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Abstract—A new method for identification of structural pa-
rameters is proposed using Damped Transfer Matrices (DTM)
and state vectors. A new transfer matrix is derived for continuous
mass systems including the damping parameters. The state vector
at a location is the sum of the internal and external contributions
of displacements, forces and moments at that point, when it is
multiplied with the transfer matrix, state vector at the adjacent
location is obtained. The structural identification algorithm
proposed here involves prediction of displacement responses at
selected locations of the structure using Damped Transfer Matrix
and compares them with the measured responses at the respective
locations. The mean square deviations between the measured and
predicted responses at all locations are minimized using a non-
classical optimization algorithm, and the optimization variables
are the unknown stiffness and damping parameters in the DTM.
A non-classical heuristic Particle Swarm Optimization algorithm
(PSO) is used, since it is especially suited for global search. This
DTM algorithm with successive identification strategy is applied
on one element or substructure of a structure at a time and
identifies all the parameters of adjacent elements successively.
The algorithm is applied on numerically simulated experiments
of structures such as a cantilever and one sub-structure of a
nine member frame structure. Also this algorithm is verified
experimentally on a sub-structure of a fixed beam. The main
advantage of this algorithm is that it can be used for the local
identification in a zone in a structure without modelling the entire
global structure.

Keywords— Damped Tranfer Matrix; State Vectors; Succes-
sive Identification; Particle Swarm Optimization

I. INTRODUCTION

Structural identification (SI) problems typically deal with
the estimation of mass, stiffness and damping properties
of a structure from input/output measurements. It plays
an important role in model updating and structural health
monitoring. From a computational point of view, structural
identification presents a challenging problem particularly
when the system involves a large number of unknown
parameters. SI algorithms are generally classified into
frequency domain and time domain algorithms. Frequency
domain SI algorithms have been developed more widely. Maia
and Silva [1] presented some modal analysis techniques for
identification. Ge and Lui [2] identified damage on structures
like cantilever, ten story steel frame and plates by comparing
natural frequencies of the undamaged and damaged structures.

Time domain algorithms are usually categorized as
Classical or Non-classical methods. Ghanem and Shinozuka
[3] reported few classical SI time domain algorithms
such as Recursive Least Square method (RLS), Extended
Kalman Filter method (EKF), maximum likelihood method,
recursive instrumental variable method. Juang and Pappa
[4] presented a deterministic SI algorithm based on state
space model of second order system using Observer
Kalman Filter Identification and Eigen Realisation Algorithm
(OKID/ERA) by which all the structural properties such
as mass, damping coefficient, stiffness can be identified.
Some of the shortcomings of the classical methods are
requirement of the calculation of derivatives; difficulty of
converging to the global optima, requirement of initial values,
and inability to deal with large number of variables. To
overcome these drawbacks, Non-classical SI algorithms are
used. A non-classical method is usually based on heuristic
concepts such as Evolutionary principle (GA) or behavioural
principle (PSO). Koh et al [5]. identified a maximum of 52
structural parameters including damping using GA with a
hybrid local search method. GA directs the search toward the
global optima and the local search improves the convergence.
Kennedy and Eberhart [6] developed a new stochastic
optimization algorithm PSO which was proved that much
superior to GA and easy to configure [7]. Perez and Behdinan
[8] also used PSO for a structural identification problem of
72 bar truss with good accuracy.

The computational effort of identifying a n DOF system
is of the order of n2. Even for a modern computer, the
computational speed for solving large matrices is challenging.
As an alternative for this problem, transfer matrices and
state vectors are used for SI algorithm. Steidel [9] derived
the transfer matrix for a spring mass system and a beam
element. The transfer matrix for the beam element is derived
by assuming that the mass is concentrated only at end nodes
and the beam element is mass less throughout its length.
Meirovitch [10] determined the natural frequencies and
mode shapes of a non-uniform pinned-pinned beam with ten
elements using transfer matrices. Nandakumar and Shankar
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[11] used the transfer matrices derived by Steidel [9] and
state vectors first in SI problem and identified successfully the
parameters of cantilever and ten DOF lumped mass system.
Later Tuma and Cheng [12] derived an improved transfer
matrix for beam element with an assumption of the mass
of the beam element is concentrated at its mass center. It is
found that there is a good improvement in natural frequencies.

