
Graph Theory : Application to System
Recovery

Ahmed Mekki
Univ Lille Nord de France F-59000 Lille, France,

EC LILLE, LAGIS, F-59651, Villeneuve d’Ascq, France
Email: ahmed.mekki@ec-lille.fr

Simon Collart-Dutilleul
Univ Lille Nord de France F-59000 Lille, France,

EC LILLE, LAGIS, F-59651, Villeneuve d’Ascq, France
Email: simon.collart dutilleul@ec-lille.fr

Abstract—The aim of the work presented in this paper is
to introduce a method for assisting the recovery of a given
system in case of failure detection. The proposed method rely
on a graph-based algorithm that allows the identification of
the alternative system configuration. In this way, the method
guarantees the system under study functionalities/missions
even in case of fault. The method is detailed in the sequel.
Furthermore, in order to provide user with automated means
which are at the same time simple, intuitive and rigorous, the
whole of the developed mechanisms have been implemented
in a prototype tool with an intuitive graphical interface that
offers interesting facilities in terms of system recovery. The
method is illustrated using an intelligent and autonomous
vehicle case study.

I. Introduction

Life-critical systems are systems that its dysfunction
could cause human-life death as well as an important
equipment damage or loss. Thereby, this kind of system
(e.g. transportation systems, intelligent and autonomous
vehicle, nuclear plants, manufacturing systems, medi-
cal devices) must achieve a high level of robustness,
availability, reliability and safety. Usually, system life-
cycle could be divided into two main phases : before
implementation and after implementation. The former
phase rely on some research topics such as specification,
modelling design and V&V (validation and verification).
For the later phase, one can find maintenance and system
recovery in case of failure detection. In our case, we use
system recovery to design a re-configuration or a new
arrangement of the system functional units in case of
failure. Various are the causes of failure: performance
problems like access to shared resource (resource con-
tention), hardware faults, software bugs, system oper-
ators misconfiguration, . . . [1]. Nevertheless, all failure
causes are often due to a material, soft dysfunction or
operator manipulation.

Given the human/material impact of critical system
dysfunction, such systems must guarantee the avail-
ability of its services/missions. Availability express the
quality of being at hand when needed. This including
the case when failure occur. Therefore, a recovery tech-
nique is strangely recommended. The aim of the work

1This research has been supported by CISIT project.

presented here is to guide the user during the system
recovery and control phase.

Intelligent and autonomous vehicle (IAV) is a vehicle
that is expected to achieve different tasks without the
intervention of a human operator. Several projects rely
on IAV but the most famous ones are the NASA’s rovers,
for instance the Mars Exploration Rover Mission (MER)
[3]. MER is an ongoing robotic space mission involving
two rovers, Spirit and Opportunity, exploring the planet
Mars. It began in 2003 and its cost raises to more
than US$ 900 million. Actually, to guarantee expected
tasks, IAV rely on set of services provided by several
hardware components (sensors, actuators, . . .) as well
as software components. Nevertheless, due to failures,
it is possible that one or more services are no longer
available and thereby the achievement of some tasks
becomes no longer guaranteed. IAV design rely on fault
tolerant control procedures in order to define strategies
allowing the system to continue its operations with the
required performances despite component faults [4].

As mentioned previously in this paper, we focus on
the system recovery step in case of failure detection.
In fact, the idea is to propose assisting means that are
easy to manipulate and, at the same time, accurate.
However, the more accurate and rigorous a notation is,
the more abstract and difficult to handle and understand
it becomes. Therefore, one of the challenges that we
faced while dealing with this work was to look at both
intuition/simplicity and rigour/accuracy. To deal with
this, we propose a graph-based algorithm able to cover
system configuration and able to identify the alternative
configuration in case of system-down. However, in or-
der to hide all the formal aspects -met when dealing
with system recovery- from user, a GUI tool have been
implemented to automate this step.

