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Abstract— This paper presents a novel technique for the real time 
estimation of the contact conditions by using a combination of 
multi-Kalman filtering and fuzzy logic approach. The proposed 
solution exploits the variations in the dynamic behaviour of a 
railway wheelset with the changes in wheel-rail contact condition. 
The proposed system involves the use of multiple model based 
estimation of the wheelset dynamics in response to different track 
conditions. Each of the estimators is tuned to match one 
particular track condition to give the best results at the specific 
design point. Residuals of each filter are calculated and the level 
of matches/mismatches is reflected in the residual values of the 
models concerned. The residuals from all the models are then be 
assessed by a fuzzy inference system to determine the present 
operating condition and hence to give real time information 
about the track conditions. 

Keywords- Wheel rail contact; State Estimation; Kalman filters; 
Fuzzy Logic 

I.  INTRODUCTION  

Adhesion is a very important factor in the operation of the 
railway vehicles. The delivery of traction and braking is 
achieved through the available adhesion at the wheel-rail 
interface. Insufficient level of adhesion can lead to severe 
safety and operational problems resulting in huge financial 
losses to railway industry around the world. Although in last 
few decades the railway industry is able to manage low 
adhesion to some extent but currently available measures are 
not sufficient to eliminate the safety incidents and train delays. 
This is because the adhesion is affected by a large number of 
parameters such as weather, season changes and 
contaminations and therefore cannot be predicted with 
certainty. Changes in the adhesion conditions can be rapid and 
also short-lived, and the adhesion coefficient can differ from 
position to position along a route depending upon the type and 
degree of contamination which presents a great scientific 
challenge to effectively design a suitable technique to tackle 
this problem.  

Current wheel slip/slide protection (WSP) technologies for 
traction and braking systems are incorporated in the rail 
vehicles to maximize the use of available adhesion [1]. WSPs 
control the slip ratio (relative speed between a wheel and the 
train) below a pre-defined threshold to avoid slip/slide during 
traction or braking [1]. In general, WSPs are effectively 
reactive systems, i.e. only ‘activated’ to stop wheel slip/slide 
when detected by the sensors. There is still a need for a system 
which is proactive and can prevent slip/slide from its 

occurrence, such that real time information about the track 
condition can be provided to the traction and braking control 
systems to maximize the use of available adhesion. On the 
other hand, the wheel-rail contact mechanics is extremely 
complex and vary with time which presents a great scientific 
challenge to effectively design a suitable technique to tackle 
this problem. 

A number of ideas have been proposed that is related to the 
monitoring of the running condition of the wheel-rail interface 
that use low cost inertial sensing mounted on the vehicle and 
advanced processing, e.g. an inverse modelling approach for 
the estimation of creep forces [2, 23-25]; and a model based 
estimation [3-4].  

A multiple model approach has been proposed previously 
by the authors for the real time estimation of the wheel-rail 
contact conditions [5-8], this paper extends the study to take 
into account contact conditions that are directly used in design 
of the Kalman filters. This is of particular practice importance, 
as real track conditions can be affected by uncertain external 
factors and hence unpredictable. Furthermore, this paper also 
covers the complete design of fuzzy inference system and 
presents a formula to convert the fuzzy logic output into 
percentage adhesion.   

II. MODELLING OF CONTACT MECHANICS 

Wheelsets are a key component of railway vehicles that 
interacts directly with the track and consequently the 
dynamics of the wheelset are directly influenced by changing 
contact conditions - therefore this study focusses on a single 
solid axle wheelset and the outcome of the study may be 
readily extended to the full vehicles [9-19]. The dynamic 
behaviour of the railway wheelset is governed by the creep 
forces generated at the wheel rail contact patches. These creep 
forces are the result of creepages which are the relative speed 
of the wheels to rail and can be characterized as lateral (λy) 
and longitudinal creep (λx) in accordance with the direction of 
motion as given in equations 1-3 [5-8].  
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where the subscripts L and R represent left and right wheels, ro 
is the nominal radius of the wheels, v is the vehicle forward 
speed, γ is the conicity of the wheels, Ψ is the yaw angle, Lg is 
the track half gauge, ωL and ωR are the angular velocities of 
the left and right wheels respectively, y is the lateral motion, 
and yt represents the track irregularity in lateral direction. The 
total creepage λj is the combination of the lateral and 
longitudinal creepages. 

RLjandyxiijijj ,  ,     22  
 

The total creep force Fj is a nonlinear function of the total 
creepage and can be represented using equation 5.  

RLjNF jjj ,          

The distribution of the contact forces in the longitudinal and 
lateral directions is thoroughly studied by Polach [20] and can 
be represented using (6).  

RLjandyxiFF
j

ij
jij ,  ,          ,. 