Nandakumar and Shankar [13] derived a transfer matrix
from the consistent mass matrix of the beam element and
determined higher order natural frequencies with much better
accuracy than the existing lumped mass based transfer matri-
ces. Using the same transfer matrix, stiffness parameters of
structures were identified with better accuracy. However all
these transfer matrices discussed have a limitation in that they
can be used only for lightly damped structures/materials by
ignoring its damping effect. To identify properties of highly
damped structures which have significant damping, a new
damped transfer matrix (DTM) including damping parame-
ters is derived. In this paper structural parameters including
damping parameters were identified using DTM by Successive
Structural Identification strategy.

II. TRANSFER MATRICES AND STATE VECTORS

A state vector at a point in the structure is the summation
of the internal response vector and external force vector. The
former contains the output responses such as displacement,
angular displacement and the internal forces and moments and
the later contains the externally applied forces and moments.
The Transfer Matrix (TM) is a square matrix which contains
the structural parameters. When a state vector is multiplied
with the TM, internal response vector at the adjacent location
is obtained.

A. Transfer Matrix for Beam element

In this section the transfer matrix for damped vibration of
beams is derived. The equilibrium equation of two noded beam
element is

[M ]ẍ(t) + [C]ẋ(t) + [K]x(t) = F (t) (1)

where ẍ(t), ẋ(t) and x(t) are nodal acceleration, velocity and
displacement responses vector respectively, F (t) is nodal force
vector. The state vector for a node on the beam element is
{X} = {y(t), θ(t),M(t), V (t)}T +{0, 0, F (t), µ(t)}T , where
y(t) is translational displacement, θ(t) is angular displace-
ment, M(t) is bending moment, V (t) is shear force, F (t) is
applied force and µ(t) is applied moment at that node. The
damping in the beam element is modelled using Rayleigh’s
damping model.

[C] = α[M ] + β[K] (2)

Also ẍ(t) = −ω2x(t), ẋ(t) = iωx(t). therefore, the Eq.(1)
becomes,

F (t) = [Z]x(t) (3)

n j 3 2 1

Fj(t)

Fig. 1. Sub-structure with arbitrary point excitation

where [Z] = (iωα−ω2)[M ] + (1+ iωβ)[K]. Since the beam
element is in equilibrium, the Eq.(3) is written for one element
−M1(t)
−V1(t)
−−
M2(t)
V2(t)

 =


Z11 Z12 | Z13 Z14

Z21 Z22 | Z23 Z24

− − + − −
Z31 Z32 | Z33 Z34

Z41 Z42 | Z43 Z44



y1(t)
θ1(t)
−−
y2(t)
θ2(t)

 (4)

Assume the output responses and internal forces/moments at
node 1 are known and external forces are zero, the force and
DOF vectors in the Eq.(4) is rearranged to form state vectors
{X} in such away that {X2} = [Td]{X1}, the transfer matrix
is

[Td] =

[
−[Q] [0]
−[S] [I]

]−1 [
[P ] [I]
[R] [0]

]
(5)

where [P ] =

[
Z11 Z12

Z21 Z22

]
, [Q] =

[
Z13 Z14

Z23 Z24

]
,

[R] =

[
Z31 Z32

Z41 Z42

]
, [S] =

[
Z33 Z34

Z43 Z44

]
B. Transfer matrix and state vector for the global structure

Calculation of state vector at any node of a global structure,
from one known initial state vector at a given node using
transfer matrices is illustrated here. For example, a portion
of a structure is considered with n nodes subjected to an
arbitrary point excitation as shown in Fig.1. It is assumed that
all elements in the state vector at the node 1 are known. The
state vectors at other nodes can be calculated by successive
multiplication of elemental transfer matrices. The equation to
calculate internal response vector for nth node from internal
response vector at node 1 and external force vector is obtained.