The paper is organized as follows: in Section II, an
overview of the context and related works is given.
In Section III, we present the algorithm that we have
proposed. The developed tool is introduced in Section
IV. The method is illustrated using an intelligent and
autonomous vehicle case study in section V before con-
cluding and suggesting some future works in Section VI.

719

UKACC International Conference on Control 2012
Cardiff, UK, 3-5 September 2012

978-1-4673-1558-6/12/$31.00 ©2012 IEEE

II. Context and RelatedWork

Availability of a system is its capacity to achieve its
missions/services in the occurrence of the failure of (or
one or more faults within) some of its components [5].
One of the main properties that characterize availability
is fault-tolerance [6]. Here, we focus on life-critical sys-
tems and thereby, given their failure cost, fault-tolerance
is particularly sought-after such systems. In practice,
some fault can cause a system failure by propagating
the fault to the rest of the system. Therefore, fault
tolerant systems (FTS) must deal with multiple failure
types and thereby, must achieve fault isolation capacity
and reversion modes availability (redundancy). Actually,
FTS are typically based on three main concepts namely
replication, redundancy and diversity [6]. These concepts
could been defined as follows:
• Replication means providing multiple instances of

the same system. Then, tasks/jobs are directed to
all system instances in parallel. The correct result
is determined by a quorum;

• Redundancy means providing multiple instances of
the same system/service and switching to one of the
remaining non-faulty instances, in case of a failure-
detection;

• Diversity means providing various system imple-
mentations in order to deal with with errors in some
specific implementation.

It should noticed that before recovery can be carried,
one must first detect and diagnose the failure. Indeed,
failure detection is to determine the instances while a
system is facing dysfunctions. Afterwards comes the
failure diagnosis which allow to locate the source of
detected failure. Failure detection as well as failure di-
agnosis are not in the scope of this paper.

Severals studies dealing with system recovery have
been proposed and published [6], [7], [8], [9], [10], [11].
Unlike this meantionned studies, our work propose a
graph-based approach to tackle the system recovery
issue. Furthermore, a GUI tool have been implemented
to automate this step.

III. Graph-basedMethod for System Recovery

A. Idea

Let us here recall the aim of our study: we want
to provide the user with simple means for assisting
the system-recovery in case of failure detection. Our
idea is to elaborate a supporting approach which hides
the formal foundation to the user. Concretely, we will
develop a GUI-tool that automate all the steps of system-
recovery procedure.

The idea is to express the service-architecture of a
system with a (directed) graph. In this graph the root
element represents the system while the leaf represent
the elementary services. We assume that a system is
defined as a (non-empty) set of exploitation modes. At

a given instance, only one exploitation mode is active.
Each exploitation mode is composed of a (non-empty)
set of missions. All missions of active exploitation mode
should be active. Multiple versions are defined for each
mission and thereby, at a given instant, only one version
is active. A mission version is composed of (non-empty)
set of service that, all of them, should be active. Various
version of each service could be defined but only one
service version is active at a given instance. A version
service is (non-empty) set of elementary services that
should be active, all of them. This description could be
expressed as follow:

system = OR({Exploitation-Mode})
Exploitation-Mode = AND({Mission})
Missions = OR({Version-Mission})
Version-Mission = AND({Service})
Service = OR({Version-Service})
Version-Service = AND({Elementary-Service})

Where
• E = AND(s) means that an element E is active if all

the elements composing it are active and vice-versa;
• E = OR(s) means that an element E is active if one

and only one of elements composing it is active and
vice-versa.

B. Foundations and Problem’s Formalization

A graph G [12] is a pair G = (V,E) where
• V is a finite set of vertices (nodes), and
• E is the set of edges, formed by pairs of vertices, E

is a subset of P2(V) (E ⊆ (V×V)).
Graphically, a graph is pictured by drawing a four-

square (or point) for each vertex and representing each
edge by a curve joining its endpoints.

