
Robust adaptive fault estimation for a commercial 

aircraft oscillatory fault scenario 

Xiaoyu Sun, Ron J Patton 

Department of Engineering, University of Hull 

Hull, UK 

X.Sun@2009.hull.ac.uk; r.j.patton@hull.ac.uk 

Philippe Goupil 

Flight Control System Department, Airbus 

Toulouse, France 

philippe.goupil@airbus.com

Abstract— A linear time invariant model-based robust fast 

adaptive fault estimator with unknown input decoupling is 

proposed to estimate aircraft elevator oscillatory faults. Since the 

robust fast adaptive fault estimator depends on system output 

error dynamics which are de-coupled from the unknown inputs 

(modeling uncertainty), the fault estimation signal generated by 

the designed fault estimator is robust to the estimated unknown 

inputs. To obtain a fast fault estimation speed, an adaptive fault 

estimator involves both proportional and integral components. A 

Lyapunov stability analysis of the robust fast adaptive fault 

estimator is given and the fault estimator dynamic response is 

achieved by pole assignment in subregions realized by LMIs. The 

proposed robust fast adaptive fault estimator is implemented on 

a high-fidelity nonlinear aircraft model to detect and estimate 

elevator actuator oscillatory faults.  

Keywords- adaptive fault estimator; unknown input ; fault 

estiamation ; linear matrix inequalities; Oscillatory Fault Case. 

I. INTRODUCTION  

The traditional approach to detecting and isolating faults in a 
flight control system makes use of hardware redundancy by a 
replication of hardware [1] (sensors, actuators or even flight 
control comp3ters). However, there is a growing interest in 
methods which do not require additional hardware redundancy, 
for easing the development of the future more sustainable 
aircraft (Cleaner, Quieter, Smarter and More Affordable). 
Highlighting the link between aircraft sustainability and fault 
detection, it can be demonstrated that improving the diagnosis 
performance in flight control systems allows the designers to 
optimize the aircraft structural design (resulting in weight 
saving), which in turn helps improve aircraft performance and 
to decrease its environmental footprint. Concretely, if the 
minimum detectable fault amplitude and/or the detection time 
can be decreased, the aircraft structural design will be 
improved and the aircraft will be made lighter [2]. 

As an alternative to hardware redundancy the model-based 
approach, often referred to as Fault Detection and Diagnosis 
(FDD) or Fault Detection and Isolation (FDI) makes use of 
analytical redundancy by generating redundant estimates of 
measured signals [3]. Although fault information generation 
via model-based FDD method for actuators (or sensors) 
generally increases the flight control system computational 
load, they can increase aircraft sustainability by improving 
fault diagnosis performance which leads to the possibility of 
optimizing aircraft structural design. All of which can help to 
achieve the challenges related to the “greening” of the aircraft. 
Model-based FDD has often been considered for fault detection, 

fault location and even diagnosis of fault severity in aircraft 
flight control systems [4, 5]. 

Many approaches to robust model-based FDD have been 
proposed in the past decades [4-8]. The major challenge is that 
the fault information signal should be robust to unknown inputs 
(UIs), used to represent a structured form of modelling 
uncertainty. To achieve the FDD robustness, different methods 
have been studied, e.g. the use of optimization methods [4], the 
unknown input observer (UIO) [6], the sliding mode observer 
[7] and geometric design approaches [8]. 

The method proposed in this paper is applied to a non-linear 
simulation of a generic aircraft provided by AIRBUS for a 
benchmark study within the ADDSAFE FP7 project [9, 10]. 
The benchmark is considered highly representative of the flight 
physics and aircraft handling qualities. One of the often 
considered fault scenarios is the oscillatory fault case (OFC) 
{sometimes referred to as the “oscillatory failure case”} which 
can be caused, for example by electronic system component 
faults. The moving flight surface of an aircraft can sometimes 
experience oscillation which may be generated in the servo-
loop control, i.e. between the flight control computer (FCC) 
and the actual control surface itself. The spurious sinusoidal 
signals can propagate through the FCC and hence the control 
surface, as shown in Fig.1 [11]. As the fault is a local 
phenomenon within a single actuator, it only has an impact on 
one control surface. This OFC scenario has been studied by [7, 
11] to detect the OFC fault.  
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Figure 1.  OFC source location in the control loop 

