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Abstract— Riblets have been considered as a passive method
for drag reduction. Riblets are structures on a surface that
run parallel to one another, which are aligned longitudinally
to the flow. It has been shown experimentally that when the
shape, spacing and height of the riblets are optimized, the drag
coefficient over the surface can be reduced by up to 10%.
These results have also been confirmed by direct numerical
simulation studies. Although the benefits of riblets have been
known since the early 1980’s, the mechanism of drag reduction
is still not fully understood. This paper examines the effect
of riblet structures on the amplification of background noise
within channel flow between two parallel plates (Poiseuille
flow), where riblets are present on the surface of one of
the plates. A linearized version of the Navier-Stokes equation
about the steady flow is developed and through a coordinate
transformation, the boundary conditions associated with the
riblets are transferred into the partial differential equations.
Previous work has used spectral methods to discretize these
equations, leading to a large-scale state space model, and the
energy amplification was calculated for the streamwise con-
stant component of the flow from the controllability gramian.
However, solving the associated Lyapunov equation can be
computationally prohibitive, which limits the density of the
discretized grid. This paper shows how the problem can be
transformed to decouple the system, so that the gramian can
be obtained by solving a set of smaller Lyapunov equations,
which has the potential to allow the energy amplification to be
calculated for systems with a dense discretization grid.

Index Terms— Fluid flow, drag reduction, Lyapunov equa-
tion, energy amplification, riblets

I. INTRODUCTION

One approach that has been considered in the past that
results in a significant reduction in the drag caused by a fluid
flowing past a body is the introduction of riblet structures on
the surface of the body [1], [2], [3]. Riblets are structures that
run parallel to one another, that are positioned longitudinally
to the flow and usually have a triangular cross-section in
the transverse direction. By contrast with approaches such
as suction/blow mechanisms, riblets can be regarded as a
passive drag reduction mechanism [4]. Previous research has
shown that riblet structures can be optimized to produce a
reduction in the drag coefficient of up to 10% [2]. It is
believed that the mechanism responsible for this level of drag
reduction is the interaction of the riblets with the structure
of the boundary layer, which leads to a reduction in drag,
despite the significant increase in the area of the modified
surface that is in contact with the flow compared to a
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smooth surface. This drag-reduction mechanism is observed
widely in nature, for example on shark skin and scallop
shells [5], [6]. Static riblet structures (often in the form of
films that cover the surface) have been used in a number
of fields and in the 1990’s tests on a scale model of an
Airbus A320 cruising at Mach 0.7 have shown reductions
in viscous drag of 4.85% [7], [8]. However, despite these
benefits, there has not as yet been a satisfactory explanation
for the mechanism of drag reduction using riblet structures.
Experimental and Computational Fluid Dynamics (CFD)
studies have suggested that riblets induce streamwise vortices
that sit within the riblets [9], [10], although recent work has
shown that riblets induce spanwise vortices close to the riblet
surface and it is these that change the drag over the surface
[11], [12].

The results presented here build on previous work [13],
[14] that combines ideas from control theory and aerody-
namics, by extending an existing direct numerical simulation
of the flow between two parallel plates (Poiseulle flow),
where riblets are present on the surface of one of the
plates. The model uses concepts from linear control theory to
determine the transient growth of background noise energy
amplification in the linearized Navier-Stokes equations [15],
[16]. We investigate how the transient growth in energy
alters with the introduction of riblet structures by using the
model to predict how the shape and positioning of the riblets
affect this transient energy growth. The model calculates
the amplification of background noise energy, together with
the drag on the surface of the plates, for a given riblet
geometry, by using a transformation of coordinates that will
‘passes’ the non-uniformity of the boundary associated with
the riblet structure on one of the walls, into the equations of
motion. Once this equation is obtained, a numerical model
is developed using a Chebyshev discretization approach in
the wall-normal direction and a Fourier representation in
the streamwise and spanwise directions and estimates of
the reduction in energy amplification are obtained as a
function of different geometries. Previous work [13], [14]
has modelled the flow at relatively low Reynolds numbers
due to the computational complexity of the problem, because
in order to find the energy amplification, it was necessary
to solve a high dimension Lyapunov equation, which is a
computationally intensive step. However, by exploiting the
inherent structure of the problem that is associated with the
Fourier representation in the spanwise direction, it is possible
to decompose the problem into a set of decoupled Lyapunov
equations of lower dimension. This has the potential to allow
the flow to be modelled at higher Reynolds numbers and
reduced riblet spacing that require denser discretization grids,
which is where the benefits of the riblets structures are
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observed. It will also allow comparison with experimental
results and with CFD simulations that have been reported in
the literature.