Usually, a simple graph denotes a graph having no
loops or multiple edges where each edge e ∈ E can
be specified by its endpoints (a, b) ∈ V and is denoted
e = ab. In this case, we say a and b are adjacent. Thereby,
a path is defined as a set of consecutive and ordered
nodes so that two nodes are adjacent if and only if they
are consecutive in the ordering.

A graph variant is called directed graphs D = (V,
E), where the edges have a direction. In other words,
edges are ordered and ab , ba. Graphically, the edges
are drawn as arrows.

C. System description

In our case, a system is defined as directed graph
DS=(V, E) where
• V is a finite set of nodes, V = Sys∪EM∪M∪VM∪

S ∪ VS ∪ ES:
1) Sys is the root element of the system under

study,
2) EM is the set of exploitation modes of the

system under study,
3) M is the set of missions defined by EM,

720

4) VM is the set of mission version (for each
mission, one can define at least one mission
version),

5) S is the set of services composing missions,
6) VS is the set of service version (for each service,

one can define at least one service version),
7) ES is the set of all elementary services proposed

by the system.

• E is a finite set of edges, E ⊆ (Sys × EM) ∪ (EM ×
M) ∪ (M × VM) ∪ (VM × S) ∪ (S × VS) ∪ (VS × ES).

EM1 EM2 ... EMn

VM1 ...

Sys

M1 Mi...

VMj

S1 ... Sk

VS1 ... VSm

ES1 ... ESi

Fig. 1. System description as a directed graph

Figure 1 depicts graphically the system definition
given in this section. To this definition, we add a set of
binary relations (using AND and OR binary operators)
between elements. Indeed, these relations define the type
of composition between nodes, given above in section
III-A. Actually, for each element type (node), a symbol
is linked. Two kind of symbols are used: ⊕ and �. Node
linked to ⊕ is defined as OR-composition of its children.
In the same way, node linked to � is defined as AND-
composition of its children.

D. Algorithm

Failure detection is the task of identifying system
dysfunction. Different source of failure could be iden-
tified in a given system. A recovery step is switching
to an exploitation mode where all (or a part) of system
capabilities/facilities are guaranteed in case of failure.
Thereby, the exact cause of error is often not required
for recovery to take place. Nevertheless, an automated
approach for the recovery step is necessary in order to
improve system availability. In this section, we propose
an algorithm that automate this step. Given a graph
model of the system under study and given the detected
failure, the algorithm determine and update the list of
the alternative exploitation modes. Actually, based on
the system graph, the algorithm determine a sub-graph
(recovery tree) that represent the non-faulty nodes.

In practice, for each node, we add two attributes: statut
and activity. Statut denotes the statement of a node: func-
tional or not-functional, where activity denotes the activity
statement of a node: active or not-active. Furthermore, the
approach that we propose require that the failure lists all
the element that are no longer available. In other word,
the failure should be defined as the set of nodes that
are no longer available in the current system description
model.

The recovery algorithm rely on two parameters,
namely the system under study graph and the failure (a
list of faulty elements), and is composed of three main
functions and is conducted as follow:

1) the statut attribute of all faulty element is set to
not-functional within the graph model of the system
under study,

2) For each node n in the list of faulty elements (the
detected failure), the failure spread function, FS(n),
is carried,

3) Determine alternative exploitation mode
Failure spread function of a node n: FS(n)

Step 1: Set the statut attribute all children of n
to non-functional,
Step 2: Set the statut attribute of n to non-
functional,
Step 3: If parent of n is an AND-composition
type element, then

1) n ← Parent of(n),
2) go to Step 2.

Step 4: If parent of n is an OR-composition type
element and if all sibling of node “n” are non-
fonctionnel,then

1) n ← Parent of(n),
2) go to Step 2.

Determine alternative exploitation mode
Once the failure is spread, the next step is to deter-

mine the alternative exploitation modes that could be
activated. Actually, the aim of this task is to determine

721

the sub-graph where all nodes have a statut attribute
value as functional. In other words, the alternative graph
is composed only by nodes that statut is functional.

