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Abstract—In this paper, we propose a distributed robust
control method for synchronized tracking of multiple Euler-
Lagrange systems, where the time-varying reference trajectory
is sent to only a subset of the agents. It is assumed that the
agents can exchange information with their local neighbors on an
undirectionally connected communication graph. The controllers
are not only distributed on the network, but also decentralized
for each generalized coordinate within each agent. Theoretical
analysis is performed. And simulation results are provided to
support the theoretical results.

I. I NTRODUCTION

Motivated by applications in physics, biology and engineer-
ing the study of synchronized control of collections of locally
connected dynamic systems has become an important topic
in control theory. Examples of interesting research directions
include coverage control, consensus, formation control, flock-
ing, and leader-follower tracking [1]. In recent years, there
have been some remarkable works on synchronized tracking
problem for multiple multiple Euler-Lagrange (EL) systems
when only a portion of the agents can access the leader. In
[2], a method of finite time synchronization tracking control
of multirobot systems is proposed. The agent models are
assumed to be known and each agent’s controller requires its
neighbors’ control signals. In [3], a model-independent sliding
mode control algorithm is proposed. However, the algorithm is
discontinuous and requires the availability of the information
of both the neighbors and the neighbors’ neighbors. In [4],
an adaptive robust control algorithm is proposed for multiple
uncertain EL systems. In [5], the problem of position syn-
chronization of multiple EL systems is studied. However, the
proposed method considers the tracking of a stationary leader
which sends a piece-wisely constant reference position signal.

In our recent work [6], we proposed a decentralized adaptive
robust controller for trajectory tracking of robot manipulators.
In this paper, the work of [6] is modified and extended to
develop a new distributed robust control method for syn-
chronized tracking of multiple EL systems, where the time-
varying reference trajectory is sent to only a subset of the
agents. It is assumed that the agents can exchange information
with local neighbors on an undirectionally connected com-
munication graph. In the local controller equipped in each
generalized coordinate of each agent, a disturbance observer
(DOB) is introduced to compensate for the low-passed coupled

uncertainties, and a sliding mode control term is employed
to handle the uncertainties that the DOB cannot compensate
for sufficiently. By some damping terms, the boundedness
of the signals of the overall multiple nonlinear systems is
first ensured. Then we show how the DOB and sliding mode
control play in a cooperative way in each coordinate to achieve
an excellent synchronized tracking performance. Simulation
results are provided to support the theoretical results.

II. BACKGROUND AND PROBLEM STATEMENT

A. Graph Theory

Consider a graphG = (V, E ,A) with a finite set ofN
nodesV = {v1, v2, · · · , vN} and a set of edgesE ⊆ V × V.
Let i denotes theith agent. An edge ofE is denoted aseij =
(vi, vj) ∈ E where agentj can receive information from agent
i. In a directed graph, agentj does not send information to
agenti, whereas in an undirected graph, if(vi, vj) ∈ E , then
(vj , vi) ∈ E . A graph is called connected if there exists a path
between any two distinct agents. Denote the adjacency matrix
as A = [aij ] ∈ RN×N with aij > 0 if (vj , vi) ∈ E , and
aij = 0 otherwise. Noteaii = 0. For an undirected graph, we
haveaij = aji. The set of neighbors of a nodevi is Ni =
{vj ∈ V|(vj , vi) ∈ E}, i.e., the set of nodes with information
incoming tovi. The Laplacian matrixL = [lij ] ∈ RN×N is
then defined aslii =

∑N
j=1,j ̸=i aij , and lij = −aij , i ̸= j.

B. EL System models

ConsiderN agents governed by the following EL vector
equations fori = 1, · · · , N .

Mi(θi)θ̈i + Ci(θi, θ̇i)θ̇i + gi(θi) + fi(θ̇i) = ui (1)

whereθi = θi(t) ∈ ℜn is the generalized coordinate vector;
ui ∈ ℜn is the input torque vector;Mi(θ) = MT

i (θ) ∈
ℜn×n,Mi(θi) > 0 is the inertia matrix;Ci(θi, θ̇i)θ̇i ∈ ℜn is
the centrifugal and Coriolis torque;gi(θi) ∈ ℜn is the grativity
torque;fi(θ̇) ∈ ℜn is the friction force torque.