{Xni} =

(
n−1∏
k=1

[T(n−k),(n+1−k)]

)
{X1i}+

n−1∑
j=1

(
n−j∏
k=1

[T(n−k),(n+1−k)]

)
{Xje} (6)

For free damped vibration i.e without any external forces, as
a special case the above equation can be deduced as

{Xn} =

(
n−1∏
k=1

[T(n−k),(n+1−k)]

)
{X1} (7)

In the above equation, [TG1,n] =
∏n−1
k=1 [T(n−k),(n+1−k)] is

known as global transfer matrix.
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III. PARAMETER IDENTIFICATION BY DAMPED TRANSFER
MATRIX METHOD (DTM)

The proposed DTM algorithm is used for identifying the
unknown flexural rigidities (EI) of the structure assuming the
masses are known. The beam is excited with a known force
at a point. The elements of initial state vector is measured
at one location, from which it is possible to predict the
displacement at any location in the structure using successive
multiplication of the DTMs, as discussed in section II-B. The
mean square deviation between the predicted and measured
displacements at measured locations in the structure can be
minimized by Particle Swarm Optimization algorithm (PSO)
with the unknown elemental EI values, α and β in the DTM
as the optimization variables. The Successive identification
strategy [13] is adopted to identify unknown parameters since
it is superior in speed and accuracy for the identification of a
few adjacent elements.

Since the elements of DTM are complex numbers, the
elements of all predicted state vectors are complex responses
except the initial state vector. Its elements are all real signals
since they are measured directly. The imaginary part of the
responses in the predicted state vectors is proportional to the
contribution of damping property of the structure. For the
lightly damped structures/materials the imaginary part of the
responses is very small and hence may be neglected and only
real part of the response is considered for identification. But
for significantly damped structures the imaginary part of the
responses is considerable, hence the complex responses are
converted from Cartesian form into Polar form. Let the polar
form of the responses contain magnitude (ue) and phase shift
(φ). The number of time steps are to be shifted is calculated
by the relation ts = φfs

ω where, the fs is sampling frequency
in Hz and ω is circular frequency of excitation in r/s. The error
function between measured and predicted responses is given
by

ε =

∑L
j=1 |um(j)− ue(j + ts)|2

L
(8)

where um(j) and ue(j) are measured and estimated
displacement responses respectively at jth time step. L is
the number of time steps. Then the cycle is repeated for
all the pairs of adjacent measured responses and identify
all unknown parameters successively. Since, the number of
unknown parameters to be identified is one or few for one
identification cycle, the convergence is very fast, the overall
computational time is very small. This strategy is promising
in the identification of local parameters in a structural member.

IV. NUMERICAL EXAMPLES AND RESULTS

The SI algorithm using damped transfer matrix (DTM)
is applied on two numerically simulated experiments. i.e a
uniform cantilever and a sub-structure of a nine member
frame structure. The structure is excited by a harmonic force
at a node and the acceleration responses are measured at

1 2 3 4 5 6 7 8

F (t)

Fig. 2. Finite Element model of cantilever

selected nodes and converted to displacement responses by
numerical integration. In all examples, measured responses are
numerically simulated using Newmark’s constant acceleration
method. The unknown stiffnesses and damping parameters are
searched by PSO algorithm within the search range of 50%
to 150% of the exact values. In order to simulate the effect of
noise in experiments, Gaussian random noise of 3% is added
to the measured signals.

A. Example-1: Cantilever

A steel cantilever of dimension 24.6 × 5.7 × 350 mm is
fixed at its one of the end as shown in Fig.2. The Young’s
modulus of cantilever material is 200 GPa and its density is
7691 kg/m3. It is divided into seven finite elements of length
50mm each. The flexural rigidity (EI) of each element is
75.93 N.m2. The damping constants α and β are 20.77 and
5.71×10-5 respectively. The free end is excited by a harmonic
input force of 1.5sin(2π10t) N. The first natural frequency
of the beam is 38.33 Hz. The effect of the damping was
accounted by Rayleigh’s damping with modal damping ratio
of 5% at its first two modes. Since the bending moment and
shear force responses are zero at the free end, the initial
state vector is formed at the free end. The translational
responses are measured at all nodes and angular response is
measured at the free end only. From the initial state vector the
unknown parameters are identified using DTM successively
with PSO parameters of swarm size 50 and 50 iterations in
each identification cycle with variable inertia weight varies
from 0.9 to 0.4. The identification algorithm is repeated with

TABLE I
PERCENTAGE OF ERROR IN IDENTIFIED RESULTS OF CANTILEVER

Element % of Error
Complete Measurement Incomplete Measurement
Noise free 3% Noise Noise free 3% Noise

