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Abstract—The Best Linear Approximation (BLA) is a linear-
isation of the transfer characteristics of a nonlinear system in
a least squares sense. The BLA is known to depend on the
statistical properties of the input signal used to identify it. The
theory for Gaussian input sequences has been known for several
years, but the corresponding theory for binary input sequences
has only recently been developed. In this paper, experiments on
a physical electronic Wiener system, aimed at verification of
predictions made for the differences between BLA’s estimated
using Gaussian sequences and those estimated using binary
sequences, are described. The results were found to be a good
match with the theory but difficulties encountered during the
experiment highlight a need for further work in extending the
discrete-time theory to the continuous-time domain.

I. INTRODUCTION

IN system identification, the frequency response function
or the impulse response of a system contains information

about the system. Based on this information, one can model,
make prediction and control the system to produce desired
behaviour. All systems are nonlinear to some extent, and in
some systems the nonlinearity plays a significant role. Even
so, linearising a nonlinear system has merits in modelling
and control, and the Best Linear Approximation (BLA) [1–5],
which is a linear model minimising the expected value of mean
squared difference between the actual output of the system and
the modelled output is particularly useful for this. The BLA
however, depends on the power and amplitude distribution of
the excitation signals used to identify it [6]. This paper verifies
the theory developed by Wong et al. [6] for binary input signals
through experiments on a physical electronic system with a
linear low-pass filter and a cubic nonlinearity in a Wiener
configuration.

II. EXPERIMENT SETUP

The system was set up using the equipment listed below,
and following the system schematic shown in Figure 1. The
HP VXI mainframe was connected to a desktop computer with
the MATLAB software. Data analysis was performed through
MATLAB.

A. List of equipment
• HP E1401B VXI mainframe with:

◦ VXI-MXI-2 interface card
◦ 2× HP E1430A 10 MSa/s 23-bit ADCs, with filter-

ing and memory (henceforth referred to as ‘acquisi-
tion card’)

◦ HP E1445A arbitrary function generator card
• Desktop computer with PCI-MXI-2 interface card
• Non-inverting pre-buffer with AD8610A op-amp
• Non-inverting post-buffer with TL071CP op-amp
• 2 × 50 Ω matched impedance buffers
• RC filter circuit with changeable resistors and capacitors
• 50 Ω matched impedance measurement buffers
• Pre-built cubic nonlinearity circuit

◦ based on AD532JH four-quadrant multipliers
• Tektronix TDS 2001C Oscilloscope
• ±12 V and ±15 V power supplies
• A 1.5 nF capacitor with either 2.7 kΩ, 27 kΩ or 110 kΩ

resistors in the RC filter,
◦ giving cut-off frequency values of fco = 39.3 kHz,

3.93 kHz and 0.965 kHz respectively.

B. Methodology

The objective is to verify theoretical difference between the
BLA’s obtained from the use of Maximum Length Binary
Sequences (m-sequences) [7], and from Gaussian signals,
more specifically random phase multisines [2]. The linearity
was a simple RC filter circuit, and the nonlinearity was a
static cubic power function. Three sets of experiments were
performed, each with a different combination of time constants
for the linearity. The resistor values used were 2.7 kΩ, 27 kΩ
and 110 kΩ. The capacitor value was fixed at 1.5 nF, for a
reason which will be explained in Section II-D.

Table I lists parameters and their values used in the
experimental work. Both types of input were subjected to
supersampling (see Section II-D). However, the bandwidth of
the multisine was set equal to the clock frequency of the binary
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Figure 1. System schematic

sequence. This was performed so that after downsampling
(also see Section II-D) at the measurement, both types of sig-
nal will have identical bandwidth and the spectral ‘whiteness’
of the two signal types could be preserved. The whiteness of
the input spectrum constitutes one of the assumptions of the
original discrete time BLA theory in Wong et al. [6].