The paper is organized as follows. Section II develops the
equations describing the channel flow and uses a coordinate
transformation to convert the boundary conditions associated
with the riblet structures into a uniform domain. In Section
III, the equations describing the linearized flow about the
steady flow are derived. Section IV shows how Fourier meth-
ods can be used to create a large-scale, finite-dimensional
state space model and describes how the structure of the
model can be exploited to calculate the amplification of the
energy associated with background noise in a computation-
ally efficient manner. Section V gives the results for the
effect on the energy amplification of introducing riblets for
a specific flow regime and Section VI concludes the paper.

II. TRANSFORMING THE EQUATIONS OF MOTION

We consider channel flow between two stationary plates
with the geometry of the problem as shown in Fig. 1, where
x̃, ỹ and z̃ are the coordinates of the streamwise, wall-normal
and spanwise directions, respectively. The upper wall is a flat
plate, while the lower wall is a plate with riblets aligned with
the streamwise direction. The dimensions of the problem are
normalized, so that the upper boundary of the flow occurs at
the plate positioned at ỹ = 1, while the lower boundary is at

ỹ = −1 + f(z̃) (1)

where f(z̃) describes the “shape” of the riblets. The analysis
will be restricted to riblets that are aligned with the stream-
wise direction and are independent of x̃.

x
~

y
~

z~

U(y,z)~~

Upper smooth wall

Lower wall

with riblets
 

Fig. 1. Three-dimensional view of computational domain showing riblet
structure on lower wall of channel. U(ỹ, z̃) denotes the direction of the
steady, streamwise flow.

The streamwise, wall-normal and span-wise components
of the flow in the coordinate system (x̃, ỹ, z̃) are denoted
by u(x̃, ỹ, z̃, t), v(x̃, ỹ, z̃, t) and w(x̃, ỹ, z̃, t) respectively,

and the non-dimensionalised Navier-Stokes equations in this
coordinate system are given by(

∂

∂t
+ u

∂

∂x̃
+ v

∂

∂ỹ
+ w

∂

∂z̃

)
u = −∂p

∂x̃
+

1

Re
∆̃u

(2)(
∂

∂t
+ u

∂

∂x̃
+ v

∂

∂ỹ
+ w

∂

∂z̃

)
v = −∂p

∂ỹ
+

1

Re
∆̃v

(3)(
∂

∂t
+ u

∂

∂x̃
+ v

∂

∂ỹ
+ w

∂

∂z̃

)
w = −∂p

∂z̃
+

1

Re
∆̃w

(4)
∂u

∂x̃
+

∂v

∂ỹ
+

∂w

∂z̃
= 0 (5)

where p is the pressure, Re is the Reynolds number and

∆̃ =
∂2

∂x̃2
+

∂2

∂ỹ2
+

∂2

∂z̃2
(6)

For the smooth wall at ỹ = 1, the boundary conditions are

u(x̃, 1, z̃) = v(x̃, 1, z̃) = w(x̃, 1, z̃) = 0 (7)

together with

∂v

∂ỹ

∣∣∣∣
ỹ=1

= 0 (8)

while for the riblet wall at ỹ = −1 + f(z̃), the boundary
conditions are

u(x̃,−1 + f(z̃), z̃) = v(x̃,−1 + f(z̃), z̃)

= w(x̃,−1 + f(z̃), z̃) = 0 (9)

with

∂v

∂n

∣∣∣∣
ỹ=−1+f(z̃)

= 0 (10)

where n is the normal to the surface of riblets.
We now apply a change of coordinates

x = x̃
y = F (ỹ, z̃)
z = z̃

(11)

where

y = F (ỹ, z̃) =
2ỹ − f(z̃)

2− f(z̃)
(12)

which has the effect of mapping ỹ ∈ [−1 + f(z̃), 1] to y ∈
[−1, 1].