We first impose the following assumption.
Assumption 1:The reference trajectoryθd(t) ∈ Rn and the

time derivativesθ̇d(t) and θ̈d(t) are bounded signals.
Define an auxiliary error vectorri = [ri1, · · · , rin]T as

ri = ėi + ϕiei (2)
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where ei = θi − θd is the local tracking error vector,ϕi =
diag(ϕi1, · · · , ϕin) > 0 with constant entries.

Substitutingei andri into (1), we have

Mi(θi)ṙi + Ci(θi, θ̇i)ri = ui + ξi (3)

where ξi = [ξi1, · · · , ξin]T is considered to be an uncertain
term of (3), and

ξi = −Mi(θi)(θ̈d−ϕiėi)−Ci(θi, θ̇i)(θ̇d−ϕiei)−gi(θi)−fi(θ̇i)
(4)

The global dynamics of the multiple EL systems is

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) + f(θ̇) = u (5)

M(θ)=diag[M1(θ1), ..,MN (θN )]

C(θ, θ̇)=diag[C1(θ1, θ̇1), .., CN (θN , θ̇N )]
g(θ)= [g1(θ1), · · · , gN (θN )]T

f(θ̇)= [f1(θ̇1), · · · , fN (θ̇N )]T

u=[u1, · · · , uN ]T

(6)

whereθ = [θT1 , · · · , θTN ]T .
And the global version of (3) is given as

M(θ)ṙ + C(θ, θ̇)r = u+ ξ (7)

ξ = −M(θ)(1N⊗θ̈d−Φė)−C(θ, θ̇)(1N⊗θ̇d−Φe)−g(θ)−f(θ̇)
(8)

whereΦ = diag(ϕ1, .., ϕN ), ξ = [ξ1, · · · , ξN ]T is the global
uncertain term,r = [r1, · · · , rN ]T is the global auxiliary error
vector, ande = θ−1N ⊗θd is the global tracking error vector.

Then the following properties hold [7].
Property 1:

µmin(M)I ≤ M(θ) ≤ µmax(M)I (9)

whereµmax(·), µmin(·) > 0 denote respectively the maximal
and minimal eigenvalues of a matrix.

Property 2:

∥ C(θ, θ̇) ∥2≤ cH ∥ θ̇ ∥2 (10)

for some constantcH > 0.
Property 3:

∥ g(θ) ∥2≤ cg, ∥ f(θ̇i) ∥2≤ cf1 + cf2 ∥ θ̇ ∥2 (11)

for some constantscg, cf1, cf2 > 0.
Property 4:

xT

[
1

2
Ṁ(θ)− C(θ, θ̇)

]
x = 0, ∀x ̸= 0 (12)

C. Synchronized tracking problem

The control objective is to design a controller for each agent
to track a time-varying reference trajectory exerted by a leader,
with the aid of the neighbor agents’ information obtained by
certain communication protocol. That is,∥ ei ∥2 and ∥ ėi ∥2
(i = 1, · · · , N ) should be controlled to be small.

To construct a feedback controller, we define the following
local synchronization error vector of agenti which will be
used as a feedback signal:

esi =
∑
j∈Ni

aij(θi − θj) + bi(θi − θd) (13)

where the scalar pinning gainbi ≥ 0. If agent i receives
information directly from the leader thenbi > 0, otherwise
bi = 0. aij is the(i, j) entry of the adjacency matrixA which
defines the communication topology of the network.

Then the global synchronization error vector is given as
es = He, whereH = (L + B) ⊗ In, es = [eTs1, · · · , eTsN ]T ,
B = diag(b), b = [b1, · · · , bN ]T .

We impose the following assumption on the communication
topology of the network [4], [3].

Assumption 2:The communication graphG = (V, E ,A) of
the multiple EL systems is undirected and connected.

Then, the following lemma is useful [3], [4].
Lemma 1: If the information interchange graphG is undi-

rected and connected, and if at least one of the elements ofb
is nonzero, thenL+B is a positive definite symmetric matrix.