A well-known method for estimating fault signals uses a 
combination of proportional and integral action within a full 
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order identity observer [12]. However, these authors did not 
consider the robustness of the fault estimation to modeling 
uncertainty. The current work provides an extension to the 
work of [12] by using a UIO to take into account the effects of 
so-called UI signals. The estimator design problem is divided 
into two stages of (i) UI distribution matrix estimation followed 
by (ii) the actual fault estimation, with inclusion of 
proportional (not only integral) action to enhance to the fault 
estimation speed. The proposed approach is termed a Robust 
Fast Adaptive Fault Estimator (RFAFE) based on a 
combination of the UIO proposed in [6] and the Fast Adaptive 
Fault Estimator of [12]. The RFAFE is applied to the problem 
of estimating the oscillatory fault signal acting on an elevator 
of the ADDSAFE benchmark system. The benefit of the 
proposed RFAFE is that by making the output error of the 
observer insensitive to modelling uncertainty the fault 
estimation robustness is improved.  

The robustness of the fault estimation is defined to be the 
degree of comparison between the sensitivity of the estimation 
to the fault compared with the sensitivity to modeling 
uncertainty. The fault estimation must be accurate with relative 
insensitivity to modelling uncertainty. 

The nonlinear aircraft model is not available for publication 
due to confidential issues. However, the results in this paper 
have been generated by applying the new RFAFE fault 
estimation strategy to the fully non-linear aircraft system 
dynamics via the ADDSAFE project. Following a procedure in 
[6] the structure of the modelling uncertainty inherent between 
the nonlinear and linear time invariant (LTI) aircraft models are 
considered as UI terms in the linear models used for the 
development of the fault estimator. In stage (i) of the RFAFE 
design, the influences of the UIs are estimated by estimating 
the “directions” (i.e. distributions) of these terms into the state 
space model as described in [3, 13]. In stage (ii) the fault 
estimator is then applied directly to the fault residual signal. 
This study focuses on the problem of detecting OFC fault 
activity in one elevator actuator (referred to as the “left” 
actuator). 

The structure of the paper is as follows: In Section II, the 
proposed RFAFE design is formulated. In Section III, the LTI 
longitudinal aircraft model dynamics including elevator model 
dynamics are constructed. The RFAFE method is applied to the 
ADDSAFE benchmark system in Section IV to estimate 
various OFC faults. The conclusion is given in Section V. 

II. ROUBST ADAPTIVE FAULT ESTIMATION THEORY  

A. Fast adaptive fault estimation with UI decoupling  

A LTI system considering actuator faults (all sensors are 
assumed to be fault-free) and with modeling uncertainty, 
represented by the UI term   ( ) is represented as: 

 ̇( )     ( )    ( )    ( )      ( )

 ( )     ( )                                                    
}                (1) 

where     denotes the time-varying system state vector, 
     and      denote the input and measurement vectors, 

respectively and      is a vector of UIs.      
  represents 

a vector of time-varying actuator faults.       are known 

system matrices with appropriate dimensions. The matrix 
       represents the distribution matrix for the UIs. The 

columns of the matrix     
    denote the independent fault 

directions. It is thus considered that both   and    act as 
system inputs.  

Following [3], a functional observer is constructed as: 

 ̇( )    ( )     ( )    ( )     ̂ ( )           

 ̂( )   ( )    ( )                                                      
}      (2) 

where  ̂     is the estimated state vector and     is the 
observer state vector, and   ,  ,   and   are design matrices.  

Definition 1: Observer (2) is defined as a robust fast adaptive 
fault estimator (RFAFE) for the system (1), if its state and fault 

estimation errors       ̂  and        ̂  approach zero 

asymptomatically, in the presence of the system UIs and faults. 

