closure
of the subset S ⊂ Rn, respectively. Finally, let C0 denote the
set of continuous functions and Cr denote the set of functions
with r continuous derivatives.

II. MATHEMATICAL MODEL OF SINGULARLY IMPULSIVE
DYNAMICAL SYSTEMS WITH TIME DELAY

A singularly impulsive dynamical system with delay con-
sists of three elements:

1. A possibly singular continuous-time dynamical equation
with time delay, which governs the motion of the system
between resetting events;

2. A possibly singular difference equation with time delay,
which governs the way the states are instantaneously
changed when a resetting occurs; and
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3. A criterion for determining when the states of the system
are to be reset.

Mathematical model of these systems is described with
Ecẋ(t)= fc(x(t, τ))+Gc(x(t, τ))uc(t),

(t, x(t, τ), uc(t)) ̸∈S, (II.1)
Ed△x(t)= fd(x(t, τ))+Gd(x(t, τ))ud(t),

(t, x(t, τ), uc(t))∈S, (II.2)

yc(t)=hc(x(t, τ))+Jc(x(t, τ))uc(t),

(t, x(t, τ), uc(t)) ̸∈S, (II.3)
yd(t)=hd(x(t, τ)+Jd(x(t, τ))ud(t),

(t, x(t, τ), uc(t))∈S, (II.4)

where t ≥ 0, τ > 0, x(0) = x0, x(t, τ) ∈ D ⊂ Rn × N, D is
an open set with 0 ∈ D, uc ∈ Uc ⊂ Rmc , ud(tk) ∈ Ud ⊂ Rmd ,
tk denotes kth instant of time at which (t, x(t, τ), uc(t))
intersects S for a particular trajectory x(t, τ) and input
uc(t), yc(t) ∈ Rlc , yd(tk) ∈ Rld , fc : D → Rn is Lipschitz
continuous and satisfies fc(0) = 0, Gc : D → n×mc,
fd : D → Rn is continuous and satisfies fd(0) = 0,
Gd : D → Rn×md , hc : D → Rlc and satisfies hc(0) = 0,
Jc : D → Rlc×mc , hd : D → Rld and satisfies hd(0) = 0,
Jd : D → Rld×md , and S ⊂ [0,∞) × Rn × Uc is the
resetting set. Here, as in Haddad, Chellaboina, and Kablar
(2001a) we assume that uc(·) and ud(·) are restricted to the
class of admissible inputs consisting of measurable functions
(uc(t), ud(t)) ∈ Uc × Ud for all t ≥ 0 and k ∈ N[0,t) ≡
k : 0 ≤ tk < t, where the constraint set Uc ×Ud is given with
(0, 0) ∈ Uc×Ud. We refer to the differential equation (II.1) as
the continuous-time dynamics with time delay, and we refer to
the difference equation (II.2) as the resetting law.

Matrices Ec, Ed may be singular matrices. In case Ec = I ,
Ed = I , and τ = 0 (II.1)–(II.4) represent standard impulsive
dynamical systems described in Haddad, Chellaboina, and
Kablar (2001a), and Haddad, Kablar, and Chellaboina (2000,
2005), where stability, dissipativity, feedback interconnections,
optimality, robustness, and disturbance rejection has been
analyzed. In absence of discrete dynamics they specialize to
singular continuous-time systems, with further specialization
Ec = I to standard continuous-time systems. If only discrete
dynamics is present they specialize to singular discrete-time
systems, with further specialization Ed = I to standard
discrete-time systems.

In case Ec = I , Ed = I , and τ ̸= 0, (II.1)–(II.4)
represent standard impulsive dynamical systems with time
delay. In absence of discrete dynamics they specialize to
singular continuous-time systems with time delay, with further
specialization Ec = I to standard continuous-time systems
with time delay. If only discrete dynamics is present they
specialize to singular discrete-time systems with time delay,
with further specialization Ed = I to standard discrete-time
systems with time delay.

Therefore, theory of the singularly impulsive or generalized
impulsive dynamical systems with time delay once developed,

can be viewed as a generalization of the singular and impulsive
dynamical system with time delay theory, unifying them into
more general new system theory.

In what follows is given basic setting and division of this
class of systems with respect to the definition of the resetting
sets, accompanied with adequate assumptions needed for the
model.