According to the aforementioned definitions, the global
auxiliary synchronization error vectorrs is given as

rs = Hr = H(ė+Φe) = ės +Φes (14)

wherers = [rs1, · · · , rsN ]T , rsi = [rsi1, · · · , rsin]T .
For the EL system model (3), it is well known that the

uncertainty term is bounded by the following relation [8]:

∥ ξ ∥2≤ α1 + α2 ∥ e ∥2 +α3 ∥ ė ∥2 +α4 ∥ e ∥2∥ ė ∥2 (15)

whereα1, α2, α3, α4 are some positive constants.
For a vector-valued signalx(t), we define a truncated norm

for T > 0 as∥ x ∥T≡ supt∈[0,T ] ∥ x(t) ∥2. Then we have [8]
Lemma 2:Let Assumption 1 and Properties 1∼4 hold. If

there is a constantT such that∥ r ∥T exists, then for all
t ∈ [0, T ] we have for someβ1, β2, β3 > 0,

∥ ξ ∥2≤ β1 + β2 ∥ r ∥T +β3 ∥ r ∥2T (16)

III. C ONTROLLER DESIGN

A. Introduction of DOB

Replacingr in (7) by rs, we have

H−1ṙs = M−1u+M−1(ξ − C(θ, θ̇)H−1rs) (17)

For the sake of design a distributed and decentralized
controlleruij for each generalized coordinate, we defineH−1

0

andM0 as some diagonal nominal matrices ofH−1 andM
respectively, and then we have

M0H−1
0 ṙs = u+M0M

−1(ξ − C(θ, θ̇)H−1rs)

+(M0M
−1 − I)u+M0(H−1

0 −H−1)ṙs
(18)

Let M0H−1
0 = Ms0 = diag(ms01, · · · ,ms0N ) with ms0i =

diag(ms0i1, · · · ,ms0in) > 0. Then we have the following
vector-valued nominal linear system model.

Ms0ṙs = u+ w (19)

wherew = [wT
1 , · · · , wT

N ]T with wi = [wi1, · · · , win]
T is the

global lumped disturbance vector expressed as

w = M0M
−1(ξ − C(θ, θ̇)H−1rs) + (M0M

−1 − I)u

+M0(H−1
0 −H−1)ṙs

(20)
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Writing the dynamics of thejth generalized coordinate of
the ith agent, we have

ms0ij ṙsij = uij + wij (21)

wherewij is considered as a lumped disturbance term. Since
calculation ofṙsij by direct differentiation is usually contam-
inated with high frequency noise, we may passwij through a
low-pass filter to obtain its estimate as

Qij(s)wij = Qij(s)(ms0ijsrsij − uij) (22)

In this paper, for convenience of expression,s denotes not only
the Laplace operator, but also a differential operator. This is
the so-called DOB studied extensively in the literature. In this
a study, we adopt a simple second-order filter

Qij(s)=
1

(1 + λijs)2
(23)

whereλij > 0.
However, we can only expectQ(s)wij ≈ wij at low-

frequencies due to limited pass-band of the DOB. Moreover,
the DOBs’ outputsŵij(i = 1, · · · , n, j = 1, · · · , N) may
disturb the signals of the other generalized coordinates. To
ease the analysis shown later, a straightforward and simple
idea is to saturate the output of the DOB as

ŵij =


w for |Qij(s)(ms0ijsrij − uij)| ⩾ w

Qij(s)(ms0ijsrij − uij)

for |Qij(s)(ms0ijsrij − uij)| < w

−w for |Qij(s)(ms0ijsrij − uij)| ⩽ −w
(24)

wherew > 0 is a selected upper bound of|ŵij |. Usually, it
is recommended to choose a sufficiently largew. However,
even whenw is not so large such that̂wij is really saturated
and hence the estimation error(wij − ŵij) is not sufficiently
small, the control performance is still satisfactory, owing to the
sliding mode control term included in the local controller (25)
given later. The key point is that the DOB and the sliding mode
control term work in a cooperative manner as suggested in [6].
Owing to their cooperative effects, the problems of high-gain
or chattering can be avoided. This will be confirmed later by
the numerical examples.

B. Description of the controller

Motivated by the aforementioned discussions, we design
the following local controlleruij for the jth generalized
coordinate of agenti, using only the neighbor information of
agenti to ensure the boundedness of the global system signals
and to achieve a satisfactory control performance.

uij = −ρal
2
1rsij − ρbwrsij − ρcηmaxrsij − ŵij − ηijsat(rsij)

(25)
wherek, ρa, ρb, ρc, l1, ηij > 0, sat(rsij) = rsij/(|rsij |+ δij),
δij > 0, ηmax = max(η11, · · · , η1n, · · · , ηN1, · · · , ηNn).