The general procedure of data collection of the experiment
for both the linear and nonlinear cases was as follows:

1) Generate the reference signal r, either:

a) a discrete random-phase multisine for the Gaussian
case, or:

b) a Maximum Length Binary Sequence of period
Nbase = 511 samples for the binary case.

2) Realise the periodic signal using the HP E1445A ar-
bitrary function generator card. The excitation is un-
interrupted and continuously turned on from this point
onwards.

3) Pause for 5 seconds so that transient effects in the
measurements are expected to be negligible.

4) Initiate measurements with the acquisition cards and
collect P periods of data. The measurement intervals
are internally synchronised with the generator.

5) Due to internal attenuation of the matched impedance
buffers, measurements are normalised by a factor of two
to obtain u and y (in multiple periods).

6) Go to Step 1 and repeat for a different realisation of
input until M data sets of different input realisations
are obtained.

Note that across the M sub-experiments, the same input
sequence realisation was never used twice.

C. Robust non-parametric identification procedure

Given a set of input and output data from M sub-
experiments of independent input realisations, each with P
periods of steady-state measurements, robust estimator for the

BLA is given as:

ĜBLA(jω) =

M∑
m=1

P∑
p=1

Y[m,p]U
?
[m,p]

M∑
m=1

P∑
p=1

U[m,p]U
?
[m,p]

(1)

where U[m,p] and Y[m,p] contain the mth sub-experiment and
pth period of the measured input spectrum U(jω) and the
measured output spectrum Y (jω). The ? symbol denotes
complex conjugate. For reasons stated in II-D, the measured
input spectrum for the binary excitation case, U[m,p] is taken
as the reference input spectrum R[m](jω).

The estimator is robust against noise disturbances and is
unbiased if input noise levels are small.

D. Supersampling

The HP VXI system is capable of any sampling frequency
up to and including 10 MHz. In the experiment, the measure-
ments were oversampled by a factor of µ above the frequency
of the binary sequence input fc. The upper frequency of the
bandwidth of the random phase multisine fw was set equal
to fc. The measurement data were then subjected to manual
downsampling by the same factor µ. This results in both input
signal types having identical bandwidth. The supersampling
and the subsequent downsampling were performed for two
main reasons detailed in the next two subsections (Ringing
and Overshoot; Anti-alias).

The RC filter has low-pass (smoothing) characteristics. To
downsample (or subsample) the measurement, a location of
the highest peak (or lowest trough) of the output signal was
taken as the reference point. From this reference point onwards
and backwards every µth sample was taken as an idealised
zero-order-hold (ZOH) measurement, with the ZOH clock
frequency a factor µ lower than the original sampling (hence
a downsampling). The reference signal r and the measured
output y were also aligned through this reference point, so
that the peaks of the output after RC filtering would then
occur directly after the switching points of the binary reference
input. The procedure is more easily appreciated by referring
to Figure 2 by comparing the reference input (dotted line) and
the two red solid lines representing the original high frequency
sampling and the subsequent downsampled and aligned ZOH
data. If there were no ringing, overshoot, nonlinear effects or
noise, this subsampling procedure would result in a perfect
reconstruction of the behaviour of an ideal ZOH sampler
according to discrete-time theory. This had been verified by
simulation. This subsampling procedure is performed for both
linear and nonlinear measurements. Since this procedure can
only be reliably performed through the easily visible binary
switching points, the same alignment amount and reference
point time coordinate were used for the corresponding case
with multisine input.

Ringing and overshoot: During testing with binary excit-
ation signals, it was observed through the oscilloscope that
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Table I
TABLE OF PARAMETERS AND SETTINGS

Symbol Description Value (units)
fs Sampling frequency for the arbitrary waveform generator, and acquisition cards. The

Nyquist frequency is then fs/2.
312.5 kHz

Ts Sampling interval = 1/fs. 3.2 µs

µ Over-sampling ratio for m-sequences (see Section II-D). 8

fc Clock frequency of the m-sequences (= fs/µ). 391⁄16 kHz

Tb Bit interval for the m-sequences (= 1/fc). 25.6 µs

fw Bandwidth of the multisine sequence before downsampling (= fc = fs/µ). 391⁄16 kHz

faa Anti-aliasing filter cut-off frequency ≡ 0.4fs. This coupling with the sampling
frequency value is internally enforced by the HP1430A acquisition cards.