We make the following additional assumptions:
A1. (0, x0, uc0) ̸∈ S, where x(0) = x0 and uc(0) = uc0,

that is, the initial condition is not in S.
A2. If (t, x(t, τ), uc(t)) ∈ S̄\S then there exists ϵ > 0 such

that, for all 0 < δ < ϵ, s(t+ δ; t, x(t, τ), uc(t+ δ)) ̸∈ S .
A3. If (tk, x(tk), uc(tk)) ∈ ∂S ∩ S then there exists ϵ >

0 such that, for all 0 < δ < ϵ and ud(tk) ∈ Ud, s(tk +
δ; tk, Edx(tk)+fd(x(tk))+Gd(x(tk))ud(tk), uc(tk+δ)) ̸∈ S.

A4. We assume consistent initial conditions (and prior and
after every resetting).

Assumption A1 ensures that the initial condition for the
resetting differential equation (II.1), (II.2) is not a point of
discontinuity, and this assumption is made for convenience. If
(0, x0, uc0) ∈ S , then the system initially resets to Edx

+
0 =

Edx0 + fd(x0) + Gd(x0)ud(0) which serves as the initial
condition for the continuous dynamics (II.1). It follows from
A3 that the trajectory then leaves S. We assume in A2 that
if a trajectory reaches the closure of S at a point that does
not belong to S, then the trajectory must be directed away
from S, that is, a trajectory cannot enter S through a point
that belongs to the closure of S but not to S. Finally, A3
ensures that when a trajectory intersects the resetting set S, it
instantaneously exits S, see Figure 1. We make the following
remarks.

x0

dS

S

Figure 1. Resetting Set.

Remark II.1. It follows from A3 that resetting removes the
pair (tk, xk, uc(tk)) from the resetting set S. Thus, imme-
diately after resetting occurs, the continuous-time dynamics
(II.1), and not the resetting law (II.2), becomes the active
element of the singularly impulsive dynamical system.

Remark II.2. It follows from A1-A3 that no trajectory can
intersect the interior of S. According to A1, the trajectory
x(t) begins outside the set S. Furthermore, it follows from A2
that a trajectory can only reach S through a point belonging
to both S and its boundary. Finally, from A3, it follows that if
a trajectory reaches a point S that is on the boundary of S,
then the trajectory is instantaneously removed from S. Since
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a continuous trajectory starting outside of S and intersecting
the interior of S must first intersect the boundary of S, it
follows that no trajectory can reach the interior of S.

Remark II.3. It follows from A1-A3 and Remark 1.2 that
∂S ∪ S is closed and hence the resetting times tk are well
defined and distinct.

Remark II.4. Since the resetting times are well defined and
distinct, and since the solutions to (II.1) exist and are unique, it
follows that the solutions of the singularly impulsive dynamical
system (II.1), (II.2) also exist and are unique over a forward
time interval.

In Haddad, Chellaboina and Kablar (2001a), the resetting
set S is defined in terms of a countable number of functions
nk : Rn → (0 ,∞), and is given by

S = ∪k{(nk (x ), x , uc(nk (x )) : x ∈ Rn}. (II.5)

The analysis of singularly impulsive dynamical systems with
time delay and with a resetting set of the form (II.5) can be
quite involved. In particular, such systems exhibit Zenoness,
beating, as well as confluence phenomena wherein solutions
exhibit infinitely many transitions in a finite times, and
coincide after a given point of time, Haddad, Chellaboina
and Kablar (2001a). In this paper we assume that existence
and uniqueness properties of a given singularly impulsive
dynamical system with time delay are satisfied in forward time.
Furthermore, since singularly impulsive dynamical systems of
the form (II.1)-(II.4) involve impulses at variable times they
are time-varying systems.

Here we will consider singularly impulsive dynamical sys-
tems involving two distinct forms of the resetting set S. In the
first case, the resetting set is defined by a prescribed sequence
of times which are independent of state x. These equations
are thus called time-dependent singularly impulsive dynamical
systems with time delay. In the second case, the resetting set
is defined by a region in the state space that is independent
of time. These equations are called state-dependent singularly
impulsive dynamical systems with time delay.