The controller is explained as follows.
The damping term−ρal

2
1rsij is adopted to suppress the

effects of neglected uncertainties of the global system model

summarized asξ in (8). The constantl1 is chosen such that
l1 >∥ r ∥2 /

√
Nn for all t > 0. It will be shown that

there exists such anl1. The term−ŵij is a compensation
term by DOB for each generalized coordinate. Since the
DOBs’ outputsŵij(i = 1, · · · , N, j = 1, · · · , n) may disturb
mutually, to suppress the interactions due toŵij , we employ
the damping term term−ρbwrsij . The last term ofuij is a
smoothed version of sliding mode control term. The damping
term−ρcηmaxrsij is a term to suppress the interactions among
the sliding mode control terms.

The global expression is given as below which will be used
for analysis of the global system.

u = −ρal
2
1rs − ρbwrs − ρcηmaxrs − ŵ − ηSat(rs) (26)

where ŵ = [ŵ1, · · · , ŵN ]T , ŵi = [ŵi1, · · · , ŵin]
T ,

η = diag[η1, · · · , ηN ]T , ηi = diag[ηi1, · · · , ηin]T ,
Sat(rs) = [sat(rs1), · · · , sat(rsN )]T , sat(rsi) =
[sat(rsi1), · · · , sat(rsin)]T .

Remark 1:The controller (26) is an extension or modifi-
cation of the decentralized controller for a single EL system
[6]. Compared to the controller in [6] where some nonlinear
damping terms with signal dependent gains are used, in the
present controller, we have to use some linear damping terms
with relatively high constant gains, such asρal

2
1rs, ρbwrs and

ρcηmaxrs. This is mainly due to the presence of the matrix
H in (30) given later. Therefore, as the price of multiple EL
system control, the controller design is less flexible as the case
of a single agent.

C. Comments and guidelines of parameter design

The guidelines of parameter design are aummarized here
based on the theoretical analysis given later.

The constantl1 in (25) should meet the requirement that
l1 >∥ r ∥2 /

√
Nn for all t > 0. That is, we have to guess the

upper bound of∥ r ∥2. See Theorem 1 later.
The entries ofϕi that appeared in (2) should not be very

large, since large values of them may lead to a very large
∥ r ∥22 which may violate the condition imposed onl1.

A small smoothing factorδij for sat(rsij) in (25) leads to a
small ultimate tracking error of the corresponding generalized
coordinate. However, as well known in the literature, a less
smooth switching function may cause the chattering problem.
A high sliding mode control gainηij helps to achieve a small
control ultimate tracking error, but it may also cause the
chattering problem, and may cause a high gain control term
ρcηmaxrsi.

The saturation levelw of the DOBs should not be very large
to avoid causing a high gain control termρbwrsi.

Usually, a smallerλij of the DOB filter (23) leads to a better
disturbance performance. However, too small aλij may make
ŵij sensitive to the noise.

Whenl21, w, ηmax andηij meetthe aforementioned require-
ments, the choice ofρa, ρb and ρc in (25) is trivial. Some
moderate values of these parameters are satisfactory.
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IV. PERFORMANCE ANALYSIS

Since all of the agents interact with their neighbors, we
cannot easily see if the signals of the agents are all bounded.
We should first ensure the boundedness of the global system
signals. Then provided the boundedness of the global system
signals, we can analyze the control performance of each agent.
Therefore, the performance analysis includes two phases.

A. Analysis of the global system

The results of analysis are given in Theorem 1. The proof
is an extension of [8], [6], but with modifications specified by
the newly designed controller in this study.

Theorem 1:Let Assumptions 1 and 2 hold. For the multiple
EL systems (5) controlled by the proposed distributed robust
controller (26), there exists a constantl1 > 0, such thatr is
bounded as∥ r ∥2<

√
Nnl1 and hence all the internal signals

are bounded, provided the following condition.√
µmin(M)

µmax(M)

√
Nnl1 >

[
2Nn(β1 + β2l1 + β3l

2
1)

ρaµmin(H)

]1/3
≥
(

N2n2w

2ρaρbµ2
min(H)

+
N2n2ηmax

2ρaρcµ2
min(H)

)1/4

(27)
Remark2: The first inequality of (27) is easily satisfied for

sufficiently largel1, ρa. The second inequality of (27) can be
satisfied for sufficiently largel1, ρb, ρc.
Proof. According to Assumption 2, we have Lemma 1 and
henceµmin(H) > 0. We are now ready to show that there
exists a constantl1 > 0, such thatr is bounded as∥ r ∥2<√
Nnl1. The conclusion is proved by contradiction. To this

end, according to (27) we first let a positive constantl1 satisfy

∥ r(0) ∥2<
[
2Nn(β1 + β2l1 + β3l

2
1)

ρaµmin(H)

]1/3
<

√
µmin(M)

µmax(M)

√
Nnl1 ≤

√
Nnl1

(28)

Now assume the signalr(t) is not bounded. Thus there al-
ways exists a smallest timeT1 such that∥ r(T1) ∥2=

√
Nnl1.