Assuming that   is known, the estimation error dynamics are 
governed by: 

 ̇ ( )  (          )  ( ) 

                        [  (          )] ( ) 

                           [   (          ) ] ( ) 

                                      [  (    )]  ( )            

 (    )  ( )      ( )               (3) 

where  

                                               (4) 

If the following relations are satisfied:  

(    )                                                          (5) 

                                                   (6) 

                              (7) 

                                                        (8) 

The state estimation error is then refined as: 

 ̇ ( )     ( )      ( )                                (9)  

  ( )     ( )                                                  (10) 

 ( )   ( )    ̂( )     ( )    ( )      (11) 

Furthermore, if all eigenvalues of  are stable,  ( ) will 

approach zero asymptotically, i.e.  ̂    and  ̂    . The 
observer (2) is an UI decoupling fast adaptive fault estimator 
for the system (1) when conditions (5) – (8) are satisfied. 
Therefore, this RFAFE design involves the solution of (4) to (8) 
whilst placing all the eigenvalues of the system matrix   to be 
stable. Meanwhile,  ,   ,   and   in (2) are designed to 
achieve the required fault estimation performance.  
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A particular solution to (5) can be calculated as follows: 

            (  )                                          (12) 

where: (  )  [(  )   )]  (  ) denotes the Moore-
Penrose pseudo-inverse.  

Theorem 1. The necessary and sufficient conditions for the 
existence of RFAFE of system (1) are [3, 12]: 

(i)     (  )      ( )  
(ii)     (   )      (  )  
(iii)     ([    ]      
(iv) (    ) is a detectable pair 

 
Remark 1: Condition (i) denotes that the maximum number of 
independent UIs cannot be larger than the maximum number of 
independent measurements, i.e. the necessary condition for UI 
decoupling in the state estimation error dynamics is 
    ( )   . If this condition is not satisfied, a rank 

approximation via a matrix   can be derived using Singular 
Value Decomposition (SVD) [14]. The details in [3] are 
addressed in Section B. 

Remark 2: (ii) expresses that the maximum number of 
independent faults cannot be larger than the maximum number 
of independent measurements, i.e. the necessary condition for 
fault estimation in the states error dynamics is     (  )   . 

Remark3: (iii) means that the UIs and faults are separable.  

Remark 4: (iv) is equivalent to the following two equations.  

(1)     [
     
  

]        ( ) 

(2)     [
     
  

]        ( ) 

Lemma 1 is used to verify the RFAFE existence conditions: 

Lemma 1 [15]: Given a scalar     and a symmetric positive 
definite matrix  , the following inequality holds: 

       (   ⁄ )(    )                                 (13) 

Assume that   ̇   , e.g. a sinusoidal perturbation (as required 
for the OFC fault case). The derivative of    is represented as: 

 ̇    ̇   ̂
̇
                                      (14) 

The system error dynamics can be guaranteed by Theorem 2. 

Theorem 2: With the assumption of Theorem 1, given the 
scalar      , if there exist symmetric positive definite 

matrices        ,        ,        , and matrices 

       ,         such that the following conditions hold. 

[
       (   ⁄ )(      )

   (  ⁄ )(   )
      (    ⁄ ) 

]        (15) 

(   )
                                         (16) 

   denotes the elements of a symmetric matrix, the UI 
decoupling fast adaptive fault estimator can be defined as: 

 ̂̇( )    ( ̇( )    ( ))                       (17) 

(17) can be realized when  ( ) and    are uniformly bounded 

functions.          is a symmetric positive definite learning 
rate matrix.   

Proof: Consider the following Lyapunov function:  

 ( )    
 ( )   ( )   (  ⁄ )   

 ( )     ( )                 (18) 

Substituting (9) and (17) into (18), the derivative of  ( ) with 
respect to time is derived as: 

 ̇( )   ̇ 
 ( )   ( )    

 ( )  ̇ 
 ( )   (  ⁄ )   

     ̇ ( ) 

              
 ( )(      )  ( )     

 ( )      ( ) 

              (  ⁄ )   
 ( ) ( ̇( )    ( ))   

  (  ⁄ )   
 ( )    ̇( )                                            (19) 

Using (16), the term   (  ⁄ )   
 ( ) ( ̇( )    ( )) on the left 

hand side of (19) can be rewritten as:  

    (  ⁄ )   
 ( ) ( ̇( )    ( ))      

      (  ⁄ )   
 ( )(   )

  ( ̇ ( )     ( ))              (20) 