125 kHz

Nbase Base length of sequence after subsampling, (= length of a 9-tap m-sequence) 511 Sa†

N Length of a data record (= µNbase). 4088 Sa†

P Number of periods measured (linear case; nonlinear case). 12; 4

M Number of independent realisations (linear case; nonlinear case). 5; 16

Vrms RMS voltage of the input signals. 1.5 V
†Sa = samples
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Figure 2. The use of supersampling and subsampling – Reference input
(black dotted line), Measured input (blue dots), Measured output: a)

supersampled and b) subsampled (red solid lines).

all operational amplifier (op-amp) based electronic buffers
introduce high frequency oscillations in form of ringing to
a varying extent. This is caused by non-ideal step-response
characteristics when load or parasitic capacitances at output
of op-amps introduce unintended poles in the transfer charac-
teristics of the op-amps through feedback. The datasheets of
many op-amps have step-response graphs which illustrate this.

In this experiment setup, the overshoots and undershoots
were especially large, up to 20% with the pre-buffer due to the
capacitive load at the RC circuit, even when a higher quality
op-amp (with regards to its ability in driving capacitive loads)
was used [8]. The overshoot depends on the load or parasitic

capacitance hence the load capacitor C of the RC circuit was
fixed at 1.5nF for consistency.

Moreover, the HP E1430A acquisition cards themselves
have significant overshoots that can be seen in the meas-
urement data, although the oscilloscope suggested the actual
acquisition inputs u′ and y′ were relatively free of such
effects. This may be caused by the high order high cut-off
frequency anti-aliasing filter having oscillatory step responses.
The ringing at the measured input channel from an acquisition
card can be seen in Figure 2. This phenomenon persisted
with an Agilent 33120A waveform generator directly driving
the acquisition cards, isolated completely from the system in
question.

While the RC passively forms a low pass filter and is
capable of minimising the effect of ringing from the pre-buffer,
overshoot and ringing from the acquisition cards are inevitable.
Due to the nature of sample-and-hold at the acquisition cards,
the use of supersampling is necessary to obtain measurements
of acceptable accuracy. The BLA theory developed is incap-
able of modelling in continuous time domain of such effects
at the moment.

For multisine input sequences, there are no noticeable
ringing or overshoot effects.

Because of the overshoot and ringing present in the meas-
urement data from the HP E1430A acquisition cards, the signal
sequence u is no longer reliable and accurate representation
of u′ in the m-sequence case. Henceforth in dealing with
binary sequences, the reference signal r is used as the basis
for identification.

In addition, manual alignment of the measured input and
output signals can be performed.
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Anti-alias: It is necessary to minimise the effect of anti-
aliasing filters on the measurements because of the use of the
ideal reference signal r instead of measured input u in the case
of binary excitations. In addition, the nonlinearity broadens the
bandwidth of the output, which then may be interfered with
by the anti-aliasing filter if action is not taken. Supersampling
allows the internal anti-aliasing filter to be bypassed since the
internal anti-aliasing filter of the HP E1430A acquisition cards
have their cut-off frequencies faa dependent upon the sampling
frequency fs (see Table I). The combination of the specified
low bandwidth of the multisine, the discrete nature of binary
excitation signals and the low pass characteristics of RC mean
that any real aliasing effect was negligible. It has been shown
that broadening of spectrum due to nonlinearity would result
in aliased components that are never coherent with the original
input component [2, Theorem 3.21], hence the lack of anti-
aliasing filter would only act as additional uncorrelated noise
in the BLA measurement.