Consider a Lyapunov function candidate with respect to the
global tracking error vector.

V (t, r) =
1

2
rTM(θ)r (29)

Taking the derivative along the trajectory of the closed-loop
system, we have

V̇ (t, r) = rT
(
u+ ξ − C(θ, θ̇)r +

1

2
Ṁ(θ)r

)
≤ rTu+ ∥ r ∥2∥ ξ ∥2
= −ρal

2
1r

THr − ρbwr
THr − rT ŵ

−ρcηmaxr
THr − rT ηSat(rs)+ ∥ r ∥2∥ ξ ∥2

≤ −ρal
2
1µmin(H) ∥ r ∥22 + ∥ r ∥2∥ ξ ∥2

−ρbwµmin(H) ∥ r ∥22 + ∥ r ∥2∥ ŵ ∥2
−ρcηmaxµmin(H) ∥ r ∥22 +

√
Nnηmax ∥ r ∥2

(30)

Here,ηmax is the maximum diagonal element ofη. Completing
the squares, we have

V̇ (t, r) ≤ −ρal
2
1µmin(H) ∥ r ∥22 + ∥ r ∥2∥ ξ ∥2

+
∥ ŵ ∥22

4ρbwµmin(H)
+

Nnη2max

4ρcηmaxµmin(H)

(31)

By (28), and the assumption that there exists a smallest time
T1 such that∥ r(T1) ∥2=

√
Nnl1, we have∥ r ∥2<

√
Nnl1

for any t < T1. Then using Lemma 2, we have fort < T1,

V̇ (t, r) ≤ −ρaµmin(H)

Nn
∥ r ∥42 + ∥ r ∥2 (β1 + β2l1 + β3l

2
1)

+
Nnw

4ρbµmin(H)
+

Nnηmax

4ρcµmin(H)

= −ρaµmin(H)

2Nn
∥ r ∥2

(
∥ r ∥32 −2Nn(β1 + β2l1 + β3l

2
1)

ρaµmin(H)

)
−ρaµmin(H)

2Nn

(
∥ r ∥42 − N2n2w

2ρaρbµ2
min(H)

− N2n2ηmax

2ρaρcµ2
min(H)

)
(32)

We then can say that there exists a time instantt2 = T1−t1 >
0, t1 > 0 such that

√
Nnl1 >∥ r(T1 − t1) ∥2=

[
2Nn(β1 + β2l1 + β3l

2
1)

ρaµmin(H)

]1/3
≥
(

N2n2w

2ρaρbµ2
min(H)

+
N2n2ηmax

2ρaρcµ2
min(H)

)1/4

(33)
However, according to (32), we haved/dtV (t) ≤ 0, for all
t ∈ [T1 − t1, T1]. Therefore, for allt ∈ [T1 − t1, T1], we have

V [T1, r(T1)]≤V [(T1 − t1), r(T1 − t1)]

≤ 1

2
µmax(M)

[
2Nn(β1 + β2l1 + β3l

2
1)

ρaµmin(H)

]2/3
(34)

But the definition ofT1 leads to

V1[T1, r(T1)] ≥
1

2
µmin(M)Nnl21 (35)

Clearly, the last two inequalities are in contradiction, according
to (28). This implies that the assumption of∥ r(T1) ∥2=√
Nnl1 is false. Thus the error signal vectorr is bounded

and satisfies∥ r(t) ∥2<
√
Nnl1 for all t ≥ 0.