The Navier-Stokes equations in the new coordinate system
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then become [14]

(
∂
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∂

∂x
+ v

∂F

∂ỹ

∂

∂y
+ w

∂F

∂z̃

∂

∂y
+ w

∂

∂z

)
u =

− ∂p

∂x
+

1

Re
∆̃u (13)(

∂

∂t
+ u

∂

∂x
+ v

∂F

∂ỹ

∂

∂y
+ w

∂F

∂z̃

∂

∂y
+ w

∂

∂z

)
v =

− ∂F

∂ỹ

∂p

∂y
+

1

Re
∆̃v (14)(

∂

∂t
+ u

∂

∂x
+ v

∂F

∂ỹ

∂

∂y
+ w

∂F

∂z̃

∂

∂y
+ w

∂

∂z

)
w =

− ∂p

∂z
− ∂F

∂z̃

∂p

∂y
+

1

Re
∆̃w (15)

∂u

∂x
+

∂F

∂ỹ

∂v

∂y
+

∂F

∂z̃

∂w

∂y
+

∂w

∂z
= 0 (16)

where

∆̃ =
∂2

∂x2
+

(
∂F

∂ỹ

)2
∂2

∂y2
+

(
∂F

∂z̃

)2
∂2

∂y2
+

∂2

∂z2

+
∂

∂ỹ

(
∂F

∂ỹ

)
∂

∂y
+

∂

∂z̃

(
∂F

∂z̃

)
∂

∂y
+ 2

∂F

∂z̃

∂2

∂y∂z
(17)

III. LINEARIZED EQUATIONS

The steady state flow, (U, 0, 0), satisfies

U
∂U

∂x
= −∂P

∂x
+

1

Re
∆̃U (18)

0 = −∂F

∂ỹ

∂P

∂y
(19)

0 = −∂P

∂z
− ∂F

∂z̃

∂P

∂y
(20)

∂U

∂x
= 0 (21)

Since we are restricting our attention to the case of straight
riblets aligned with the streamwise direction, so that f(ẑ)
does not depend upon x̂, then P = P (x) and U = U(y, z),
where U(y, z) is the solution of

∆̃U = −2Re (22)

We now redefine the streamwise flow as u(x, y, z, t) +
U(y, z), where u(x, y, z, t) denotes the flow relative to the
solution of steady flow problem, U(y, z), and the pressure
as p(x, y, z, t) + P (x), where p(x, y, z, t) is the pressure
relative to P (x). Linearizing about this steady solution
and applying the change of coordinates, the Navier-Stokes

equations become(
∂

∂t
+ U

∂

∂x̃

)
u+ v

∂U

∂ỹ
+ w

∂U

∂z̃
= −∂p

∂x̃
+

1

Re
∆̃u

(23)(
∂

∂t
+ U

∂

∂x̃

)
v = −∂p

∂ỹ
+

1

Re
∆̃v

(24)(
∂

∂t
+ U

∂

∂x̃

)
w = −∂p

∂z̃
+

1

Re
∆̃w

(25)
∂u

∂x̃
+

∂v

∂ỹ
+

∂w

∂z̃
= 0 (26)

Introducing

η =
∂u

∂z̃
− ∂w

∂x̃
(27)

and rearranging, we obtain(
∂

∂t
+ U

∂

∂x̃

)
η − ∂U

∂z̃

∂v

∂ỹ
+

∂U

∂ỹ

∂v

∂z̃
+ v

∂2U

∂ỹ∂z̃
+ w

∂2U

∂z̃2

=
1

Re
∆̃η (28)

The flow is now described by equations that depend upon v,
η and w. To eliminate w, define

η =
∂u

∂z̃
− ∂w

∂x̃
(29)

which leads to

w = −
(

∂2

∂z̃2
+

∂2

∂x̃2

)−1(
∂η

∂x̃
+

∂2v

∂ỹ∂z̃

)
(30)

We now assume that the flow is streamwise constant, so
that v, η and w are independent of x̃, and ∂

∂x̃ = ∂
∂x = 0,

and following some lengthy manipulations (details are given
in [13], [14]), the linearized flow can be described by

∂

∂t
∆̃v =

1

Re
∆̃∆̃v (31)

∂

∂t
η = C̃v + 1

Re
∆̃η (32)

where

C̃ =
∂U

∂z̃

∂

∂ỹ
−∂U

∂ỹ

∂

∂z̃
− ∂2U

∂ỹ∂z̃
+
∂2U

∂z̃2

(
∂2

∂z̃2

)−1
∂2

∂ỹ∂z̃
(33)

