
Deployment of full vehicle simulator for electrical

control system validation

Georgios Tsampardoukas

Jaguar Land Rover

Warwick, UK, CV35 0RR

Alexandros Mouzakitis

Jaguar Land Rover

Warwick, UK, CV35 0RR

Abstract—Development and testing of automotive embedded

control systems traditionally depended on the availability of

prototype vehicles. Automotive manufactures adopted model

based approaches in order to produce quality products faster.

Thus, the need of more integrated testing using virtual

environment in an automated manner becomes a vital element of

product development. The full vehicle simulator aims to provide

a fully integrated environment for verification and validation of

the embedded automotive software to avoid the dependency of

the prototype vehicles. The execution of different automated test

scenarios aims to increase the development of the product faster

without compromising robustness and quality. This paper deals

with both the development of full vehicle simulator and the

concept of the automated modelled test cases.

Keywords- Hardare-in-the-loop; full vehicle simulator;

automated modeled test cases, automotive control systems.

I. INTRODUCTION

The embedded software complexity and the number of
electronic control units (ECU) integrated in modern luxury
vehicles are radically increased due to the increasing
distributive functionality, safety requirements and legislation
for lower emissions. Today’s luxury vehicles include more
than 60 interconnected ECUs using various network systems
[1]. Four main domains such as body systems, chassis, powe
rtrain and infotainment constitute a typical vehicle electrical
architecture. Mots vehicle functionality is distributed among
these domains as shown in [2],[3] and [4].

The power train and chassis domain contains ECUs
responsible to control systems such as engine management,
anti-lock brake system, hybrid systems, transmission and
vehicle dynamics [5] and [6]. These are generally continuous
control systems and are interconnected using the high speed
CAN network.

The body system domain, however, is responsible to deal
with systems like security, locking, wipers, mirrors, start
authorization, etc. These control systems are mainly event
driven with response time slower than the powertrain domain.
The characteristic of the body domain is that the overall
functionality (i.e. locking) is distributed to more than one ECU.
These ECUs are located on one or more network buses [7] and
[8].

The infotainment domain is one of the most popular
systems nowadays due to its human machine interface nature

between and the driver and the vehicle. This system usually
consists of DVD player, amplifier, human machine interface
console, TV modules and navigation. Other infotainment
features require communication with the external world using
external media such as Bluetooth and Wi-Fi. Typically, the
response time of these systems is very slow due to the nature of
consumer electronics functionality. The data bandwidth
required to run an infotainment system is high compared to
powertrain and body domains. The driver interaction with the
vehicle makes the infotainment system one of the hottest topics
in modern automotive industry.

Distributive functionality shared amongst four domains can
impact customer’s perception about vehicle quality. Software
complexity and programme development cycle substantially
reduced due to continuously customer’s demand for new
features. Competition amongst vehicle manufactures radically
increased due to demand for robust and quality vehicle
systems. Advanced and sophisticated techniques (i.e.
hardware-in-the-loop) commonly employed to validate the
embedded software in real time early at the product
development [4]. The drive to reduce dependency in prototype
vehicles is still an important initiative for most vehicle
manufacturers. The usage of prototype vehicles is therefore
aimed mainly for verification and validation activities close to
mass production data. Automated virtual testing environment
promotes more robust, systematic, time efficient and cost
effective way for software testing. It has the potential to
uncover possible software failure modes and to perform fault
diagnostics automated tests prior to development of prototype
vehicles [8].

This paper is organised in the following manner: The first
section deals with introduction and brief literature review in the
area of automotive control system development and test. The
second section presents the development of the full vehicle
simulator within Jaguar Land Rover (JLR). Two case studies
are considered in the next section. The results and benefits of
the automated testing are depicted in section four. Section five
illustrates the discussion about the main benefits of the
automated modelled test cases. The last section gives some
concluding remarks of the work presented in this paper.

II. FULL VEHICLE SIMULATOR OVERVIEW

The main scope of this section is to describe the structure of
the full vehicle simulator (i.e. fully integrated hardware-in-the-

551

UKACC International Conference on Control 2012
Cardiff, UK, 3-5 September 2012

978-1-4673-1558-6/12/$31.00 ©2012 IEEE

loop platform) suitable for automated functional and non-
functional testing.