Substituting (9) and (20) into (19),  ̇( ) can be formulated as: 

                   ̇( )   ̇ 
 ( )(      )  ( ) 

   (   ⁄ )   
 ( )(   )

     ( ) 

                           (   ⁄ )  
 ( )(   )

       ( ) 

  (   ⁄ )   
 ( )    ̇( )                                 (21) 

By using Lemma 1, the following inequality can be obtained: 

  (  ⁄ )   
 ( )    ̇( )  (   ⁄ )   

 ( )   ( )    

 (  ⁄ )  
     ( 

        )     (22) 

Substituting (22) into (21),  ̇( ) can be reformulated as: 

 ̇( )    ( )    ( )                           (23) 

where 

 ( )  [
  ( )

  ( )
],      (  ⁄ )  

     ( 
        ), 

  [
       (  ⁄ )(      )

   (   ⁄ )(   )
      (   ⁄ ) 

] 
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    is full column rank, under the condition of    , and 
      (  ), then: 

 ̇( )    ‖ ( )‖                      (24) 

for  

   ‖ ( )‖                    (25) 

Then, it follows that:  

 ̇( )                              (26) 

In terms of Lyapunov stability theory, (26) indicates that   ( ) 
and   ( ) converge to a small set of  . This ends the proof. 

If the fault signal is defined as: 

  ( )  {
 

  ( )
             

  (    )

  (    )
                    (27) 

The fault estimation can be derived by (17) and given as:  

 ̂( )     ( ( )   ∫  ( )
 

  
  )                     (28) 

From (28), it can be seen that the fault estimation includes both 
proportional and integral parts. The proportional part enhances 
the fault estimator dynamic performance giving improved fault 
estimation speed. 

Remark 5：Although inequality (15) can be solved easily via 

the Matlab LMI tool box, the simultaneous solution of (15) and 
(16) is difficult to achieve using functions in the LMI tool box. 
However, the problem can be solved by reformulating (16) into 
(29), which leads to the solution of optimization problem:  

[
   (   )

      
    

]                       (29) 

The RFAFE derivation is complete with proof of stability. 

Apart from guaranteeing the observer stability, the observer 
dynamic response plays an important role in obtaining a 
qualified observer performance achieved by forcing the poles 
to lie within suitable complex plane subregions comprising 
either vertical strips, disks, conic sectors etc. (or their 
combinations) using LMIs optimization [16]. Here, disk and 
vertical strip LMI regions are employed as a further refinement 
to improve the fault estimator dynamics with LMIs defined as: 

Definition 2:   is defined as in (7). Let D be an LMI subregion 

with characteristic function in the left hand side of the complex 
plane as a disk of radius   and centre (    ). Then there exists 
a symmetric matrix   such that: 

                (         
    

)                              (30) 

Then,   is called D–stable. 

Definition 3:   is defined as in (7). Let D be a subregion which 

presents a  -stability region in the left-half plane. D is an LMI 

region with characteristic function, so that there exists a 
symmetric matrix   such that:  

                                        (31) 

Then,   is called D –stable. Fig. 2 shows the RFAFE poles 

assignment within an subregion D of an intersection between a 

specified disk and vertical strip by solving (30) & (31). 

 

Figure 2.  D subregion (hatched)  

Consequently, a complete RFAFE with UI decoupling can be 
designed by solving (15), (29), (30), (31) and conditions (5)–(8) 
with the satisfaction of Theorem 2.  

B. UI distribution matrix estimation  

An augmented state observer is utilized to estimate the UI 

distribution matrix  . Assume that   ( )    ( ) is a slowly 
time-varying vector, then the system model can be formulated 
in augmented form as [3, 13]: 

[
 ̇( )

 ̇( )
]  [

  
  

] [
 ( )

  ( )
] [

 
 
] ( )                

 ( )  [   ] [
 ( )

  ( )
]                              (32) 

If the system inputs and outputs { ( )  ( )} are available, an 
observer based on the model presented by (32) can be used to 

estimate the   ( )  directly. The distribution matrix   is 

calculated as the ratio of the elements of  ̂ ( ). The necessary 
condition for observability is given in Theorem 3:. 