Furthermore, according to Assumption 1, and (2), (15) and
(14), we conclude thate, ė, θ, θ̇, ξ andrs are bounded. And
hence each local controlleruij is bounded. Therefore, all the
internal signals are bounded.□

Remark 3:The condition (27) is always satisfied for a
sufficiently large boundl1. The results of Theorem 1 only tell
us thatr and hence all the internal signals can be made to be
bounded. It should be emphasized here that at the present stage
our purpose is only to ensure the boundedness of the signals.
And hence a conservative bound of the signals is acceptable.
Later, we will show that the individual synchronization error
rsij can be made sufficiently small by virtue of the corre-
sponding local controller.
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B. Analysis of each agent

We are now ready to analyze how the DOBs and sliding
mode control techniques bring improvement in each general-
ized coordinate. Substituting the local controller (25) into the
subsystem (21), the resultant subsystem of thejth generalized
coordinate of theith agent becomes

ms0ij ṙsij = −ρal
2
1rsij − ρbwrsij − ρcηmaxrsij

−ŵij − ηij
rsij

|rsij |+ δij
+ wij

(36)

Owing to the results of Theorem 1,wij(t) and ŵij(t) are
bounded. Define

η∗ij,0 = sup
0≤τ≤t

|wij(τ)− ŵij(τ)| (37)

Theorem 2:Let the assumptions and results of Theorem
1 hold. The synchronization error of thejth generalized
coordinate of theith agent satisfies

|rsij(t)|≤ |rsij(0)|e
− c

ms0ij
t
+

√
δijη∗ij,0

c
(38)

if ηij ≥ η∗ij,0, or

|rsij(t)|≤ |rsij(0)|e
− c

2ms0ij
t
+

(η∗ij,0 − ηij)

c
+

√
2δijηij

c
(39)

if 0 ≤ ηij < η∗ij,0, wherec = ρal
2
1 + ρbw + ρcηmax.

Proof. We first consider the case ofηij ≥ η∗ij,0, i.e., the sliding
mode control gain exceeds the maximum amplitude of(wij −
ŵij). From (36), we have

d

dt

(
ms0ijr

2
sij

2

)
≤ −cr2sij + δijη

∗
ij,0 (40)

and hence

r2sij(t) ≤ e
− 2c

ms0ij
t
r2sij(0) +

δijη
∗
ij,0

c
(41)

This leads to (38).
In the case of0 ≤ ηij < η∗ij,0, we have

d

dt

(
ms0ijr

2
sij

2

)
≤ − c

2
r2sij −

(√
c

2
|rsij | −

η∗ij,0 − ηij√
2c

)2

+
(η∗ij,0 − ηij)

2

2c
+ δijηij

(42)
andhence

r2sij(t) ≤ e
− c

ms0ij
t
r2sij(0) +

(
(η∗ij,0 − ηij)

2

c2i
+

2δijηij
ci

)
(43)

This leads to (39). □
However, η∗ij,0 may not be small since the initial value

ŵij(0) is often set to be zero. To investigate the performance
after a short transient phase of DOB. Lettij(λij) be an effec-
tive time-constant of the DOB depending onλij , until which

the initial value of(wij − ŵij) has decayed out sufficiently
such that for a relatively small constantη∗ij,tij we have

η∗ij,tij = sup
tij(λij)≤τ≤t

|wij(τ)− ŵij(τ)| (44)

Comparing (37) and (44), it is expected thatη∗ij,tij can be
much smaller thanη∗ij,0. Then we have

Corollary 1: For t ≥ tij(λij), the synchronization error of
the jth generalized coordinate of theith agent satisfies

|rsij(t)|≤ |rsij(tij)|e
− c

ms0ij
(t−tij)

+

√
δijη∗ij,tij

c
(45)

if ηij ≥ η∗ij,tij , or

|rsij(t)| ≤ |rsij(tij)|e
− c

2ms0ij
(t−tij)

+
(η∗ij,tij − ηij)

c
+

√
2δijηij

c

(46)

if 0 ≤ ηij < η∗ij,tij , wherec = ρal
2
1 + ρbw + ρcηmax.

Theorem2 and Corollary 1 imply that the auxiliary syn-
chronization errorrs is uniformly ultimately bounded (UUB),
and hence the auxiliary tracking errorr = H−1rs is UUB.