A. Simulator setup and schematics

The full vehicle simulator consists of three 21 inches
cabinets and two load tables. The load tables hold vehicle real
loads and ECUs. Figure 1 show the full vehicle simulator
which is currently used within the premises of JLR.

Figure 1. Full vehicle simulator at JLR.

In the following sections the high level requirements
including the number of input and output (i.e. I/O) channels
specified for the full vehicle simulator are given. The amount
of the I/O required to interface with the ECUs to form the
vehicle architecture clearly demonstrates the complexity of the
system.

The main features of this simulation platform can be
summarized as follows.

149 ADC; 145 DAC; 275 digital input; 79 PWM , 195
digital out, 126 digital relay output, 88 PWM output, 24
resistive channels, 22 special channels for powertrain
simulation, 110 dedicated power lines and GND, 8 CAN
channels, 32 LIN channels used to interface with ECU
hardware. Quiescent current measurements an all power lines
(i.e. 2 power switches), 1 power supply (i.e. 400A@20V),
access to CAN and LIN channels for measurements, Serial
ports from processors (i.e. 3 DS1006 quad processors),
Integration of the low voltage tester (i.e. LVT), On/Off
capability on all power lines, Fault insertion and load boards on
the input channels w.r.t (with regards to the) simulator, fault
insertion capability on all CAN and LIN channels, ABS valve
detection unit, colour coding on the on each I/O type, Special
software to interact with the simulator (i.e. Control Desk,
Automation Desk, Motion Desk, CAN/LIN multi-message),
Measuring point for the main power supply (i.e. 4 banana plugs
on the front side of the first cabinet).

The first cabinet (i.e. master cabinet) dedicated for the
powertrain, chassis and driveline domain (i.e. high speed CAN
network domain). For instance, engine management system
(i.e. EMS), chassis control and transmission control ECUs are

integrated on the master table. Peripheral loads such as
electronic throttle, injectors, differential and transmission
solenoids interfaced to ECUs via the master load table to the
simulator. The aim of load integration is to enable the ECUs to
functionally operate in as close as possible to the environment
of the vehicle. Thus, the number of logged diagnostic trouble
codes substantially reduced. Engine and transmission plant
models developed and executed in real time in order to provide
dynamic closed loop control between the EMS module and the
models of the engine/driveline.

The second cabinet (Figure 1) is known as first slave to the
master cabinet. The use of this cabinet is to provide bulk I/O
(i.e. input and output) channels to powertrain and body tables.
These I/Os are distributed on both load tables to provide
enough channels to ECUs for the interface with the simulator.

The third cabinet (i.e. body systems cabinet) dedicated to
electronic body systems (i.e. body control module, door
modules, keyless vehicle module, etc) and is known as the
second slave of the master cabinet. This domain is dedicated to
medium speed CAN modules and their LIN slaves (i.e.
intrusion monitoring system). The second load table (i.e. body
systems table as shown in Figure 1) is used to accommodate all
the medium speed ECUs and their peripheral components..

B. Integrated model to control the full vehicle simulator

The VITAL framework is a generic model that built to
interface with twelve different core processors (three quad
processors DS10006) of the full vehicle simulator. The aim of
this framework is to create a structured environment for
integration of potentially of vehicle electrical components.
Additional features of this model are summarised below:

• The model structure allows integration of three
dSPACE Quad core processors or more.

• Enables simulation of Multi-CAN/LIN architectures
and other network protocols (i.e. Ethernet)

• Exchange of signals between cores of each processor.

• Selection mechanism for switching between real and
modelled ECUs

• Common interface for simulation of ECU loads and
actuators.

• Hardware interface between ECUs and simulator
arranged per dSPACE IO board..

The above features offer less development time, more optimal
model structure resulting in more efficient real time execution.
In addition to that the model promotes consistency and reduces
the risk for development errors.

Figure 2 show only an example of the VITAL model and
the closed loop integration method between the real driver door
ECU and the latch plant model. The plant model in this
example provides the feedback signals to the driver’s door
control unit (i.e. DDCU). The door ECU outputs are fed back
to the door latch model and the feedback of the door latch is
fed back to the door ECU via the simulator IO channels.. The

552

door latch plant model developed in Stateflow® is a true
functional representation of the real latch [9].