  

The equations of motion of the wheelset are given in 
equations (7-12). 
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where Mv is the mass of the vehicle x is the vehicle forward 
acceleration, Iw is the yaw moment of inertia, kw is a yaw 
stiffness necessary to stabilise the wheelset, mw is the mass of 
the wheelset, y is the lateral acceleration, Fc is a centrifugal 

force which is taken into consideration when the wheelset runs 
on a curved track, Fg is the gravitational stiffness force related 

to the lateral displacement and roll angle of the wheelset. The 
tractive torque Tt is applied to one side of the wheelset (right 
side in this case) and the other wheel is driven by the torsional 
torque Ts. θs=∫(ωR-ωL)dt. ks is the torsional stiffness of the 
shaft connecting the two wheels and Cs is material damping of 
the shaft, which is usually very small.  

III. DESIGN OF MULTIPLE KALMAN FILTERS 

The main objective of this study is to detect the changes in 
the wheel-rail contact condition with practical sensors. The 
design of the estimator is simplified by considering the 
wheelset modes that are directly related to contact conditions. 
Previous studies have suggested that the lateral and yaw 
dynamics are sufficient for the study of plan-view dynamics of 
a wheelset [4, 5, 6, 8, 15, 21-22]. The use of a simplified 
model has several advantages in the estimator design without 
having a significant effect on the results [5-8]. The major 
advantage is the simple design of the estimator with minimum 
number of states which will allow the estimator to converge 
quickly. The yaw and lateral dynamics are excited by lateral 
track irregularities. The contact forces given in (5) and (6) are 
nonlinear in nature and are linearized at specific points on the 
creep curves in order to enable the design of the Kalman filters. 
The small signal model of linearized creep forces is given in 
following equation [5-7].  
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The track disturbances (yt) are very difficult/expensive to 
measure in practice and therefore highly undesirable to be 
used as an input to the Kalman filters, therefore (13) is 
reformulated to include the track input as an additional state, 
as   

t
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A gyro sensor to measure yaw rate and accelerometer to 
measure lateral acceleration are found   to be sufficient to 
produce satisfactory results. The output equation is given in 
(15). 
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developed by examining the residual values in different 
contact conditions e.g. in 40% adhesion level the value of 
residual of model-1 is ‘Low’, the value of residual of Model-2 
is ‘Low’, the value of residual of model-3 is ‘High’ and the 
value of residual of model-4 is ‘Moderate’. Similarly rules for 
other possible contact conditions are developed and some of 
the rules are given below.  
 
If Residual-1 is ‘Low’ and Residual-2 is ‘Low’ and Residual-3 
is ‘High’ and Residual-4 is ‘Moderate’ and Tt is ‘T8’ then 
‘µ≥40%’.  
If Residual-1 is ‘Low’ and Residual-2 is ‘Low’ and Residual-3 
is ‘Moderate’ and Residual-4 is ‘Low’ and Tt is ‘T3’ then 
‘20%≥μ≥10%’.  
 
The output is determined by averaging the outcome of all the 
rules and final numeric output ranging from 0 to 100 is 
produced. The output fuzzy set is shown in Fig-10. 
 

 
Figure 10. Input membership function of Residual-2 

 
The final stage is to convert the fuzzy logic output into 
percentage adhesion, which is done by fitting a sixth order 
polynomial on fuzzy output data set and following equation is 
obtained. 

4238.00205.000042.010213.2 1
2

1
3

1
4

1
6   nnnn   

where n1 is fuzzy logic output and µ is percentage adhesion 
level. The simulations are run different contact conditions and 
the results are given below.   
 

 
Figure 11. Simulation carried out using creep Curve CA 

 

 
Figure 12. Simulation carried out using creep Curve CC 

 

 
Figure 13. Simulation carried out using creep Curve CF 

Fig.11 shows the output of the fuzzy inference system when 
the system is operated on creep curve CA. the fuzzy logic 
output is converted to adhesion information using (16). The 
system takes approximately two seconds to react and produce 
correct output. The delay in this case is due to the time needed 
in computer simulation to reach steadily contact conditions 
and also due to the time required to calculate the windowed 
rms of residuals. After 2 seconds the output fuzzy logic system 
is steady and the estimated adhesion level is almost equal to 
the simulated adhesion level. Fig.12 shows the result obtained 
by simulating the creep curve CC. Again the steady output is 
produced after a delay of approximately 2 seconds. In practice 
while the wheelset already be in motion the amount of delay 
would not be as much. After the expected delay, the estimated 
adhesion level is approximately equal to the actual adhesion 
level. The difference in the actual output and the estimated 
output is caused by several reasons that include inaccuracy in 
fuzzy interpretation and the error due to curve fitting formula.  
Similarly Fig.13 shows the result of the simulation when the 
wheelset is operated on creep curve CF.  
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VI. CONCLUSION AND FURTHER WORK 

The problem of low adhesion and its adverse impact on 
train control systems and rail network operations present a 
significant technological challenge to the railway industry. 
Measures taken by railway industries around the world, such 
as sanding, water jetting, WSPs e.t.c, have solved the 
problems caused by low adhesion to some extent. But these 
measures are not sufficient to eliminate the problems 
completely. The adhesion detection method presented in this 
paper lays a scientific foundation for a new way forward. The 
simulation results presented in this paper affirm the potential 
of the idea presented. Further work, e.g. track testing and 
experimental validation, will be needed before it can be put 
into practice.  
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