IV. REPRESENTATION IN SPATIAL FOURIER DOMAIN

Using (17), the expression for ∆̃ and ∆̃∆̃ can be expressed
in terms of the steady-state flow U and the partial differ-
entials of F (ỹ, z̃). In order to obtain expressions for these
operators, we require

y = F (ỹ, z̃) =
2ỹ − f(z̃)

2− f(z̃)
(34)

and because z̃ = z, then

ỹ = y +
f(z)

2
(1− y) (35)
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so that
∂F

∂ỹ
=

2

2− f(z)
(36)

∂F

∂z̃
=

(y − 1) f ′(z)

2− f(z)
(37)

where f ′(z) denotes the differential of f(z) with respect to z.
The higher partial derivatives of F (ỹ, z̃) can also be derived,
but the resulting expressions for the transformed operators
are rather cumbersome and are omitted from this paper. Full
details are given in [14].

The operator ∆̃ can be written as

∆̃ = K1(y, z)
∂

∂y
+K2(y, z)

∂2

∂y∂z
+K3(y, z)

∂2

∂y2
+

∂2

∂z2
(38)

with

K1(y, z) =
∂

∂z

(
∂F

∂z̃

)
+

∂F

∂ỹ

∂

∂y

(
∂F

∂ỹ

)
+

∂F

∂z̃

∂

∂y

(
∂F

∂z̃

)
(39)

K2(y, z) = 2
∂F

∂z̃
(40)

K3(y, z) =

(
∂F

∂ỹ

)2

+

(
∂F

∂z̃

)2

(41)

The operators in (31) and (32) depend upon the steady state
profile U(y, z). Because the flow is taken to be periodic in
the z̃ direction with period 2π, and since z̃ = z then

U(y, z) = U(y, z + 2π) (42)

the spanwise component of the flow can be approximated
by a linear combination of Galerkin trial functions, einz for
n ∈ Z, so that

U(y, z) =
∞∑

n=−∞
Ûn(y)e

inz (43)

The riblet structure is also taken to be periodic in the z̃ (and
z) direction, so that f(z) can be expressed as

f(z) =
∞∑

n=−∞
f̂ne

inz (44)

However, assuming that there are an integer number of
riblets, P ∈ Z+, in the region z ∈ [0, 2π], then f̂n = 0
for all n ̸= mP , where m is an integer. When the spacing
between riblets is small, as is usually the case for flow with
high Reynolds numbers, then P is large, which means that
only coefficients f̂n for values of n that are multiples of P
are non-zero, and this sparsity is exploited in the solution of
the problem.

The expression in (36) and (37) can be simplified by
defining

g(z) =
1

2− f(z)
(45)

Expanding g(z) as a linear combination of powers of f(z)

g(z) =
1

2− f(z)
=

1

2

(
1 +

1

2
f(z) +

1

4
[f(z)]2 + . . .

)
(46)

then this is periodic and can be expressed as

g(z) =
∞∑

n=−∞
ĝne

inz (47)

where ĝn = 0 for all n ̸= mP . Since the expressions in (36)
and (37) and the higher derivatives are periodic, the terms
K1(y, z), K2(y, z) and K3(y, z) can also be expressed in
terms of Fourier series of the form

K1(y, z) =
∞∑

n=−∞
k̂(1)n (y) einz (48)

K2(y, z) =

∞∑
n=−∞

k̂(2)n (y) einz (49)

K3(y, z) =
∞∑

n=−∞
k̂(3)n (y) einz (50)

Because both f̂n and ĝn are non zero when n is an exact
multiple of P , then this will also be true for the coefficients,
k̂
(1)
n , in these expansions.
Using these expansions in the flow equation (22) gives

∞∑
n=−∞

k̂(1)n (y) einz

(
∂

∂y

∞∑
m=−∞

Ûm(y)eimz

)

+
∞∑

n=−∞
k̂(2)n (y) einz

(
∂2

∂y∂z

∞∑
m=−∞

Ûm(y)eimz

)

+
∞∑

n=−∞
k̂(3)n (y) einz

(
∂2

∂y2

∞∑
m=−∞

Ûm(y)eimz

)