A. Time-Dependent Singularly Impulsive Dynamical Systems
with Time Delay

Time-dependent singularly impulsive dynamical systems
with time delay can be written as (II.1)–(II.4) with S defined
as

S = n × Rn × Uc, (II.6)

where

n = t1 , t2 , . . . (II.7)

and 0 < t1 < t2 < . . . are prescribed resetting times. When
an infinite number of resetting times are used and tk → ∞ as
k → ∞, then S is closed. Now (II.1)–(II.4) can be rewritten in
the form of the time-dependent singularly impulsive dynamical

system with time delay

Ecẋ(t)= fc(x(t, τ)) +Gc(x(t, τ))uc(t), t ̸= tk, (II.8)
Ed△x(t)= fd(x(t, τ)+Gd(x(t, τ))ud(t), t = tk, (II.9)

yc(t)=hc(x(t, τ)) + Jc(x(t, τ))uc(t), t ̸= tk,(II.10)
yd(t)=hd(x(t, τ)) + Jd(x(t, τ))ud(t), t = tk.(II.11)

Since 0 ̸∈ τ and tk < tk+1, τ > 0, it follows that the
assumptions A1–A3 are satisfied. Since time-dependent sin-
gularly impulsive dynamical systems with time delay involve
impulses at a fixed sequence of times, they are time-varying
systems.

Remark II.5. The time-dependent singularly impulsive dy-
namical system with time delay (II.8)–(II.11), with Ec = I
and Ed = I includes as a special case the impulsive control
problem addressed in the literature wherein at least one of the
state variables of the continuous-time plant can be changed
instantaneously to any given value given by an impulsive
control at a set of control instants τ , Haddad, Chellaboina
and Kablar (2001a).

B. State-Dependent Singularly Impulsive Dynamical Systems
with Time Delay

State-dependent singularly impulsive dynamical systems
with time delay can be written as (II.1)–(II.4) with S defined
as

S = [0,∞)×Z, (II.12)
where Z = Zx × Uc and Zx ⊂ Rn. Therefore, (II.1)–(II.4)
can be rewritten in the form of the state-dependent singularly
impulsive dynamical system with time delay

Ecẋ(t)= fc(x(t, τ))+Gc(x(t, τ))uc(t),

(x(t, τ), uc(t)) ̸∈Z, (II.13)
Ed△x(t)= fd(x(t, τ))+Gd(x(t, τ))ud(t),

(x(t, τ), uc(t))∈Z, (II.14)
yc(t)=hc(x(t, τ))+Jc(x(t, τ))uc(t),

(x(t, τ), uc(t)) ̸∈Z, (II.15)
yd(t)=hd(x(t, τ))+Jd(x(t, τ))ud(t),

(x(t, τ), uc(t))∈Z. (II.16)

We assume that (x0, uc0) ̸∈ Z , τ > 0, (0, 0) ̸∈ Z , and that
the resetting action removes the pair (x, uc) from the set Z;
that is, if (x, uc) ∈ Z then (Edx+fd(x)+Gd(x)ud, uc) ̸∈ Z ,
ud ∈ Ud. In addition, we assume that if at time t the trajectory
(x(t, τ), uc(t)) ∈ Z̄\Z , then there exists ϵ > 0 such that for
0 < δ < ϵ, (x(t+ τ + δ), uc(t+ δ)) ̸∈ Z .

These assumptions represent the specialization of A1–A3
for the particular resetting set (II.12). It follows from these
assumptions that for a particular initial condition, the resetting
times τk(x0) are distinct and well defined. Since the resetting
set Z is a subset of the state space and is independent of
time, state-dependent singularly impulsive dynamical systems
with time delay are time-invariant systems. Finally, in the case
where S ≡ [0,∞) × Rn × Zuc , where Zuc ⊂ Uc we refer
to (II.13)–(II.16) as an input-dependent singularly impulsive
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dynamical system with time delay. Both these cases represent
a generalization to the impulsive control problem considered
in the literature.

III. LYAPUNOV AND ASYMPTOTIC STABILITY OF
SINGULARLY IMPULSIVE DYNAMICAL SYSTEMS WITH

TIME DELAY

In this section we present Lyapunov and asymptotic stability
results of singularly impulsive dynamical systems with time
delay.

Theorem III.1. Suppose there exists a continuously differ-
entiable function V : D → [0,∞) satisfying V (0) = 0,
V (Ec/dx) ≥ 0, x ̸= 0, and

V ′(Ecx)fc(x) ≤ 0, x ∈ D, (III.17)
V (Edx+ fd(x) ≤ V (x), x ∈ D. (III.18)

Then the zero solution x(t, τ) ≡ 0 of the undisturbed
((uc(t), ud(tk)) ≡ (0, 0)) time-dependent singularly impulsive
dynamical system with time delay (II.8),(II.9) is Lyapunov
stable. Furthermore, if the inequality (III.17) is strict for all
x ̸= 0, then the zero solution x(t, τ) ≡ 0 of the undisturbed
((uc(t), ud(tk)) ≡ (0, 0)) time-dependent singularly impulsive
dynamical system with time delay (II.8), (II.9) is asymptotically
stable. If, in addition, D = Rn and

V (Ec/dx) → ∞ as ∥x∥ → ∞, (III.19)

then the zero solution x(t, τ) ≡ 0 of the undisturbed
((uc(t), ud(tk)) ≡ (0, 0)) time-dependent singularly impul-
sive dynamical system with time delay (II.8), (II.9) is glob-
ally asymptotically stable, Haddad, Chellaboina, and Kablar
(2001), Kablar (2003b).