Figure 2. Hardware interface on VITAL framework for closed-loop control

More detailed description about the VITAL framework is
presented in [9]

III. CASE STUDY (CLOSED LOOP CONTROL OF BODY SYSTEM

FUNCTIONALITY)

The aim of this section is to demonstrate two automated test
scenarios using the fully integrated platform described
previously. The first scenario is the drive away door locking
and the second one is the valet mode.

The drive away door locking function is a security feature
that locks all the doors automatically when the vehicle speed
exceeds the threshold speed (i.e. 32Km/h). This feature is
selectable by the driver, and any operation of the door locks by
any other means (i.e. master locking switch on the facial panel)
will unlock the doors [10].

Valet mode is also a security feature that allows the vehicle
to be driven with the luggage compartment locked with
restricted touch screen functionality. This feature is accessible
directly from the home menu on the touch screen or from the
vehicle settings screen. The vehicle owner enters a four digit
Personal Identification Number (PIN) to a soft key pad
displayed on the touch screen. This PIN must be entered twice
in order for the valet mode to be enabled. A pop-up screen is
displayed, confirming that the vehicle is now in valet mode.
To cancel the valet mode operation, the PIN number must be
entered once again [10].

A. System Overview

The deployment of the drive away door locking and the
valet mode features is depicted in Figure 3. Several ECUs are
required to exchange data amongst different domains in order
to interpreter the customer's operation into low level software
command (i.e. set the threshold of drive away door
locking).The simulation environment to deliver these features
required the integration of the following ECUs and models,
engine controller; gateway controller; door controllers;
infotainment control units; engine and driveline real-time
models.

The complexity of system integration significantly
increases due to the following reasons, number of ECUs; the
scale of the system integration; inter-dependencies across

functional areas and domains. For instance, the DDCU receives
the command from the gateway to lock the door latch when the
EMS transmit the correct vehicle speed from the high speed
CAN network. An engine model and accurate sensor
simulation required for the real EMS hardware to assume that
an engine is in operation and the vehicle is in a drive cycle.
Although drive away door locking feature appears to the
customer to be a simple operation the effort required to develop
the automated virtual environment is certainly a challenging
engineering task.

Figure 3. Schamatic of vehicle feature demployment

B. System Integration

The full vehicle simulator is interfacing (Figure 3) the ICU
using resistive signals for simulation of the driver switch-pack
component which is hardwired back to the ICU (this switch-
pack controls the navigation menu shown in the CCU’display).
The simulator is also providing resistive signals to the ICU in
order to emulate driver touch screen selection. High resolution
camera is integrated with the simulator via serial (i.e. RS232)
connection to provide feedback acquired by the image
processing software. This camera is used as feedback sensor to
capture the results from the instrument cluster and infotainment
display. Detailed description about multi-camera vision system
is out of the scope of this paper.

The two front door modules (i.e. driver and passenger),
instrument cluster and infotainment display have an interface to
the medium CAN bus. The two door latches are integrated to
each door module using hardwire connection. The gateway
ECU (i.e. ECU that accommodates the core body system
functionality) is used to pass network signals from medium
speed CAN bus to high speed. The EMS is interfaced with the
engine model to high speed CAN in order to provide engine
and vehicle speed to the rest of the vehicle systems. The rear
door modules are not assessed on this paper since their
behaviour is very similar to front doors.

C. Event driven control Logic

Event driven control logic is a discrete programming
method that is based on the conditional transition between
operating modes. This method is used in this paper to model
the automated control sequence of the infotainment displays
selection.

553

1) Automatic navigation on instrument cluster
This control logic is employed for automatic selection of

the drive away door locking threshold. The model is divided in
two main parts.

The first part deals with the simulation of a button (i.e. up,
down, left, right and OK button) from the driver's switch pack.
Figure 4 shows a snapshot of this model which represents one
event of the OK press button. The event sequence is required to
alter the simulator's resistive output from idle (X Resistance) to
pressed position (Y Resistance). The transition between the
two states delayed for 500 milliseconds. This allows the
instrument cluster to process the request received from the
infotainment control unit. A counter is implemented to capture
the complete sequence. It is also used as a transitional
condition to another event (i.e. simulation of down button). In
addition to counter, the camera feedback is used as an
alternative transitional condition. The camera is trained to
identify the main menu pattern. This menu is displayed after
pressing the OK button. Figure 4 shows that either the camera
feedback or the counter conditions must be satisfied in order to
continue the sequence.

