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Abstract—This Vehicles sold in the US and Europe have to be 

equipped with a Diagnostics, called On-Board Diagnostics 

(OBD), which monitor the performance of various elements of 

the emission control system. The driver is informed as to any 

failures by the use of a Check Engine Light on the dashboard of 

the vehicle and then should return the vehicle to the dealership 

for rectification. The vehicle manufacturer's aim is to ensure 

that the Check Engine Light is only illuminated for legitimate 

failures. For the calibration of an On Board Diagnostics there 

needs to be sufficient separation between the response of a good 

sensor and a failed sensor, the setting of this threshold should be 

based upon a statistical model of the data so that the predicted 

failures rate can then be determined. By applying confidence 

limits to the models allows the engineer to understand how 

additional data points will effect the calculation of the failure 

threshold. This gives the engineer the ability to determine the 

tradeoff between the number of data points and a confidence in 

the estimated statistical model. 

 

Keyword-components:  Automobiles, Detection, Diagnosis, 

Engines 

I.  INTRODUCTION 

Vehicles sold throughout the world are subject to an 

increasingly stringent set of emission thresholds. To achieve 

certification, all sensors and vehicle sub-systems that may 

affect vehicle exhaust emissions have to be monitored by an 

On-Board Diagnostic (OBD) system that is part of the Engine 

Management System (EMS) or any other embedded controller 

[1]. This requirement was first introduced in the US in 1988 

for OBD1, for open and short circuit faults, and in 1994 for 

OBD2, for changes in sensor and actuator responses [2]. For 

Europe this legislation, denoted EOBD, has been introduced 

for all vehicles built after January 2000 [3]. Both sets of 

legislation link the performance of the different diagnostics to 

emission thresholds. In the event of component or sub-system 

failure, a ‘check engine’ light must be illuminated as an 

indication to a driver that there is a problem, so corrective 

action can be taken to minimise the pollution caused by such a 

fault. As the emissions thresholds are continually reduced, 

more sophisticated techniques are required to be employed to 

meet these increasingly tightening thresholds. 

 

As the Vehicle Emission Legislation drives down vehicle 

pollution the impact on the diagnostics is that they have had to 

become increasing more complex to determine a failed 

system. As a consequence the diagnostics are becoming have 

become increasing more like models of the functions that they 

are monitoring, if only over a  restricted set of operating 

conditions, and as such the diagnostic results that they produce 

are becoming more likely to fit to a Gaussian Distribution. 

 

OBD Diagnostic Calibration engineers develop test plans 

that invoke the worse conditions for the diagnostics, by 

introduction of variety of test conditions. These are typically 

different fuel specifications, operations at different ambient 

conditions (hot, cold and altitude), with different driving styles 

and tolerance sensors. Each diagnostic will have it’s own set 

of worse case test conditions which have been developed 

through the experience of the engineer and lessons learnt. The 

approach used by the calibration engineer is to collect data for 

these conditions and then fit a Gaussian distribution to the data 

to set thresholds to ensure that 'normal' systems does not false 

flags and that 'failed' system flag in a timely manner.  

 

By making use of these Gaussian models and through the 

information obtained by the use of confidence interval of these 

models allows a more conservative and robust threshold to be 

set. Since the variation in the models reduces as the more data 

is collected they also provide the Engineer with a way of 

gauging whether collected any more data will significantly 

change their results. This is especially useful when collecting 

Fault condition data which where it is difficult to generate a 

large amount of data either because it requires specialist 

hardware setup or a specific environmental condition for 

which there might be a limited amount of testing time 

available. 

 

The paper is organised as follows: Section II Problem 

Formulation which outlines the diagnostic used within this 

paper, Section III defines the Diagnostic Specification which 

outlines the set of conditions for setting the diagnostic 

thresholds, Section IV which defines the calculation of the 

Confidence Interval, Section V Process Monitoring and 
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Analysis details the implementation and analysis and finally, 

Section VI details further work and concludes the paper.  