V. SIMULATION STUDIES

For the sake of comparison, we borrow the example in
[3] and carry out the numerical simulations under the same
conditions as possible. Consider a group of 6 two-DOF planar
robot arms:[

mi11(θi) mi12(θi)
mi21(θi) mi22(θi)

] [
θ̈i1
θ̈i2

]
+

[
hi1(θi, θ̇i)

hi2(θi, θ̇i)

]
+

[
gi1(θi)
gi2(θi)

]
=

[
ui1

ui2

] (47)

wherei = 1, · · · , 6, and

mi11(θi)=mi1l
2
ci1 +mi2(l

2
i1 + l2ci2) + Ii1 + Ii2

+2mi2li1lci2 cos(θi2)
mi12(θi)=mi2l

2
ci2 + Ii2 +mi2li1lci2 cos(θi2)

mi21(θi)=mi12

mi22(θi)=mi2l
2
ci2 + Ii2

(48)

hi1(θi, θ̇i)=−mi2li1lci2(2θ̇i1θ̇i2 + θ̇2i2) sin(θi2)

hi2(θi, θ̇i)=mi2li1lci2θ̇
2
i1 sin(θi2)

gi1(θi)= g(mi1lci1 +mi2li1) cos(θi1)
+mi2glci2 cos(θi1 + θi2)

gi2(θi)=mi2glci2 cos(θi1 + θi2)

(49)

whereg = 9.807[m/s2], and the physical parameters are given
in Table I.

The network topology for communication among the agents
is shown in Fig. 1. It can be verified that agents 1∼6 are
undirectionally connected, and only agents 3 and 6 have access

745



TABLE I
PHYSICAL PARAMETERS OF THE ROBOT MANIPULATORS(i = 1, · · · , 6)

link mass [kg] mi1 = 1.0 + 0.3i, mi2 = 1.5 + 0.3i
link length [m] li1 = 0.2 + 0.06i, li2 = 0.3 + 0.06i
masscenter [m] lic1 = 0.1 + 0.03i, lic2 = 0.15 + 0.03i
inertial tensor [kg·m2] Ii1 = 0.0073, 0.0137, 0.0229,

0.0355, 0.0521, 0.0732
Ii2 = 0.0194, 0.0309, 0.0461,

0.0656, 0.0900, 0.1198

54

3 01 2

6

Fig. 1. Information exchange graph of the leader and followers

to the leader (agent 0). The corresponding adjacency matrix
and pinning vector are given as follows.

A =


0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0

 , b = [0, 0, 1, 0, 0, 1]T (50)

We investigate the synchronized tracking performance for
the following reference trajectory vector and its derivative
generated by the leader.

θd=

[
cos

(
2π

60
t

)
, sin

(
2π

60
t

)]T
[rad]

θ̇d=

(
2π

60

)[
− sin

(
2π

60
t

)
, cos

(
2π

60
t

)]T
[rad/s]

(51)

And to show that the controllers are robust against nonzero
initial tracking errors, the initial conditions are given as

θi(0)=
[π
7
i,

π

8
i
]T

[rad]

θ̇i(0)= [0.05i− 0.2, −0.05i+ 0.2]
T

[rad/s]
(52)

According to the design guidelines, we choose the design
parameters of the local controllers (25) as follows.

ϕi1 = ϕi2 = 0.5
ρa = ρb = ρc = 1, ηi1 = ηi2 = 3
l1 = 2, δi1 = δi2 = 0.05

(53)

wherei = 1, · · · , 6. The nominal values in (21) are given as
ms0i1 = ms0i2 = 1. The time-constants of the DOB filters
are given asλi1 = λi2 = 0.02. And the saturation level of the
DOBs is chosen aŝw = 30 (see (24)).

The simulation results are shown in Fig. 2, where from the
top to the bottom are respectively the position-tracking errors
ei1, ei2, auxiliary errorsri1, ri2, control signalsui1, ui2 and

DOBs’ outputsŵi1, ŵi2, where the lines of magenta, cyan,
red, green, black and blue represents the signals of agents
1∼6 respectively. It can be found in Fig. 1 that the proposed
distributed controllers deliver a very excellent synchronized
tracking performance, owing to the cooperative effects by
DOBs and sliding mode control terms.
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Fig. 2. Synchronized tracking results of 6 two-DOF planar robot arms.

VI. CONCLUSIONS

In this paper, a distributed robust control method for syn-
chronized tracking of multiple EL systems has been proposed.
The problem setting is similar to the works of [3], [4], where
the time-varying reference trajectory is sent to only a subset
of the agents and the network graph is assumed to be undirec-
tionally connected. The proposed distributed controllers while
delivering a very excellent control performance, are model-
free and require only the neighbors’ information. Therefore
the proposed method is considered to be simple and requires
moderate computational burden.
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