E. Linear measurements
Measurements were performed to identify either a paramet-

ric or a non-parametric model for the linearity. The rms signal
amplitudes for the Gaussian and binary signals were both set to
1.5 V. The non-parametric model was obtained using (1), and
a parametric model was fitted where suitable using the iterative
weighted nonlinear least squares procedure provided by ELiS
in the fdident toolbox for MATLAB [9]. The weighting factors
were proportional to the reciprocal of the variances at each
frequency point. The isolation provided by the pre-buffer and
post-buffer for the RC circuit introduced some additional linear
dynamics, and hence suitable single pole models could not be
fitted to the data. When a parametric model of order four is not
sufficient to describe the transfer characteristics of the linearity
in both the z-domain and the s-domain, the non-parametric
model is used. This was the case for when the resistor value
was 110 kΩ, and hence Figure 6 does not contain the results
from the parametric model.

Figure 3 shows an example of the result of a non-parametric
linearity identification. The noise variances indicate levels of
exogenous additive noise from the environment whereas the
total variances indicate the levels of nonlinear distortions plus
environment noise. There is a discrepancy between the result
obtained with multisine sequences and that obtained from m-
sequences. This suggests input dependent nonlinear character-
istics which include some effect from ringing oscillations.

As an example, for R = 27 kΩ and with C = 1.5 nF,
the time constant Tp = 27×103 · 1.5×10−9 = 4.05×10−5

seconds. With a sampling interval Tc given by 1/fc =
(391/16× 103)−1 seconds, Tc/Tp = 0.6321, and therefore the
theoretical transfer function is:

G(z) =
z

z − e−0.6321
=

z
z − 0.5315

. (2)

The parametric model identified for the m-sequence case with
sampling time Tc was:

Ĝ(z) =
0.01011(z + 41.23)(z + 0.05967)

(z − 0.5481)(z + 0.01818)
. (3)
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Figure 3. RC Linearity identification with op-amp based pre- and
post-buffers. (To convert to frequency (Hz), line number should be

multiplied by fs/(8 × 511))

It can be seen that the estimated positive pole is very close
to the theoretical value, but as noted above, the pre-buffer and
the post-buffer to the RC circuit introduced some additional
dynamics, with a negative zero and a negative pole very close
to the origin, and a further negative zero that is so large that
it can be regarded as a constant over the frequency range of
interest.

Despite the fact that the system under test was linear, there
were nonlinear distortions in both input cases and the level
was higher for the binary input. This was due to to be non-
linear effects from the unity-gain op-amp buffers, especially
from the pre-buffer which had to drive the capacitive load.
Ringing oscillations were especially noticeable with binary
inputs (see II-D). If the buffers were not used, the nonlinear
distortions disappear regardless of the input signal. However,
due to current driving limitation of the signal generator and
the capacitive load, there was unacceptable distortion of the
realised input for the binary case, hence the buffers were
necessary.

F. Nonlinear measurements and BLA theory

The nonlinear measurements were obtained in a similar
manner to the linear measurement case. The non-parametric
BLA was obtained using (1).

To enable comparison with the theory, additional informa-
tion is required. This includes the even higher order moments
of the input signals, the signal power (or the rms value Vrms),
the impulse response of the linearity and the polynomial
coefficients of the nonlinearity. For the Gaussian case, the
even order moments of u (i.e., E[un]) were measured and
averaged for a single experiment, for even n. For the binary
case, u was replaced by r hence E[rn] = V n

rms. The impulse
response of the linearity was taken from the parametric model
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Figure 4. Experiment result of the identification of the BLA with Gaussian
and binary inputs for an electronic Wiener system with non-ideal cubic
nonlinearity and a RC linearity with R = 2.7kΩ, C = 1.5nF giving corner
frequency fco = 39.3kHz. (For conversion from frequency line number to
Hz, see caption of Figure 3.)