 

II. PROBLEM FORMULATION 

On modern engines the air fuel ratio (AFR) has to be 

tightly controlled so that the Three Way Catalyst is operating 

at it’s optimum and providing the correct emissions control 

[4]. AFR is measured as the ratio between the mass of air and 

the mass of fuel for pure octane the stoichiometric mixture is 

approximately 14.7:1. The exact composition of fuels varies 

seasonally and geographically so modern engines use a more 

convenient measure of lambda (λ) rather than AFR to allow 

them to control combustion process. Lambda (λ) is defined as 

the ratio of measured AFR to stoichiometric AFR for that 

given mixture. A Lambda of 1.0 is stoichiometry, rich 

mixtures are less than 1.0, and lean mixtures are greater than 

1.0. 

 

In this paper the calibration of an Individual Cylinder Air 

Fuel Ratio Diagnostic is investigated. This is a diagnostic 

which was first introduced for vehicles sold as 2010 Model 

Year vehicles [5,6]. Since this is still a relatively new 

diagnostic it was decided to carry out a more detailed analysis 

of the diagnostic results. The data analysed in this paper was 

collected from a cold ambient environment trip, this condition 

being deemed as being the worse case condition potentially 

giving the smallest separation between a fault free and the 

failed set of data. 

  

Prior to the test trip the failure condition for both a rich and 

lean shift in λ for individual cylinders was determined by 

carrying out tests over an Emissions Drive Cycle. A failure 

condition being determined when the fuelling shift resulted in 

an emissions test result being 1.5 times the certify emissions 

standard. The failure threshold is set as the amount of shift in 

λ. The diagnostic infers the amount of Fuelling shift that each 

cylinder is experiencing from λ = 1 to determine a failure. 

 

III. DIAGNOSTIC THRESHOLD SETTING 

Ideally the failure threshold should be set so you can 

capture all of the diagnostic results. However, in practice this 

may not always be possible so a minimum target of 90% of 

the data which contains a fault condition should result in the 

diagnostic bring on the Check Engine Light. To put on the 

Check Engine Light in USA requires that a failure is detected 

on two successive diagnostic operations. So to achieve the 

90% detection on two successive tests requires that for a 

single test the failure threshold should be set at a level 

approximately 95% (100√0.9). To determine the Failure 

Thresholds in Section 4 it is more convenient to convert this 

figure into a Standard Deviation. In the case we are assuming 

that the threshold will only occur on one side of the 

distribution closest to the Fault Free set of data. On the Failure 

Threshold side of the distribution the point at which 45% of 

the population is represented by a Standard Deviation of 1.64, 

the other 50% of the data being containing the other half of the 

distribution. 

 

For the fault free set of data we need to ensure that the 

fault thresholds are greater than 3×Standard Deviations from 

either side of the distribution we will refer to this as the Rich 

or Lean Robustness Threshold. This will then allow 99.74% of 

the data to be correctly identified as being fault free for a 

single diagnostic result. For the two successive diagnostic 

results this would then lead to the possibility of flagging a 

fault free system as having a fault as being 1 in 148,000 tests.  

 

IV. PROBLEM FORMULATION 

The set of data collected from the diagnostic cannot 

precisely define the characteristics of the population. The 

sample can only define a range of values for both the probable 

mean position and the probable standard deviation value. 

Confidence interval calculations are used to define a probable 

range of values for the population mean Ux  (Upper) and Lx  

(Lower) and the population standard deviation Uσ  and Lσ . 

This then generates a range of possible statistical models that 

will include the population model with a given confidence.  

 
Equation (1) [7] is used to Calculation of the Confidence 

Interval for the Mean 

 

(1) 

 

Sx  is the sample mean t  is the Confidence Factor based upon 

the Student’s t-Distribution, Sσ  is the Sample Standard 

Deviation, n is the Sample Size and β is either α for a single 

sided confidence Interval or α/2 for two sided confidence 

interval. Where α is the significance level and for this paper a 

value of 5% or 0.05 will be used.  

 

Calculation for the Confidence Limit for Standard Deviation is 

given by  

 

                        Lower Limit    Upper Limit 

     

                                                                                                (2) 

 

χ
2

is the Confidence Factor based upon the Chi-Squared 

Distribution.  