1 -0.19 0.98 3.57 4.95
2 0.17 1.88 -1.19 -1.54
3 0.01 -0.45 -0.15 0.79
4 -0.01 -1.96 3.68 -3.21
5 -0.02 -0.56 -1.06 4.99
6 -0.04 0.64 0.52 1.19
7 -0.05 2.51 -0.05 0.27

MAE 0.07 1.28 1.46 2.42
α -0.71 5.83 -1.56 7.40
β -18.21 -21.43 -21.35 24.41

translational responses measured at nodes 3, 5, 7 and 8. The
cantilever is divided into four substructures from nodes (1-
3), (3-5), (5-7) and (7-8) and parameters are identified in each
substructure successively. This problem was repeated with 3%
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(a) Global Structure

1 2 3 4 5 6 7 8

(b) Sub-structure-Member 4

Fig. 3. Frame Structure

noise at all measured data. The total computational time is
48.5s with complete measurements and the computational time
is 27.7s with incomplete measurements. The percentage of
mean absolute error in identified values of EI with complete
and incomplete measurements is tabulated in Table.I. In this
example also the mean absolute error in identified EI values
with complete measurements (0.07%) is less than that with
incomplete measurement (1.46%) of responses. Similarly the
percentage of error in identified damping constants (α and β)
is also more in the case of incomplete measurement (-0.71%
and -18.21%) than that of complete measurement case (-1.56%
and -21.35%). Hence the DTM derived for beam element is
satisfactorily identifying stiffness and damping properties of
the beam.

1) Comparison of results with other time domain methods:
Sandesh and Shankar [14] identified stiffness parameters of a
substructure in a similar cantilever with six elements using a
time domain Least Square technique with damping included
with mean absolute error of 4.51% at 3% noise level which re-
quires measurement at all DOF including rotation. Whereas the
DTM algorithm identified results with mean absolute error of
2.42% at 3% noise level with only four translational response
measurement and only one angular response measurement.
This shows that the DTM algorithm performs well when
compared to other SI algorithms.

B. Example-2: Sub-structural Identification of frame structure

A frame steel structure made of nine members is fixed at
two supports as shown in Fig.3(a) and it has taken from [15].
Each member has a cross section of 12 × 6mm and a flexural
rigidity (EI) of 43.2 N.m2. The first natural frequency is 11.9
Hz. The damping effect is taken into account by adopting
Rayleigh damping with the modal damping ratio of 5%.
The damping constants α and β are calculated as 3.919 and
6.36×10-4. It is proposed to identify the properties of the top
horizontal member 4, which has a length of 1m. The properties
of substructure to be identified is indicated by box in Fig.3(a).
which has a length of 0.875 m. It is divided into seven elements
as shown in Fig.3(b). The structure is excited by a sinusoidal
input force of 10sin(2π10t) N at the midpoint of the member

A BC

W
Bending Strain gauge

Shear Strain gauges

Fig. 4. Strain gauge arrangements

6. Since the boundary conditions are unknown, it is necessary
to measure translational and angular responses, shear force
and bending moment responses of any arbitrary node to define
initial state vector. The first two responses can be measured
directly by accelerometers and last two responses have to be
measured by strain gauges. The initial state vector is formed
at the node 8 which is {X8} = {y8(t), θ8(t),M8(t), V8(t)}T .
Since the external excitation force is not applied on the
substructure, it is not necessary to measure.

1) Measurement of shear force and bending moment re-
sponses: For a rectangular section beam, the bending moment
response is given by

M(t) =
2EIεB(t)

h
(9)

The shear force in the section is given by

V (t) =
4EIεS(t)

h2(1 + ν)
(10)

where EI is flexural rigidity of the section and y = h/2, h
is thickness of the section, ν is Poisson’s ratio. The bending
strain response can be measured using strain gauge, From
the above formulae, to calculate the bending moment and
shear force responses at a node, the knowledge of the flexural
rigidity (EI) at that node is required. The estimation of the
EI value at the starting node using a simple shear strain test
as is presented here. The strain gauges are fixed to measure
bending and shear strain as shown in Fig.4. At a point C in
between the nodes A and B, a static load of W=10 kN is
applied and the corresponding strain at the nodes A and B are
measured. Let the static strain measured at the nodes A and
B be εSA and εSB respectively. The change in shear force at
the nodes A and B is equal to the applied load W at C since
the self weight of the portion AB is very small. The EI at the
initial node B is given by

