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Abstract—This paper proposes an airborne monitoring
methodology of ground vehicle behaviour based on a fuzzy
logic to identify suspicious or abnormal behaviour reducing
the workload of human analysts. With the target information
acquired by unmanned aerial vehicles, ground vehicle behaviour
is firstly classified into representative driving modes and then a
string pattern matching theory is applied to detect pre-defined
suspicious behaviours. Furthermore, to systematically exploit all
available information from a complex environment and confirm
the characteristic of behaviour, a fuzzy rule-based decision
making is developed considering spatiotemporal environment
factors as well as behaviour itself. To verify the feasibility and
benefits of the proposed approach, numerical simulations on
moving ground vehicles are performed using both synthetic and
realistic car trajectory data.

Index Terms—Airborne monitoring, Target tracking, Trajec-
tory classification, Behaviour recognition, Fuzzy decision making

I. INTRODUCTION

Recently, autonomous airborne surveillance and reconnais-
sance systems become a challenging and emerging problem in
the area of aerospace and robotics with the rapid improvement
of the UAV (unmanned aerial vehicle) operation and sensing
technology. Airborne monitoring allows suspicious or unusual
behaviour to be identified and investigated promptly so that
situational awareness can be increased in support of border
patrol, law enforcement and protecting infrastructure. For this,
many researchers have investigated a swarm of autonomous
airborne sensor platforms having a long endurance as well as
good spatial coverage with an appropriate level of decision
making. In particular, surveillance by UAVs equipped with a
MTIR (Moving Target Indicator Radar) sensor can provide
a certain level of accurate estimation of a large number of
moving targets as well as capability to respond possible threats
from the air. However, for detection of suspicious behaviours,
the operators have to manually analyse the gathered mass
data and construct a coherent picture of events. With these
backgrounds, this paper focuses on the development of a high-
level analysis algorithm to process target information acquired
by UAVs which provide awareness of abnormal behaviour.

In general, detecting anomalous behaviour can be classified
into two categories: The first approach codifies the behaviours
using experience and domain knowledge of experts and the

behaviours are learned from data in the second approach
[1]. Purely learning based approaches can provide a good
performance [2], [3], however, they require massive data set
in advance or tend to suffer from the high computation burden
for real-time applications. On the other hand, there are several
algorithms to deal with behaviour or activity analysis in the
context of codified (or classified) behaviour model with the
aid of learning. Srivastava et. al. [4] introduced the method
to detect anomalies of the ground vehicle by observing the
patterns in its velocity called as velocity trajectory using hy-
pothetical co-ordinated system in which the axes are specified
with respect to the road segment. Besides, Fraile and Maybank
[5] proposed the idea of dividing the trajectories of the ground
vehicle into several driving modes using video images which
can be exploited for ground traffic surveillance. However, this
classification is limited to car manoeuvres in an urban parking
space with slow speed. Similarly, Kim et. al. [6], [7] proposed
the trajectory classification codified with more detailed driving
modes, and applied it to string matching theory to detect
suspicious behaviour defined from expert knowledge.

This paper proposes a fuzzy expert rule-based airborne
monitoring methodology of ground vehicle behaviour as an
extension of our previous works mentioned above [6], [7]. In
those works, a primary source for the behaviour recognition is
a single deterministic cost obtained from the string matching.
Although this cost can provide the measure of suspiciousness
computing similarity between pre-defined suspicious strings
and driving mode history from trajectory classification within
a certain time window, additional information needs to be
considered to finally confirm the characteristic of behaviour
while avoiding frequent false alarms. Therefore, in this study,
to systematically exploit all available information intercon-
nected and influenced by each other obtained from complex
environment, a fuzzy system is applied considering its ability
to classify complex sources into simple and intuitive form
resulting in the final decision with some degree of confidence
through expert rules. The proposed fuzzy expert rule-based
decision making allows to concurrently accommodate several
aspects of behaviour as well as spatiotemporal environment
factors providing a level of alert to operator monitoring
complex scenes.

The overall structure of this paper is given as: Section
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II briefly introduces a target tracking filter, trajectory clas-
sification, and behaviour recognition algorithm using string
matching. Section III introduces rule-based decision making
algorithm to find suspicious behaviour based on a fuzzy logic.
Section IV presents numerical simulation results of behaviour
monitoring for both synthetic and civilian traffic scenario using
realistic ground vehicle trajectory data. Lastly, conclusions and
future works are addressed in Section V. An overall flow chart
the technique presented in this paper is shown in Fig. 1.

Fig. 1. An overall flow chart of fuzzy expert rule-based behaviour monitoring

II. BEHAVIOUR MODELLING AND RECOGINITION

This section briefly introduces our previous works on
airborne monitoring of ground vehicle behaviour based on
[6], [7]. Ground target tracking filter using UAVs is firstly
explained. Trajectory classification is followed to model the
behaviour of ground vehicles, and lastly behaviour recognition
algorithm using string matching theory is presented.