Theorem 3 The system (32) is observable if and only if the 
following conditions are satisfied [6]. 

(i)     ( )    
(ii)     (   ) is a observable pair 

Remark 6: Normally, the condition (i) could limit the 
application of this estimation approach. For a modern aircraft 
the states are available for measurement and this is also the 
case in the simulated non-linear system, so that the above 
observability and rank conditions are satisfied. Furthermore, 
the   estimation is a state space problem, and hence 
independent of any measurement restrictions.  

For the RFEFA design, the necessary rank condition 
    ( )    has been given in Theorem 1. If this condition 
is not satisfied, a sub-optimal matrix   can be computed as 
follows via an SVD expansion of   [3, 14]: 

                                          (33) 

where: 

q-

r



eR

mI
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  [
    {       }  

  
]

                  

(34)
 

  and   are orthogonal matrices,   is the rank, and         are 

the singular values of   , respectively. A low rank 

approximation for   by minimizing ‖    ‖ 
  is given by: 

      ̂                                    (35) 

where 

 ̂  [
    {               }  

  
]

                 

(36)
 

      (  )    to satisfy Theorem 1 (for    instead of  ).  

III. LTI LONGITUDINAL AIRCRAFT MODEL DYNAMICS 

The proposed RFAFE is implemented on a global longitudinal 
LTI model derived from the ADDSAFE benchmark system. 
Two parts constitute the global aircraft LTI model: one is the 
aircraft body axis LTI model derived from an LPV realization 
of the benchmark system obtained by choosing the trimming 
parameters given in TABLE I. The other part comprises the 
locally linear aircraft actuator models representing the right and 
left elevators on the aircraft tail surface. The linearized aircraft 
actuator models are generated for the same trimming 
parameters as the aircraft body axis LTI model.  

TABLE I.  TRIMMING POINTS FOR LONGITUDINAL AIRCRAFT LTI MODEL 

Trimming parameter  value 

MASS (Net mass in Kg) 200000 

XG (Centre gravity of the aircraft in  % / 100) 0.30 

ZP (Altitude in feet) 20000 

VC (Calibrate aircraft speed in kts) 290 
 

The LTI local elevator model is represented by a first order 
system dynamic. For the longitudinal motion, the left and right 
elevator dynamics combined together have the structure:  

 ̇ ( )       ( )      ( ) 

  ( )       ( )      ( ) 
}                    (37) 

where   ( )   
    is the augmented state vector for both the 

left and right elevators.   ( )   
    is the vector of elevator 

control inputs (the actuator input signals fed from the FCC),    
is the actuator output.   ,   ,   ,   are corresponding system 
matrices with proper dimensions.  

The LTI state space representation of the aircraft body axis 
dynamics can be expressed as: 

 ̇ ( )       ( )      ( ) 

  ( )       ( )      ( ) 
}                    (38) 

where    [          ]  and    [          ]  are the 
aircraft body axis states and outputs, respectively.    is equal 
to   .      is the true air speed in m s

-1
,   is the angle of attack 

in deg,   is the pitch rate in deg s
-1

,   is pitch angle in deg. 
  ,   ,  ,    are the corresponding system matrices. 

The complete LTI longitudinal motion model is formulated as:  

[
 ̇ ( )

 ̇ ( )
]  [

      
   

] [
  ( )

  ( )
]  [

    
  

]   ( )            

[
  ( )

  ( )
]  [

      
   

] [
  ( )

  ( )
]  [

    
  

]   ( )    (39) 

(39) can be rewritten as: 

 ̇( )     ( )    ( ) 
 ( )     ( )    ( ) 

}                              (40) 

LTI system (40) with UIs and faults can be presented as: 

 ̇( )     ( )    ( )    ( )      ( )

 ( )     ( )    ( )                                  
}        (41) 

IV. SIMULATION RESULTS 

In this paper, the RFAFE design is implemented on a generic 

AIRBUS aircraft model to estimate the left elevator OFC fault. 

Two types of OFC are classified, the “liquid” and “solid” faults. 