Let G = (V,E) be the graph of system under study and
let G′ = (V′,E′) be the sub-graph of G where all nodes
are functional and is determined as follow:

Step 0: V′ = ∅ ∧ E′ = ∅,
Step 1: if root of G is faulty, exit algorithm
Step 2: the root of G is chosen and is added to
G
′,

Step 3: a walk1 ω that starts from the chosen
node is constructed by adding only functional
nodes.
Step 4: if all nodes of G are tested, then the walk
ω represents the graph G′ (break algorithm) else
go to step 5,
Step 5: Select the parent of the last node of ω,
go to Step 6
Step 6: A walk ω’ that starts from the chosen
node is constructed by adding only functional
nodes.
Step 7: ω ← concatenate(ω,ω’). Go to Step 4

It is worthy to notice that the obtained walk is a
connected graph G′ since the start node of this function
is the root node. This connected graph is equivalent to
the spanning tree for the undirected graph representation
of graph G. Once the spanning tree is returned, a product
of all possible exploitation mode configuration is com-
puted based on it. Thereby, from the list of all possible
configuration, the user (operator) could choose one (and
only one) to activate.

IV. Recovery Tool

The various mechanisms we have developed have
been implemented within a software tool. This tool
guides the user during the recovery step, it offers a quite
intuitive graphical user interface. Actually, the tool rely
on two main elements:
• Recovery algorithm: first, the developed tool dis-

plays the system description and lists its various
parameters. Indeed, as shown above in the paper,
the system description is based on a graph theory.
A graphic representation of this graph is done ones
its description (graph description of the system to
check) is loaded. This representation is made on
a tab within the recovery tool. Then, based on
the algorithm discussed in section III-D and given
a failure, the tool can automatically determine all
possible alternative exploitation modes. Finally, the
switch to the selected exploitation mode is carried.

• Data structure: since we aim that the developed tool
can be used in combination with other tools within a
global system supervision and control approach, we

1A walk is a list v0, e1, v1 . . . en, vn of nodes and edges such that for
1 6 i 6 n, the edge ei has endpoints vi−1 and vi.

have chosen XML (Extensible Markup Language)
[13] standard format for the input/output files. The
main advantage of using the standard XML is that
format of the encoding documents is both human-
readable and machine-readable. Actualy, our tool
rely on three different files: a system description
which is an input/output file, the initial configura-
tion file and the failure file, both are input files.
The corresponding structure of each file has been
defined by an XML schema. Listings 1, 2 and 3
define respectively the XML schema for the system
description, the initial configuration and the failure.

Listing 1. System XML schema
< !ELEMENT Systeme (mode+)>
< !ELEMENT mode (nom? , Mission +)>
< !ELEMENT Mission (nom? , VMission+)>
< !ELEMENT VMission (nom? , s e r v i c e +)>
< !ELEMENT s e r v i c e (nom? , v s e r v i c e +)>
< !ELEMENT v s e r v i c e (nom? , e s e r v i c e +)>
< !ELEMENT nom (#PCDATA)>
< !ELEMENT e s e r v i c e (#PCDATA)>
< ! ATTLIST mode

a c t i v i t y (Active | notActive) #REQUIRED
s t a t u t (nonFunctional | Funct ional) #REQUIRED>

< ! ATTLIST Mission
a c t i v i t y (Active | notActive) #REQUIRED
s t a t u t (nonFunctional | Funct ional) #REQUIRED>

< ! ATTLIST VMission
a c t i v i t y (Active | notActive) #REQUIRED
s t a t u t (nonFunctional | Funct ional) #REQUIRED>

< ! ATTLIST s e r v i c e
a c t i v i t y (Active | notActive) #REQUIRED
s t a t u t (nonFunctional | Funct ional) #REQUIRED>

< ! ATTLIST v s e r v i c e
a c t i v i t y (Active | notActive) #REQUIRED
s t a t u t (nonFunctional | Funct ional) #REQUIRED>