Proof: Prior to the first resetting time, we can determine
the value of V (x(t, τ)) as

V (Ecx(t, τ)) = V (Ecx(0)) +

∫ t

0

V ′(x(Ec))fc(x(s, τ)ds,

t∈ [0, t1]. (III.20)

Between consecutive resetting times tk and tk+1, we can
determine the value of V (x(t, τ)) as its initial value plus the
integral of its rate of change along the trajectory x(t, τ), that
is,

V (Ec/dx(t, τ) = V (Edx(tk) + fd(x(tk))

+

∫ t

tk

V ′(x(Ec))fc(x(s, τ))ds,

t ∈ (tk, tk+1], (III.21)

for k = 1, 2, . . . . Adding and subtracting V (x(Edtk)) to and
from the right hand side of the (III.21) yields

V (Ec/dx(t, τ))=V (Ecx(tk)) + [V (Edx(tk)

+fd(x(tk))−V (Edx(tk))]

+

∫ t

tk

V ′(Ecx(s, τ))fc(x (s, τ))ds, t ∈ (tk , tk+1 ],

(III.22)

and in particular at time tk+1,

V (Edx(tk+1)) = V (Edx(tk))+[V (Edx(tk)

+fd(x(tk)))− V (Edx(tk))]

+

∫ tk+1

tk

V ′(x(s, τ))fc(x (s, τ))ds.

(III.23)

By recursively substituting (III.23) into (III.22) and ultimately
into (III.20), we obtain

V (Ecx(t, τ)) = V (Ecx(0)) +

∫ t

0

V ′(Ecx(s, τ))fc(x (s, τ))ds

+

k∑
i=1

[V (Edx(ti) + fd(x(ti)))− V (Edx(ti))]]. (III.24)

If we allow t0 = 0, and
∑0

i=1 = 0, then (III.24) is valid for
k ∈ N . From (III.24) and (III.18) we obtain

V (Ecx(t, τ)) ≤

V (Ecx(0)) +

∫ t

0

V ′(Ecx(s, τ))fc(x (s, τ))ds,

t ≥ 0. (III.25)

Furthermore, it follows from (III.17) that

V (Ecx(t, τ)) ≤ V (Ecx(0)), t ≥ 0, (III.26)

so that Lyapunov stability follows from standard arguments.
Next, it follows from (III.18) and (III.24) that

V (Ecx(t, τ))− V (Ecx(s, τ)) ≤
∫ t

s

V ′(x(Ecs, τ))fc(x (s, τ))ds,

t > s, (III.27)

and, assuming strict inequality in (III.17), we obtain

V (Ecx(t, τ)) < V (Ecx(s, τ)), t > s, (III.28)

provided x(s, τ) ̸= 0. Asymptotic stability, and, with (III.19),
global asymptotic stability, then follow from standard argu-
ments.

Remark III.1. If in Theorem III.1 the inequality (III.18) is
strict for all x ̸= 0 as opposed to the inequality (III.17), and
an infinite number of resetting times are used, that is, the set
τ = {t1, t2, . . .} is infinitely countable, then the zero solution
x(t, τ) ≡ 0 of the undisturbed time-dependent singularly
impulsive dynamical system with time delay (II.8), (II.9) is
also asymptotically stable. A similar remark holds for Theorem
2.2.2.

Remark III.2. In the proof of Theorem III.1, we note that
assuming strict inequality in (III.17), the inequality (III.28) is
obtained provided x(s, τ) ̸= 0. This proviso is necessary since
it may be possible to reset the states to the origin, in which
case x(s, τ) = 0 for a finite value of s. In this case, for t > s,
we have V (Ecx(t, τ)) = V (Ecx(s, τ)) = V (0) = 0. This
situation does not present a problem, however, since reaching
the origin in finite time is a stronger condition than reaching
the origin as t → ∞.
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Remark III.3. If, additionally, in Theorem III.1 there exist
scalars α, β, ϵ > 0, and p ≥ 1, such that α∥x∥p ≤
V (Ecx) ≤ β∥x∥p, x ∈ D, and (III.17) is replaced by
V ′(Ecx)fc(x) ≤ −ϵV (Ecx), x ∈ D, then the zero solution
x(t, τ) ≡ 0 of the undisturbed ((uc(t), ud(tk)) ≡ (0, 0)) time-
dependent singularly impulsive dynamical system with time
delay (II.8), (II.9) is exponentially stable. A similar remark
holds for Theorem 2.2.2.