The liquid fault is considered as an additive fault which adds to 

the control command inside the control loop. The solid fault is 

considered as a ‘disconnected’ fault which substitutes the 

control command completely inside the control loop. Both of 

these two OFC faults lead to the control surface performing 

with a spurious control command. In this project, the OFC 

faults are simulated as sinusoidal signals within a range of 

magnitudes and frequencies. The estimated OFC fault signals 

are normalized into the entire interval [0, 1] according to the 

elevator control surface deflection range of operation. In this 

simulation result section, the OFC signals 0.016 and 0.33 (in 

normalized units) are estimated to (a) demonstrate the effect 

that the OFC has on the elevator operation and (b) the 

effectiveness of the RFAFE design.  

The first step of the RFAFE design is to estimate the UI 
distribution matrix as an off-line analysis. The modelling 
uncertainties between the nominal nonlinear aircraft model and 
the LTI aircraft longitudinal model are considered as UIs. The 
off-line design of the ASO for   estimation is made by running 
the ADDSAFE benchmark model. Six single fault-free cases 
(cruise phase, triggering of angle of attack protection, nose-up 
(abrupt longitudinal maneuver), triggering of pitch protection, 
coordinated turn and a “yaw-angle-mode” which roughly 
corresponds to an enhanced auto-pilot hold mode) are used to 
implement the estimation of the matrix   . The lower rank 
technique via the SVD approach is applied to post-process the 
modelling uncertainty data, so that condition (i) in Theorem 1 
is satisfied. The second step of the RFAFE design is to 
construct the UI decoupling fast adaptive estimator in terms of 
the matrix   estimated in step 1. A set of conditions should be 
satisfied first and a group of LMIs should be solved as 
discussed in Section II. All the designs described in this paper 
use one aircraft longitudinal LTI model that corresponds to the 
operating point in TABLE I. The left elevator fault direction    
is the first column of   [     ], i.e.      .  
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Figs. 3&4 show the left elevator control surface position in 
two fault cases compared with the fault-free case, respectively. 
The control surface deflection is apparent, i.e. the OFC fault 
leads to unwanted control surface oscillation. 

 

Figure 3.  Left elevator control surface position (liquid OFC&fault-free cases) 

 

Figure 4.  Left elevator control surface position (solid OFC & fault-free cases) 

Fig. 3 corresponds to the liquid OFC. A sinusoidal signal is 
added to the normal control surface position. Fig. 4 shows the 
control surface movement trajectory is totally substituted by a 
sinusoidal signal for the solid OFC “disconnection” behaviour. 

 

Figure 5.  Left elevator fault estimation for the fault-free case  

 

Figure 6.  Left elevator fault estimation for the liquid OFC fault 

 

Figure 7.  Left elevator fault estimation for solid OFC  

Fig. 5 shows that in the fault-free case (left elevator) the 

estimates are in a noise level. In Figs. 6&7, the estimation of 

the so-called liquid OFC (0.016 OFC) and solid OFC (0.033 

OFC) are shown, respectively. For each fault scenario, the 

faults occur at 20s and the fault estimation signals track the 

actual fault signals in magnitude and frequency.  

The RFAFE design learning rate should be tuned to a suitable 
value to achieve accurate and fast fault estimation. It can also 
be seen that the fault estimation signal is not significantly 

affected by the modelling uncertainties, but is influenced by 
high frequency sensor noise. Hence, the fault estimation signal 
obtained is considered robust to modelling uncertainties.  

V. CONCLUSION 

In this paper, the RFAFE approach to fast fault estimation has 
been applied to an aircraft actuator OFC problem, taking into 
account modeling uncertainties through UI estimation. The 
UIs reflect the modelling mismatch between the linear and 
non-linear aircraft systems. The UI estimation considering a 
range of flight conditions provides a structured approach to 
robustness which leads to a robust fault estimation. The UI 
estimation with UI decoupling is utilized in the RFAFE design. 
The results show that the fault estimation signals track the 
actual fault signals accurately under both liquid and solid OFC 
faults in different magnitudes and frequencies, demonstrating 
the effectiveness and efficiency of  the RFAFE method. 