< ! ATTLIST e s e r v i c e
a c t i v i t y (Active | notActive) #REQUIRED
s t a t u t (nonFunctional | Funct ional) #REQUIRED>

Listing 2. Initialization XML schema
< !ELEMENT I n i t (mode?)>
< !ELEMENT mode (nom? , e s e r v i c e +)>
< !ELEMENT nom (#PCDATA)>
< !ELEMENT e s e r v i c e (#PCDATA)>

Listing 3. Failure XML schema
< !ELEMENT Erreur

(mode ∗ ,
Mission ∗ ,
VMission ∗ ,
s e r v i c e ∗ ,
v s e r v i c e ∗ ,
e s e r v i c e ∗)>

In the sequel we will discuss the steps of a recovery
process and we show how the tool facilities are helpful
and useful when carrying this process (figure 2). From
the menu bar (green box),

1) First, the user should start by loading the sys-
tem specification. The uploaded description will be
then drawn in the shape of tree (blue box),

2) Once the system description is uploaded, an initial
configuration should be selected. In the same way,
the initial configuration is then represented in the
shape of tree (black box),

722

3) Then, relying on the uploaded failure file, the
recovery algorithm is carried automatically. After-
wards, a box showing (red box) all possible ex-
ploitation mode is shown and from which a system
mode configuration could be selected (to update
the current configuration.

Fig. 2. Main GUI of the developed tool

In order to illustrate all this steps an IAV case study
is presented hereafter.

V. Application to IAV system

A. System description

In real environment, an IAV could be repaired after
the fault detection and isolation is carried. Nevertheless,
within some critical environments, where the interven-
tion (the necessary repairs) of a human operator is
impossible, fault tolerance property must be provided
to the IAV. In this case, IAV must be kept continuously
operating even with a fault, such as when IAV operating
in distant and/or dangerous areas. Consequently, IAV
systems rely on service (component) redundancy in or-
der to guarantee fault tolerance property. For illustration,
let us consider an IAV described (Figure 32) as follows :
• RoBuCar can carry two different exploitation modes

: normal mode and degraded mode.
• Unlike normal mode where the four wheels are

used, degraded mode rely on three or two wheels.
Two main differences that distinguish the two ex-
ploitation modes: the maximum authorized speed
and the weight of the transported goods for each
mode.

• RoBuCar is expected to provide several missions :
moving on, moving back, curbing, . . .

• Each wheel is equipped with two electrical motors :
only one is used to move the wheel. The second

2RoBuCar : is an IAV at LAGIS laboratory built by the Robosoft
Company http://lagis.ec-lille.fr/

motor is used in case of dysfunction of the first
motor.

• To move a wheel, four services are required : (1) the
generation of an electrical power, (2) the conversion
of the electrical power to a mechanical one, (3) the
transmission of the mechanical energy to the tire and
(4) a measurement service required to control the
motor in closed loop.

1) The generation of an electrical power rely on
three elementary services namely: (a) supply
the motor, (b) induce an electrical power and
(c) limit the electrical current.

2) The conversion of the electrical power to a
mechanical one is composed by one elementary
service.

3) The transmission of the mechanical energy to
the tire is composed of two elementary services
namely: (a) keep all the pieces in rotation and
(b) load service.

4) The measurement service is composed of three
elementary services namely: (a) measure the
electrical current, (b) measure the velocity and
(c) measure distances.

Let us recall that, in order to keep system operating
even in case of fault, service (component) redundancy
is essential. Therefore, different versions of the same
service as well as of the same mission are available.

Fig. 3. RoBuCar

B. Recovery procedure
The service graph associated to the RoBuCar system

described above is depicted graphically in figure 4 (for
simplicity reason, some details are omitted). The XML
file describing this graph is used to carry on the recov-
ery tool. Afterwards, in case of a failure detection, the
recovery tool is carried.