EI =
Wh2(1 + ν)

4(εSA − εSB)
(11)

for the measured values εSA=9.8571 × 10-5, εSB=-0.0013,
ν=0.37 and h=6 mm, the EI at the node 8 is obtained as
EI8=43.2 N.m2. The bending strain gauges and shear strain
gauges fixed at only B are further required for the dynamic
strain measurement. The bending moment and shear force
responses at the initial node 8 is calculated from measured
strain responses using Eq.(9) and Eq.(10).

873



2) Parameter Identification: The initial state vector is
formed at the node 8. In case of complete measurement,
translational responses are measured at all eight nodes and
angular response is measured at initial node only. The pa-
rameters were identified by PSO with parameters of swarm
size 50 and 50 iterations in each cycle. The total time of
identification for seven EI values with complete measurement
was 43.84s. The same example is identified with incomplete

TABLE II
PERCENTAGE OF ERROR IN IDENTIFIED RESULTS OF SUBSTRUCTURE OF

FRAME

Element % of Error
Complete Measurement Incomplete Measurement
Noise free 3% Noise Noise free 3% Noise

1 1.34 -1.40 4.99 9.99
2 0.29 2.99 -1.84 -7.71
3 0.96 0.05 5.02 4.99
4 -0.16 -0.33 4.11 -4.38
5 -0.41 1.53 -4.54 -3.26
6 -0.14 -0.74 -0.58 -1.84
7 -0.01 -0.04 0.23 0.74

MAE 0.47 1.01 3.05 4.07
α -1.84 -6.97 -3.18 -9.45
β -5.56 -7.14 9.98 -12.84

measurements also. Translational displacement measurements
at nodes 1, 3, 5 and 8 are used here. The structure is divided
into three portions between nodes (1-3), (3-5) and (5-8). The
SI algorithm starts from the initial state vector at the node 8
and identifies parameters of each portion successively. PSO
used a swarm size of 50 and 100 iterations in each cycle.
The total computational time for convergence was 40.98s. The
percentage of error variation in identification of parameters is
shown in Table.II. The mean absolute error in identified results
of EI is 1.01% with complete measurements and is 4.07%
with only four sensors. The DTM performs satisfactorily at
3% Noise level at all measured responses. Also the damping
constants are identified with maximum percentage error of
-12.84% at incomplete noisy measurement. The input force
response is not needed for computation and no need to measure
the same. The main advantage of the transfer matrix method is
that it is more suitable for the identification of local parameters
of complex structure without analysing the entire structure.

3) Comparison of results with other Time domain methods:
It may be noted that Prashanth and Shankar [15] had identified
this problem with a 2 stage neural network trained with
time domain acceleration signals at two nodes. The error of
identification there is expressed as a non-dimensional damage
index based on the change in modulus of elasticity of an
element. The mean error incurred in that method. was about
0.99% for non-noisy signal and 2.1% for signal with 5% noise
but the computational effort of training the network and the
complexity of using a two stage network has to be contrasted
with the simplicity of the DTM method.

V. EXPERIMENTAL VERIFICATION OF SUB-STRUCTURE OF
A FIXED BEAM

A beam made of acrylic material with cross sectional
dimension of 25 ×12 mm and length of 660 mm was fixed

1
1

2
2

3
3

4
4

5 6

W

172mm 320mm 174mm

Element number
Node number

Fig. 5. Substructure of fixed beam

at both ends as shown in Fig 5. The modulus of Elasticity
(E) and density were estimated as 3.7GPa and 1190kg/m3