REFERENCES 

[1] P. Goupil. AIRBUS State of the Art and Practices on FDI and FTC in 
Flight Control System. Control Engineering Practice 19 (2011), pp. 524-
539 DOI information: 10.1016/j.conengprac.2010.12.009 

[2] Goupil, P., Zolghadri, A., Gheorghe, A., Cieslak, J., Dayre, R. and Le-
Berre H. Airbus efforts towards advanced fault diagnosis for flight 
control system actuators. 5th International Conference on Recent 
Advances in Aerospace Actuation Systems and Components 
(R3ASC'12), Toulouse, France, 13-14 June 2012. 

[3] Chen, J. and R.J. Patton, Robust model-based fault diagnosis for 
dynamic systems. 1999, Norwell: Kluwer Academic Publishers  

[4] Varga, A. Integrated algorithm for solving H2-optimal fault detection 
and isolation problems. Proc.of Control and Fault-Tolerant Systems 
(SysTol). 2010. 

[5] Chen, L. and R.J. Patton. Polytope LPV Fault Estimation for Non-Linear 
Flight Control. in Proceedings of the 18th IFAC World Congress. 2011. 

[6] Chen, J., R.J. Patton, and H.Y. Zhang, Design of unknown input 
observers and robust fault detection filters. International Journal of 
Control, 1996. 63(1): p. 85-105. 

[7] Alwi, H. and C. Edwards. Oscillatory fault case detection for aircraft 
using an adaptive sliding mode differentiator scheme. in American 
Control Conference (ACC). 2011. 

[8] Vanek, B., et al. Robust Model Matching for Geometric Fault Detection 
Filters: A Commercial Aircraft Example. 2011. 

[9] DEIMOS Space, S.L.U, http://addsafe.deimos-space.com, 2011. 

[10] Goupil, P. and A. Marcos. Advanced Diagnosis for Sustainable Flight 
Guidance and Control: the European ADDSAFE project. SAE 2011 
AeroTech Congress & Exhibition October 18-21, 2011, Toulouse, 
France. 

[11] Goupil, P., Oscillatory fault case detection in the A380 electrical flight 
control system by analytical redundancy. Control Engineering Practice, 
2010. 18(9): p. 1110-1119. 

[12] Zhang, K., B. Jiang, and V. Cocquempot, Adaptive observer-based fast 
fault estimation. International Journal of Control Automation and 
Systems, 2008. 6(3): p. 320. 

[13] Patton, R.J. and J. Chen, Optimal unknown input distribution matrix 
selection in robust fault diagnosis. Automatica, 1993. 29(4): p. 837-841. 

[14] Golub, G.H. and C.F. Van Loan, Matrix computations. 1996, Baltimore 
and London: The Johns Hopkins University Press. 

[15] Jiang, B., J.L. Wang, and Y.C. Soh, An adaptive technique for robust 
diagnosis of faults with independent effects on system outputs. 
International Journal of Control, 2002. 75(11): p. 792-802. 

[16] Chilali, M. and P. Gahinet, H-infinity design with pole placement 
constraints: An LMI approach. Automatic Control, IEEE Transactions 
on, 1996. 41(3): p. 358-367. 

 

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

Time (second)

C
o
n
tr

o
l 
s
u

rf
a
c
e
 p

o
s
it
io

n
 (

d
e
g
)

 

 

Liquid OFC

Fault free

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

Time (second)

C
o
n
tr

o
l 
s
u
rf

a
c
e
 p

o
s
it
io

n
 (

d
e
g
)

 

 

Solid OFC

Fault free

10 12 14 16 18 20 22 24 26 28 30
-3

-2

-1

0

1

2

3

time(second)

L
e
ft

 e
le

v
a
to

r 
O

F
C

 e
s
ti
m

a
ti
o
n

 

 

Fault estimation

Actual fault

15 20 25 30
-3

-2

-1

0

1

2

3

time(second)

L
e
ft

 e
le

v
a

to
r 

O
F

C
 e

s
ti
m

a
ti
o

n

 

 

Fault estimation

Actual fault 

18 19 20 21 22 23 24
-3

-2

-1

0

1

2

3

time(second)

L
e
ft

 e
le

v
a

to
r 

O
F

C
 e

s
ti
m

a
ti
o

n

 

 

Fault estimation

Actual fault

600

http://addsafe.deimos-space.com/