 

The results of equation (1) and (2) will produce a range of 

standard deviation and means values which will include the 

population model with a 95% confidence. This confidence 

increases and the range of these values reduces as there is an 

increase in the amount of data, n, as it is collected. Using this 

range of values it is then possible to choose a combination 

which will give the worse case Failure or Robustness 

thresholds. In terms of the Standard Deviation it is the Lower 
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Limit calculation in (2), Lσ , which produces the maximum 

value of sigma and this will generate a model which produces 

a greater range of λ values. The means, Lx  or Ux , are chosen 

so as to give the smallest separation between the Failure 

threshold and Fault free condition in each case. 

 

V. PROCESS MONITORING AND ANALYSIS 

From testing three specific sets of data were collected a the 

Fault Free, represented by under score F, a set of data in which 

a rich shift has been introduced to represent the emission 

failure threshold, represented by an underscore R, and a set of 

data for the lean shift, represented by an underscore L. This 

resulted in 6294 sets of results with a normal engine, 102 

diagnostic results for the rich shift 106 results for the lean 

shift. 

 

The first thing to check is that all of the data sets have a 

Gaussian distribution. This was done using the LilleTest 

function within MATLAB which performs a Lilliefors test [8, 

9] of the default null hypothesis that the samples comes from a 

Gaussian distribution, against the alternative that it does not 

come from a Gaussian distribution. The test returns a 1 if it 

rejects the null hypothesis at the 5% significance level. For the 

fault free condition the set of data failed this test to future 

investigate this data is plotted on a Quartile-Quartile (QQ) 

Plot. This shows the raw data as blue crosses plotted against 

an ideal Gaussian model which is the red dashed line. This 

shows that for the bulk of the data between the 5% and 95% 

percentiles it fits a Gaussian distribution. It is only the tail 

information of the distribution which does not match this 

statistical model. From the shape of the tails in Figure 1 it 

indicates that the data has come from a ‘fat tailed distribution’ 

where the data extends further than for the tails of a Gaussian 

distribution.  This can be seen by considering the 0.999 and 

the 0.001 percentile points which lie at points 0.925 and 1.07 

respectively and should, for a Gaussian Distribution, lie at 

0.94 and 1.06. Even though this statistical model does not 

accurately fit the data it was decided to assume that the fault 

free set of data could be considered to be Gaussian initially 

and then reviewed when the final thresholds for the Rich and 

Lean have been determined. The risk is by making this 

assumption that the variance used for the Fault Free Data will 

under estimate the true risk. 
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Figure 1: QQ plot for the Fault Free Data 

 

 LF SF UF 

 x  0.9980 0.9985 0.9990 

 Σ 0.0217 0.0213 0.0209 

Table 1: Statistical Model for Fault Free Data (β = 0.025) 

 

 

Table 1 has been calculated for β = α/2 = 0.025 in 

Equations (1) and (2). The Standard Deviation 
FLσ , from 

Table 1, gives the largest value of sigma and is used to 

calculate the Robustness Threshold for both the rich and lean 

sides of the distribution. For the Lean Robustness Threshold 

the mean 
FUx was used  to give a value of 1.0640, the Rich 

Robustness Threshold was obtain using 
FLx  which gives a 

value of  0.9330. 

 

Table 2 shows the Rich Failure model information note 

that since we are considering a single side threshold then β = 

0.05. Figure 2 shows the Histogram of the raw Rich Failure 

data and the red solid line shows the worse case statistical 

model using
RUx and 

RLσ . Using this model the Rich Failure 

threshold is calculated as 0.8579 and is shown on the graph by 

the solid vertical red line. The dotted blue vertical line shows 

the sample Rich Failure threshold of 0.8507 calculated by 

making use of 
RSσ  and 

RSx .  
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Figure 2: Statistical Results for Rich Failure Data 

 

 LR SR UR 

 x  0.8166 0.8197 0.8229 

 Σ 0.0214 0.0189 0.0170 

Table 2: Statistical Model for Rich Failure Data (β = 0.05) 

 