Remark III.4. Theorem III.1 presents sufficient conditions for
time-dependent singularly impulsive dynamical systems with
time delay in terms of Lyapunov functions that do not depend
explicitly on time. Since time-dependent singularly impulsive
dynamical systems are time-varying, Lyapunov functions that
explicitly depend on time can also be considered. However, in
this case the conditions on the Lyapunov functions required
to guarantee stability are significantly harder to verify. For
further details see Bainov and Simeonov (1989), Samoilenko
and Perestyuk (1995), Ye, Michael, and Hou (1998).

Next, we state a stability theorem for nonlinear state-
dependent singularly impulsive dynamical systems with time
delay.

Theorem III.2. Suppose there exists a continuously differ-
entiable function V : D → [0,∞) satisfying V (0) = 0,
V (Ecx) ≥ 0, x ̸= 0, and

V ′(Ecx)fc(x) ≤ 0, x ̸∈ Zx, (III.29)
V (Edx+ fd(x)) ≤ V (Ecx), x ∈ Zx. (III.30)

Then the zero solution x(t, τ) ≡ 0 of the undisturbed
((uc(t), ud(tk)) ≡ (0, 0)) state-dependent singularly impul-
sive dynamical system with time delay (II.13), (II.14) is
Lyapunov stable. Furthermore, if the inequality (III.29) is
strict for all x ̸= 0, then the zero solution x(t, τ) ≡ 0
of the undisturbed ((uc(t), ud(tk)) ≡ (0, 0) state-dependent
singularly impulsive dynamical system with time delay (II.13),
(II.14) is asymptotically stable. If, in addition, D = Rn and
(III.19) is satisfied, then the zero solution x(t, τ) ≡ 0 of
the undisturbed ((uc(t), ud(t)k)) ≡ (0, 0)) state-dependent
singularly impulsive dynamical system with time delay (II.13),
(II.14) is globally asymptotically stable, Haddad, Chellaboina,
and Kablar (2001), Kablar (2003b).

Proof: For S = [0,∞) × Zx it follows from As-
sumptions A1–A3 that the resetting times nk (x0 ) are well
defined and distinct for every trajectory of (II.13), (II.14) with
(uc(t), ud(tk)) ≡ (0, 0). Now, the proof follows as in the proof
of Theorem III.1 with tk replaced by nk (x0 ).

Remark III.5. To examine the stability of linear state-
dependent singularly impulsive dynamical systems with time
delay set fc(x) = Acx, and fd(x) = (Ad −Ed)x in Theorem
III.2. Considering the quadratic Lyapunov function candidate
V (Ec/dx) = xTET

c/dPEc/dx, for the argument Ecx and Edx,
respectively where P > 0, it follows from Theorem III.2 that

the conditions

xT(AT
c PEc + ET

c PAc)x < 0, x ̸∈ Zx, (III.31)
xT(AT

dPAd − ET
d PEd)x ≤ 0, x ∈ Zx, (III.32)

establish asymptotic stability for linear state-dependent sin-
gularly impulsive dynamical systems with time delay. These
conditions are implied by P > 0, AT

c PEc + ET
c PAc < 0,

and AT
dPAd−ET

d PEd ≤ 0 which can be solved using Linear
Matrix Inequality (LMI) feasibility problem Boyd et al. (1994).
See also Haddad, Chellaboina, and Kablar (2001a).

IV. CONCLUSION

In this paper we presented new class of singularly impulsive
or generalized impulsive dynamical systems with delay. We
gave assupmtions needed for the model and basic division
of singularly impulsive dynamical systems into twio classes:
time dependenet and state dependent. Next, we developed
Lyapunov and asymptotic stability results.

V. FUTURE WORK

It is left to develop invariant set theorem for singularly
impulsive dynamical systems. Next, further work will concen-
trate to specializing this results and developing to time-delay
systems. The last is motivated by recognized need in biological
applications.

On the other hand finite-time and practical stability results
will be developed for the class of impulsive and singularly
impulsive dynamical systems with delay.
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