+

∞∑
n=−∞

∂2Ûn(y)

∂z2
einz = −2Re (51)

Defining an inner product as

⟨p(y, z)q(y, z)⟩ =
∫ 2π

0

p(y, z) q(y, z)dz (52)

then taking the inner product of the expression in (51) with a
Galerkin trial function, eiℓz and exploiting the orthogonality
of the trial functions with respect to z

2π

∞∑
m=−∞

k̂
(3)
ℓ−m(y)

d2Ûm

dy2
+
[
k̂
(1)
ℓ−m(y) + imk̂

(2)
ℓ−m(y)

] dÛm

dy

−m2Ûm(y) = bℓ for ℓ ∈ Z (53)

where

bℓ =

{
−4πRe for ℓ = 0
0 for ℓ ̸= 0

(54)

If U(y, z) is approximated by its projection onto a finite
basis, then the summation is limited to 2M+1 terms, and (53
reduces to 2M+1 coupled second order, ordinary differential
equations. The values of Ûm(y) can be solved numerically at
the Chebyshev points on y ∈ [−1, 1] by stacking the values
of Ûm(y) at K sample points for each ℓ into a vector Û ∈
R(2M+1)K , so that

Û =
[
Û−M . . . Û−1 Û0 Û1 . . . ÛM

]T
(55)
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where Ûm ∈ RK are the samples of Um(y) at the K
Chebyshev points [17], [18]. The discretised version of the
coupled ODE’s in (53) take the form

EÛ = b (56)

where b ∈ C(2M+1)K contains the terms bℓ. The E ∈
C(2M+1)K×(2M+1)K consists of a series of blocks [E]ℓ,m ∈
CK×K , that satisfy

[E]ℓ,m = diag
{
k̂
(3)
ℓ−m

}
D2

K + diag
{
k̂
(1)
ℓ−m + im k̂

(2)
ℓ−m

}
DK

− diag
{
m2
}

(57)

where DK ∈ RK×K and D2
K ∈ RK×K are the first and

second Chebyshev differentiation matrices respectively, and
k̂
(1)
ℓ−m ∈ CK , k̂(2)

ℓ−m ∈ CK , k̂(3)
ℓ−m ∈ CK and k̂

(4)
ℓ−m ∈ CK are

vectors obtained by sampling k̂
(1)
ℓ−m(y), k̂

(2)
ℓ−m(y) and k̂

(3)
ℓ−m(y)

at the K Chebyshev points.
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Fig. 2. Structure of E matrix (a) before reordering and (b) after reordering

The key point is that because k̂
(1)
ℓ−m(y), k̂

(2)
ℓ−m(y) and

k̂
(3)
ℓ−m(y) are only non zero when ℓ−m is an exact multiple

of P , the E matrix has the structure shown in Figure 2(a),
where each of the individual blocks has dimension K by K.
By rearranging the order of the terms in Û, the structure
of the E matrix can be arranged into the block diagonal
form shown in Figure 2(b), which consists of P blocks,
each of dimension [2(M/P ) + 1]K by [2(M/P ) + 1]K.
This structure can be exploited to solve the overall problem
as a set of P individual sub-problems, which has two
advantages. Firstly, solving P smaller problems reduces the
computational load by a factor of P , and secondly, the
problem can be implemented as P sub-problems, which can
be solved separately.

Remark 1. For the case shown in the Figure 2, the first
block has dimension [2(M/P ) + 1]K by [2(M/P ) + 1]K,
but the subsequent blocks have dimension 2(M/P )K by
2(M/P )K. This is a consequence of using 2M +1 terms in
the finite Galerkin expansion in (43). To ensure that all blocks
are of equal size, it is necessary to restrict the expansion to
2M terms so that m ∈ {−M + 1, . . . ,−1, 0, 1, . . . ,M},
although this makes the indexing of the matrices more
complicated.

Remark 2. To solve the steady state problem, it is only
necessary to solve the sub-problem associated with the first
sub-block, because the elements of the b vector associated
with the other sub-problems are all zero. However, this will
not be the case when solving the full linearised problem.