Since we most concerned with the issue of falsely flagging 

a Fault Free System it is useful to take the difference between 

the Rich Failure Threshold at 0.8579 and the Rich Robustness 

Threshold at 0.9330 and then determine the amount of sigma 

separation there is between them. This difference is 

normalised by dividing by 
FLσ  to determine the amount of 

separation in terms of sigma and results in a separation of 

3.46
FLσ   

 

This then provides a clear robust threshold in terms of 

provide a detection which meets the requirements and 

provides a significant safety margin against falsely flagging 

and we have also taken into consideration the variability in the 

models by making use of the confidence interval 

 

Figure 3 shows the response after introducing a lean failure 

shift again the graph shows the histogram of the raw data and 

the solid red line shows the distribution of the worse case 

statistic model derived from 
LLx  and 

LLσ  in Table 3. The red 

vertical line shows the Lean Failure Threshold of 1.1647 from 

this model and the dotted blue vertical line at 1.1723 for 

derived from  
LSσ  and 

LSx . Using the same metric as 

previously derived the differences between the Lean Failure 

Threshold and the Lean Robustness Threshold gives a 

separation of 4.64
FLσ . 

 

1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3
0

2

4

6

8

10

12

C
o
u
n
ts

Air Fuel Ratio (λ)
 

Figure 3: Statistical Results for Lean Failure Data 

 

 LL SL UL 

 x  1.2022 1.2055 1.2087 

 Σ 0.0229 0.0203 0.0182 

Table 3: Statistical Model for Lean Failure Data (β = 0.05) 

 

From the discussion earlier in the paper it has been 

highlighted that it can difficult to collect Fault condition so it 

is useful to be able to assess whether enough data has been 

collected to ensure that the real distribution of the Fault 

Condition has been captured. To determine this we have to 

make the assumption that the Sample model information that 

we have is the best estimate of the distribution model. So in 

the Rich Failure case the Sample values of 
RSσ  and

RSx from 

Table 2 have been used and the value of n and the subsequent 

changes made to the t-distribution and Chi-Squared, in 

equations (1) and (2), can then be used to determine the effect 

on the threshold calculation. 

 

 

In Figure 4 the blue solid line shows how the difference 

between the Rich Failure Threshold and the Nominal Rich 

Failure Threshold, normalised against the value of 

RSσ determined at n = 102, decays as the amount of data 

increases. The Red dot shows the current point Rich Failure 

Threshold Delta. In Figure 5 shows the same metric as in 

Figure 4 but for the Lean Failure Condition. 

 

711



0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Samples (n)

R
ic

h
 F

a
ilu

re
 T

h
re

s
h
o
ld

 D
e
lt
a
 (

 σ
 S

 R
 )

 
Figure 4: Rich Failure Threshold Delta 
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Figure 5: Lean Failure Threshold Delta 

 

From the results shown in Figure 4 and 5 the current set of 

data obtained at around 100 samples gives an adequate 

confidence and subsequent testing would not necessarily lead 

to a significant change in the values of the Failure Thresholds. 

For example to reduce the current threshold, in both cases, by 

50% would require an addition 250 tests. 

 

 

 Robust 

Threshold 

Failure 

Threshold 

Separation 

Rich 0.9330 0.8579 3.46
FLσ  

Lean 1.0640 1.1647 4.64
FLσ . 

Table 4: Summary of the Threshold Information 

 

VI. CONCLUSION 

The results in Table 4 show the calculated Failure 

Thresholds and the Robustness Thresholds for Rich and Lean 

conditions and for this diagnostic there is a significant amount 

of separation between these two sets of thresholds has 

enabling the requirements laid out in Section 3 to be met. This 

amount of separation has reduced the risk of making use of a 

Gaussian Model to derive the information for the Fault Free 

set of data. If it were the case that there was not such a 

separation then further investigation would have to undertaken 

to understand the reason or determine perhaps a more valid 

statistical model.  

 

The use of the Confidence Interval in the statistical models 

and the threshold setting enables the calibrators to determine 

when they have collected enough data to provide a robust 

calibration.   
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