Figure 4. Automatic navigation through the instrument cluster menu

The second part (not shown in this paper) of this control
logic is the evaluation of the menu position via the camera's
feedback. The camera is placed to point directly the instrument
cluster. It is trained to recognise five different positions of the
drive away door locking settings menu. The control logic
identifies the menu selection and responds to the driver's
choice. For instance, different sequence is employed in order to
set 32Km/h when the default position is on OFF mode and
different sequence when the value is 5Km/h. The difference is
due to the number of down or up button event presses. Similar
concept is used to control the automatic selection of valet
mode.

2) Valet Mode
The driver inserts twice a predefined four digit code to ICU

touch screen in order to set the vehicle to valet mode. The
automatic sequence requires selection steps on the ICU menu
before the driver enters the PIN number. An event driven
control logic is developed using Stateflow® to achieve this
automated selection

Figure 5. Automatic control of infotaiment display (i.e. valet mode selection)

Figure 5 shows only the sequence to set the valet mode on.
The first state defines the initial conditions and determines the
idle mode. On this mode the control logic provides the idle
resistive output to ICU via the simulator's restive channel. The
sequence starts when all the initial transitional conditions are
satisfied. Delay of 800ms is implemented between the states
after the idle mode. This allows the ICU to process the request
from the driver and the infotainment graphics. Exit conditions
are implemented on every stage of the sequence to ensure
smooth execution avoiding stagnation points. On this particular
example a medium speed CAN signal is used to inform about
the valet mode status instead of camera feedback.

D. Control desk interface

Control desk layouts are developed in order to control the
full vehicle simulator (i.e. 20 controlDesk® tabs) via graphical
user interface. Figure 6 shows only a sub-set of the main
working layout. This is dedicated to control the automated
selection of the drive away door locking. It is also shown that
the camera mode and image processing job is controlled from
this layout. The manual mode of the driver's switch pack is also
part of this interface as shown in Figure 6.

554

Figure 6. Graphical user interface for automated drive away door locking

selection mode.

A Similar graphical user interface is developed to control
the automated valet mode selection. However, this is not
shown in Figure 6.

E. Manual test scenario description

A manual test scenario is performed to set the drive away
door locking threshold from OFF mode to 32Km/h. The
flowchart in Figure 7 depicts the manual sequence.

Figure 7. Flowchart of manual drive away door locking from OFF to

32Km/h

The sequence starts from a warning free instrument cluster.
Figure 7 shows the exact sequence required for the instrument
cluster to display the driver away door locking settings menu.
Since this is a submenu, it is required to navigate three layers
below the main menu. An extra delay is introduced on every
conditional state (approximately 2.5 seconds) to allow the
camera to process the captured image. Based on the camera
feedback, the control logic decides about the status and the
progress of the automated sequence. Similar manual test

scenario is produced for the valet mode. The only difference is
that the navigation is through the resistive touch screen of the
infotainment display. The flowchart for the valet mode
selection is not shown in this paper.

IV. TEST AUTOMATION

The purpose of the automated testing is to execute the
existing manual test cases in a repeatable manner. MXvDEV®
test automation software is used to model the automated test
cases.

A. Execution of the automated test sequence

Both automated sequences are executed and the results are
captured in a graphical manner. Figure 8 and Figure 9 present
the test results for drive away door locking and valet mode,
respectively.

Figure 8. Automated test results for drive away door locking to 32Km/h

For presentation purposes, only half duration of both
scenarios are presented in Figures 8 and 9.

Figure 9. Automated test results to disable the valet mode.

The desired signals are graphically modelled as shown in
Figures 8 and 9. It is difficult to distinguish the differences
between the actual and desired signal. This is due to exact

555

match of the two signals. For that purpose, the expected signal
(i.e. sixth signal in Figure 9) is altered at the start of the
sequence. A time delay is implemented on x-axis (time axis) at
the first 500 milliseconds of the test in order to deliberately
make the test cases result a fail (i.e. a shadowed area).

V. DISCUSSION

The evaluation of the test results has shown that both case
studies (i.e. Figures 8-9) were executed successfully in an
automated manner. These scenarios performed with zero
tolerance on the y-axis. The expected signal has identically
matched the actual measured. Occasional deviations observed
on x-axis (i.e. time), where slight time variations (i.e.
milliseconds) occurred. This is due to the time delays of the
real time processor to fetch and process the results. Thus,
signal delay of few milliseconds was introduced in the area of
interests (i.e. shadowed areas on x-axis) to avoid failures of the
test case.