The linearised equations for the flow in (31) and (32) can
be expressed in terms of Fourier series for

v(y, z, t) =

∞∑
n=−∞

v̂n(y, t)e
inz (58)

η(y, z, t) =
∞∑

n=−∞
η̂n(y, t)e

inz (59)

We discretize the problem using a Chebyshev grid in the
y direction, which reduces the differential operators in (31)
and (32) to matrices [19]. Because of the orthogonality of
the Galerkin approximation in the z direction, the problem is
reduced to a decoupled set of state space models of the form
(the procedure is the exactly the same as in the derivation of
(57) for the steady state solution, although the expressions
are cumbersome, so details are given in [20])

d

dt

[
v̂ℓ

η̂ℓ

]
=

[
L̂ℓ
11 0

L̂ℓ
21 L̂ℓ

22

] [
v̂ℓ

η̂ℓ

]
(60)

where L̂ℓ
11, L̂ℓ

21 and L̂ℓ
22 are the matrices obtained by

discretizing the operators for each Fourier coefficient. The
states are not functions of the streamwise position x as it is
assumed that the flow is streamwise constant.

The amplification of the energy at the output of the system
resulting from the addition of Gaussian white noise at each
sampling position in the Chebyshev grid can be found by
solving the Lyapunov equation to find the controllability
gramian, X̂ℓ of the (discretized) system associated with each
Fourier mode

ÂℓX̂ℓ + X̂ℓÂℓ T + Q̂ℓ = 0 (61)

where A matrix is block diagonal

Âℓ =

[
L̂ℓ
11 0

L̂ℓ
12 L̂ℓ

22

]
(62)

and Q̂ℓ is the covariance matrix of the white noise, which
has the structure

Q̂ℓ =

[
Q̂ℓ

11 0

0 Q̂ℓ
22

]
(63)

where Q̂ℓ
11 and Q̂ℓ

22 are diagonal. The structure of the
problem can be exploited to break it into three separate
equations [15], each of which can be solved efficiently using
Cholesky factorizations [14].

The total amplification of the noise energy is given by the
trace of CX̂ℓCT, but the maximum amplification is given
by the mode associated with the largest eigenvalue of this
matrix, where C is the discretization of the output operators
that relate ûℓ(y, t) and ŵℓ(y, t) to v̂ℓ(y, t) and η̂ℓ(y, t). In
practice, it is more efficient to exploit the structure of the
problem by finding the largest singular value of CR, where
R is the Cholesky decomposition of X̂ℓ in (61). The mode
associated with the largest amplification is then given by the
corresponding singular vector [13].
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V. RESULTS

As an initial study, the effects of including a sinusoidal
riblet for the linearised flow at a Reynolds number Re =
4200 are investigated. The u(ỹ, z̃) component of the mode
associated with the maximum amplification when riblets with
peak to peak separation of 2π/8 and amplitude 0.15 are
introduced onto the lower wall in the channel flow is shown
in Fig. 3. It can be seen that in this component, the flow is
raised up above the riblets and the largest component of this
flow occurs in the upper half of the channel. This has the
effect of reducing the flow in the lower half of the channel,
which in turn, reduces the gradient of the shear stress at
the riblet wall. It should be emphasised that this models the
linearised flow; in practice, it is likely that the nonlinear
effects will have a more important role at this Reynolds
number.

z
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Contour Plot of u(y,z) Amp = 0.15; Re=4200
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Fig. 3. Contour plot of streamwise velocity u(ỹ, z̃) component of mode
associated with maximum amplification for the case with riblets on lower
wall.

VI. CONCLUSION

This paper has developed a linearized model of the channel
flow between two plates, where one of the plates has a riblet
structure. The boundary conditions associated with the riblets
are transferred into the partial differential equations describ-
ing the flow by applying a transformation of coordinates.
The number of components in the flow equations are reduced
by restricting attention to streamwise constant variations. By
expressing the model in terms of spatial Fourier components
in the spanwise direction, the structure of the resulting large-
scale, finite-dimensional state space model can be exploited,
allowing the amplification of noise energy to be obtained by
calculating the controllability gramian via a set of decoupled
Lyapunov equations. The model shows that for flow at
low Reynolds numbers, the inclusion of riblets reduces the
maximum amplification of the noise energy and it appears
that this reduction in energy amplification may be associated
with the presence of counter-rotating vortices at the peaks

of the riblet structures. Current work is using the model to
examine the effect of riblets on the energy amplification in
flows at a range of Reynolds numbers and for a range of
riblet amplitudes and separations.
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