For example, suppose that one of the four wheels
is no longer available. In other words one of the two

723

electrical motors that equippe the wheel is no longer
available. The XML file describing this failure is defined
according to the XML schema given above. The failure
XML file is needed by the recovery tool. Once the failure
file is loaded, the tool, automatically, finds alternative
exploitation modes to keep the vehicle working despite
the failure. In our case, two alternative exploitation
modes are retuned :

1) Keep the “normal mode” by proposing to activate
the second electrical motor of the wheel.

2) Skip to the “degraded mode” where only three
wheel are used.

The main advantage is that the procedure is automatic
and rely on standard format (XML) for systems exchange
(the system description, the failure description, . . .).
Therefore, its integration in operating system supervi-
sion approach can easily be done.

Normal Mode Degraded Mode

MO1 ...

RoBuCar

Curb MovingOnMovingBack

MOj

EPG EP2MP METr

EPG1 ... EPGm

Motor EP EC

Measure

Fig. 4. Simplified version of the graph service of the RoBuCar

Therefore, the method allows to keep IAV continu-
ously operating even with failures. In practice, this is
very interesting specially for IAV operating in distant
or/and dangerous areas where human cannot operate.

VI. Conclusions
In this paper we aim at introducing a means to assist

and guide the user while carrying the system recovery
in case of failure detection. The proposed approach
rely on the graph theory. The main advantage of this
notation that is formal and thereby, automatic tool using
this notation could implemented. Actually, we started
by proposing a graph-based description of the study
system. Then, we defined an algorithm for the recov-
ery system in case of failure detection. All proposed
mechanisms we have developed have been implemented
within a software tool. In order to illustrate the devel-
oped method an intelligent and automatic vehicle (IAV)
case study was presented. First, a textual description of
system was given. Then, the service graph is depicted
on which the recovery tool is carried. Although, within
some critical environments, where the intervention of a
human operator is not possible, IAV must be kept con-
tinuously operating even with a fault, such as operating
in distant and/or dangerous areas. Here we showed how
the developped approach could, automatically, be used
to detremine alternative exploitation modes.

References
[1] S. Pertet and P. Narasimhan, Causes of failure in web applications,

Carnegie Mellon University Parallel Data Lab, Tech Rep CMU-
PDL- 05-109, Dec 2005.

[2] http://esj.com/blogs/enterprise-insights/2011/06/
it-systems-failure-costs-quantified.aspx

[3] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, Global Planning
on the Mars Exploration Rovers: Software Integration and Surface
Testing, Journal of Field Robotics, 26(4), April 2009, 337-357.

[4] N. Chatti, Online supervision of intelligent vehicle using functional and
behavioral models, Intelligent Vehicles Symposium (IV), 2011 IEEE,
p. 827-832, 2011.

[5] DP. Siewiorek and RS. Swarz, The theory and practice of reliable system
design, Digital Press, Bedford, Massachusetts 1982.

[6] J. Bowen and V. Stavridou, Safety-critical systems, formal methods and
standards, Software Engineering Journal, 8(4), p. 189-209, IET.

[7] N.G. Leveson, Software safety: Why, what and how, ACM Computing
Surveys, 18, p. 125–163, 1986.

[8] E. Hammami, Déploiement sensible au contexte et reconfiguration des
applications dans les sessions collaboratives, Thèse à l’Université de
Toulouse, 2007.

[9] R. Sirdey, Modèles et algorithmes pour la reconfiguration de systèmes
répartis utilisés en téléphonie cellulaire, Thèse à l’Université de Tech-
nologie de Compiègne, 2007.

[10] M. Staroswiecki and A-L. Gehin, From control to supervision, An-
nual Reviews in Control, vol. 25, p. 1-11, 2001.

[11] G. Bajpai, H.G. Kwatny and B.C. Chang, Control systems perspective
on safety critical systems, 8th Asian Control Conference (ASCC) p.
413 -417, 2011.

[12] R. Diestel, Graph Theory, Springer-Verlag, Graduate Texts in Math-
ematics, Third edition, 173 pages, 2005.

[13] W3C, XML specification 1.0, http://www.w3.org/TR/xml/

724