The benefits of the modelled test cases are summarised
below:

• Accurate definition of the test case in terms of time and
signal definition.

• Graphical representation of the signal during the test
execution.

• Reduced test case duplication due to test case re-use.

• Less specialised knowledge is required to analyse the
test results.

• The graphical definition of the test case can uncover
failure modes associated with the functional
requirements prior to the test execution.

• Test cases can be linked to system requirements.

• Visualisation of signal tolerances (i.e. y-axis).

• The review of the automated test case and scenarios is
significantly minimised.

The creation of the modelled test cases require well defined
design verification plan and signal specification standards to be
in place. This approach of automation helps JLR to move test
creation using tabular format to one with graphical
representation.

In addition to the above remarks regarding the creation of
automated test cases, the deployment of the full vehicle
simulator has demonstrated the following potentials.

• Most Electrical functional requirements can be
validated prior to prototype build.

• Distributed functionality validation is decoupled from
single software release.

• Drive cycles which have functional safety
implications, can be executed in a controlled test
environment.

• The product design can be evaluated and altered early
in the programme before commitment to tier 1 is made.

• Early feature demonstration can help towards concept
selection and decision making.

• Enables cross functional team working and explores
opportunities towards “what can we do better and
how?”

Although the aforementioned characteristics clearly deliver
competitive advantage to an OEM, there are points to be
considered before full deployment takes place.

• Significant upfront capital investment is required to
purchase the hardware and software simulation
components.

• Early engineering effort is required to develop product
engineering specification.

• Engineering mind set shift from manual vehicle testing
to automated simulation based testing.

VI. CONCLUSION

The purpose of this paper was to present a fully integrated
hardware-in-the-loop environment for validation of distributive
vehicle functionality. The automated modelled test cases
concept is introduced with the execution of two case studies.
The successful execution of both scenarios has proven that the
entire vehicle functionality can be modelled and executed on
the full vehicle simulator.

REFERENCES

[1] Waltermann, J., 2009. Hardware-in-the-loop: The Technology for testing
Electronic Controls in Automotive Engineering. 6th Paderborn

Workshop: Designing Mechatronic Systems, Paderborn, April 2-
3,Germany

[2] Kendall,I,R. and Jones,R,P., 1999. An Investigation into use of
hardware-in-the-loop simulation testing for automotive electronic
control systems. Control Engineering Practice, 7 (1999), p.p 1343-1356.

[3] Lamberg, K.,Richert, J. and Rasche, R., 2003. A new environment for
integrated Development and Management of ECU tests. Proceedings of
the SAE World Congress, Detroit,USA.

[4] Mouzakitis,A.,Humphrey,R.,Bennett,P. And Burnham,J,K. 2006.
Development, Testing and Validation of Complex Automotive systems.
The 10th Mechatronic Forum Biennial International
Conference,MX2006,Philadelphia,USA.

[5] Dhaliwal, A., Shreyas,C., Nagaraj,C, and Syed,A. 2009. Harware-in-the-
loop Simulation For Hybrid Electric Vehicles-An Overview, Lessons
Learnt and Solutions Implemented. SAE Technical Pepers 09AE-0198.

[6] Wu,K., Zhang,Q. And Hansen,A. 2004. Modeling and identification of a
hydrostatic transmission hardware-in-the-loop simulator. International
Journal of Vehicle Design, Vol.34,No. 1.

[7] Henselmann,H. 1993. Hardware-in-the-loop simulation as a standard
approach for development, customisation and production test. SAE
technical papers, 930207.

[8] Tsampardoukas,G., Mouzakitis,A. And Sydor,P., 2009. Design
Methodology for Integrating Networked Automotive Electronic Control
Units Using Hardware-in-the-loop. Proceedings of the 20th International
Conference on Systems Engineering ,Coventry, UK.

[9] Huang, Y., McMurran, R., Dhadyalla, G., Jones, P. and Mouzakitis.,
2009. Model-based testing of a vehicle instrument cluster for design
validation using machine vision. Journal of Measurement Science and
Technology, Vol. 20, No. 6.

[10] Jaguar Land Rover, User's Handbook, 2009.

556