if available, and the non-parametric model by inverse Fourier
transform. Finally, the nonlinearity was identified by simple
least squares polynomial regression performed on 20 periods
of output data obtained from the nonlinearity with a multisine
excitation as a direct input to the nonlinearity. The polynomial
fitted to the nonlinearity was:

fNL(x) = 0.01088x3 − 0.001356x2

+0.008169x+ 0.05816. (4)

The cubic electronic circuit had a transfer characteristic of
fNL(x) = 0.01x3 as shown in Figure 1. Due to non-ideal
characteristics there was a non-negligible quadratic term to-
gether with a linear term and a dc component in the fitted
characteristic. Neither the quadratic term nor the dc offset
enter into the theoretical calculations, but the linear component
does, and it was taken into account in the comparisons between
theory and the practical results described in Section III.

III. RESULTS AND ANALYSIS

Figure 4, 5 and 6 show the comparison of the BLA obtained
through experiment results and those obtained from theory, for
a Wiener system with (non-ideal, see (4)) cubic nonlinearity
and RC filter linearity with C = 1.5nF for all three cases and
R = 2.7 kΩ, 27 kΩ and 110 kΩ respectively.

With R = 2.7 kΩ, the RC filter has a cut-off (or corner)
frequency of fco = 1/2πRC ≈ 39.3 kHz and acts as an
all-pass filter since the binary signal clock frequency was
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Figure 5. As Figure 4, but with R = 27kΩ, giving corner frequency
fco = 3.93kHz.

fc = 391⁄16 kHz. Unfortunately this means ringing and over-
shoot effects (see Section II-D) were significant immediately
after the RC filter stage. The linearity identification using m-
sequences would yield unreliable results despite subsampling
techniques. Here the use of non-parametric models of the
linearity identified by a multisine was more suitable for the
BLA theory. This can be seen by the fact that in Figure 4
the solid red line, representing the BLA theory based on
a non-parametric linearity model identified with a multisine
sequence, was able to match the experiment data represented
by crosses more closely than that based on a linearity model
(parametric or non-parametric) identified with a m-sequence.
There are minimal differences between results derived from
the non-parametric and parametric linearity models—the plots
(cyan dashed and magenta heavy-dotted, respectively) are very
close to each other.

For R = 27 kΩ, the RC filter had a corner frequency of
approximately 3.93 kHz. Ringing and overshoot effects were
then negligible immediately after the RC filter stage. Here
the non-parametric models of the linearity for the m-sequence
and multisine were used for their respective counterparts. In
addition, the parametric model of (3) from Section II-E was
used in the BLA theory to calculate the biased theoretical BLA
for binary sequences. There were no discernible differences
in the BLA theory calculated from the non-parametric and
parametric linearity models as shown by the overlapping of the
heavy-dotted magenta line and the solid red line in Figure 5.

When R = 110 kΩ, the RC filter had a corner frequency
of about 0.965 kHz. The result is illustrated in Figure 6. This
time parametric models up to order four produced by ELiS
could not produce adequate quality fit to the transfer function
of the linearity. Nevertheless the BLA theory based on the
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Figure 6. As Figure 4, but with R = 110kΩ, giving corner frequency
fco = 0.965 kHz.

non-parametric models was able to match the experiment data
in both the gain and the shape of the transfer characteristics.

As the time constant of the system increases, the length
of the impulse response of the system increases. It has been
shown in Wong et al. [6] that this results in a BLA estimated
by a signal with an arbitrary amplitude distribution converging
to that obtained from Gaussian signal. This is also observed
in Figures 4 to 6.

IV. CONCLUSIONS

For all three sets of experiments investigated, it can be seen
that the BLA theory prediction and experiment result are in
good agreement. This is despite the fact that the BLA theory
was based on impulse responses of the linearity modelled as
finite-impulse-response (FIR) filters, whereas here the RC filter
circuit is an infinite-impulse-response (IIR) filter.

The difficulties encountered with the experiment, mainly the
ringing and overshoot effects illustrate a weakness in the z-
domain discrete-time theory. It may therefore be beneficial to
extend the theory to the continuous-time s-domain.
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