respectively by simple experiments. The actual flexural
rigidity (EI) of the beam is 13.32 N.m2. The damping
ratio(ζ) was calculated from a simple free vibration decay
test and estimated as 7%. The natural frequencies for the first
two modes are 49.04Hz and 135.45Hz. Assuming Rayleigh’s
damping model, the exact values of damping constants α and
β were calculated as 31.67 and 1.21×10-4 respectively. The
beam was divided into seven elements. A substructure of
length 320mm, is shown inside the dotted rectangle in Fig.5
was considered for structural identification. The sub-structure
has four elements of length 80 mm each. The node 6 was
taken as starting node and the EI value at that node is
required to form state vector at node 6. The flexural rigidity
(EI6) at the starting node was identified by conducting a
static experiment as explained in the section IV-B1. A static
load of W=5.045kgf (49.49N) was applied at a point C in
between nodes 5 and 6 at a distance 20 mm from the node
6. Strain gauges were fixed as shown in Fig 4. Five sets
of readings were taken and the mean values of the shear
strains at the points A and B are εSA = 9.625µ strain and
εSB = −170µ strain respectively. The Poisson’s ratio (ν)
of the beam material is 0.37. Substituting the values in the
Eq.(11), the flexural rigidity at the starting node EI6 was
obtained which is 13.48 N.m2.

To measure dynamic response, one DYTRAN miniature
accelerometer of 2gm mass with sensitivity of 107 mV/g and
acceleration range of 50g was fixed at each node to measure
translational acceleration. Two accelerometers were fixed very
close to each other at a distance of dx=7 mm at the starting
node 6. The experimental set up is shown in Fig.6. The struc-
ture is excited by a sinusoidal force of 3.4sin(2π80t) N at the
node 1 by a LDS permanent magnet 20 N modal shaker with a
maximum displacement of 5 mm with an operating frequency
range of 5 Hz-13 kHz. The measurement of input force was
not required for this problem, since it was applied outside
of the substructure. The strain and acceleration responses
were acquired by 16 channel DEWE 1201 data acquisition
card(DAC) at a sampling frequency of 1000 Hz. The angular
acceleration at the starting node 6 (α6) was calculated by
central difference formula. The translational acceleration at
the starting node is the mean value of acceleration measured
by two accelerometers. Both translational and angular acceler-
ations were converted into respective displacement responses.
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Fig. 6. Experimental set up of Fixed beam

The bending moment and shear force responses at the starting
node 6 were calculated from the measured bending and shear
strain responses using Eq.(9) and Eq.(10) and state vector at
the node 6 was formed. The responses at the other nodes
were determined from the starting state vector using DTM
with predicted values of structural parameters by PSO. The
mean square error between the measured and predicted values
of responses were minimized using the Eq.(8). Since there
are uncertainty in the experimental data, the parameters were
searched between 50% and 200% of their exact value by
PSO using damped transfer matrix. The PSO parameters are
50 swarm size, 100 iterations for each identification cycle.
The identified parameters are shown in the Table.III. The

TABLE III
IDENTIFIED PARAMETERS OF SUB-STRUCTURE OF FIXED BEAM

Parameter Exact Identified % of Error
N.m2 N.m2

EI1 13.32 11.05 -17.04
EI2 13.32 12.90 -3.16
EI3 13.32 14.43 8.39
EI4 13.32 12.33 -7.42
α 31.67 39.49 24.7
β 1.21× 10−4 1.37× 10−4 13.50

total computational time taken for convergence is 80.4s. The
farthest element 1 was identified with least accuracy, since
the error in each identification cycle is accumulated in the
state vectors of the succeeding nodes. The DTM algorithm
identified the damping properties of the beam with 24.7% and
13.5% mean absolute error. Hence it is clear that the DTM
algorithm works on any sub-structure without considering the
global model of the complete structure and identifies its local
parameters with good accuracy.

VI. CONCLUSION

A new SI method based on damped transfer matrix is
presented here. The initial state vector has to be provided, and
displacement at any point in the structure is predicted using
transfer matrix which contains all the structural properties. Us-
ing PSO algorithm, the mean square error between measured
and predicted responses can be minimized with the unknown
structural parameters as the optimization variables. Since the
size of the transfer matrix does not increase whatever be the

model size, computational effort is reduced. However succes-
sive operations are required to identify the unknown param-
eters. The successive identification method of this algorithm
works fast and identifies the structural parameters with good
accuracy. Numerical and experimental studies have been made
on both global structures with known boundary conditions
and sub-structures of unknown boundary conditions. Since
the responses measured in the experimental study contains
realistic noise and errors, the results have less accuracy when
compared with numerically simulated study with artificially
added noise. The accuracy of the method is good compared
to existing time domain SI methods. A main advantage of this
algorithm is the local identification of parameters of structures
without the need to model the entire global structure.
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