A. Target tracking

This study considers acceleration dynamics to apply it to
tracking of the moving ground vehicle. This model regards
the target acceleration as a process correlated and exponen-
tially decreasing in time, which means if there is a certain
acceleration rate at a time t, then it is likely to be the same
jerk also at a time instant t+ τ as:

xtk = Fkx
t
k−1 + ηk (1)

where xtk = (xtk, ẋ
t
k, ẍ

t
k, y

t
k, ẏ

t
k, ÿ

t
k)T , ηk is a process noise

which represents the acceleration characteristics of the target,
and the state transition matrix Fk can be represented as:

Fk =



1 Ts Φ 0 0 0

0 1 (1−e−αTs )
α 0 0 0

0 0 e−αTs 0 0 0
0 0 0 1 Ts Φ

0 0 0 0 1 (1−e−αTs )
α

0 0 0 0 0 e−αTs


(2)

where Φ = (e−αTs + αTs − 1)/α2, and α is a correlation
parameter which allows for the modelling of the different

classes of targets. The details of the covariance matrix Qk
of the process noise ηk can be found in [8].

Besides, this study assumes the UAV are equipped with a
MTIR to localise the position of target. Because the measure-
ment of MTIR is composed of range and azimuth of the target
with respect to the radar location, the actual measurements
are the relative range and azimuth with respect to the position
of the UAV airborne. The radar measurement (r, φ)T can be
defined as the following nonlinear relation using the target
position (xtk, y

t
k)T and the UAV position (xk, yk)T as:

zk =

(
rk
φk

)
= h(xtk) + νk (3)

=

( √
(xtk − xk)2 + (ytk − yk)2

tan−1
ytk−yk
xtk−xk

)
+ νk

where νk is a measurement noise vector, and its noise covari-
ance matrix is defined as:

V [νk] = Rk =

[
σ2
r 0

0 σ2
φ

]
. (4)

Considering that the measurement equation is nonlinear, the
localisation of target is designed using the EKF (Extended
Kalman filter). In addition, assuming a pair of UAVs track
the same targets, sensor fusion technique using a Covariance
Intersection algorithm is applied. Lastly, as the behaviour of
ground vehicle will be analysed with a moving horizon history,
the optimal fixed-interval smoother is used to improve the
accuracy of past state estimation of the target. The details for
sensor fusion and optimal smoother can be found in [6].

B. Trajectory classification

To model a driver’s behaviour, the trajectory is classified
into driving modes. The purpose of the classification is to
categorise characteristics of manoeuvres associated with for-
ward or lateral driving by assigning them to driving modes
as will be explained in the following. This allows not only
to recognise characteristic fragments of the trajectories, but
also to enable recognition of ground traffic behaviour in an
intuitive, computationally-efficient and flexible way.

Since the driving manoeuvre does not happen for a single
sampling time, the trajectories for a certain length of time need
to be considered. For this, a moving-window-based trajectory
approximation [6] is applied using a polynomial function
which generates trajectory with a virtually increased sampling
time for a certain time interval. Let us assume a new time
sequence within a moving window, 0 < Tn < 2Tn < . . . <
(NT − 1)cTn = (NT − 1)Ts where Ts is an original sampling
time of tracking filter, Tn is a new virtual sampling time,
and NT is the number of samplings for a moving window.
In this study, it is assumed that NT = 4, Ts = 0.5, and
c = 5, and thus the new virtual sampling time is 0.1 seconds.
The selection of NT = 4, i.e. 1.5 seconds’ moving window
reflects that the bandwidth for lane changing is at least 1.0Hz
according to the reference [9]. Then, velocity (ẋt(i), ẏt(i)) and
acceleration (ẍt(i), ÿt(i)) histories with a new time sequence
are used to compute the minimum speed U , the rate change of
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orientation θ(i), and forward acceleration af (i) of the vehicle
at current time step k for each i in a moving window (i.e.
k − c(N − 1) + 1 ≤ i ≤ k) as:

U = min v(i) = min
√
ẋt(i)2 + ẏt(i)2 (5)

θ(i) = v(i)κ(i)

=
√
ẋt(i)2 + ẏt(i)2

ẋt(i)ÿt(i)− ẏt(i)ẍt(i)
(ẋt(i)2 + ẏt(i)2)3/2

(6)

af (i) = ẍt(i) cosψ(i) + ÿt(i) sinψ(i) (7)

where κ is a curvature, and ψ = tan−1 (ẋt/ẏt) is the heading
angle from the North. Using above equations, a driving mode
md
k among driving mode set Md = {0, · · · , 8} at time step k

can be obtained for each moving window with a frequency of
1/Ts as:
• Stopping (0), U < 1: Since 1 m/s equals to 3.6 km/h, it

can be assumed that the car does not move or is about to
stop or start moving.

• Left turn (1), max(θ) min(θ) > 0 and max(θ) > θth:
The inspection of sign change of θ is used to distinguish
the pure turning maneuver from the lane changing.

• Right turn (8) max(θ) min(θ) > 0 and max(θ) < −θth
• Left lane change (2) max(θ) min(θ) < 0, max(|θ|) >
θth, and θ(0) > 0: The difference to the left turn of this
condition is the sign change of the rate of orientation
change. The sign of curvature transits from positive to
negative in case of the left lane change.

• Right lane change (7) max(θ) min(θ) < 0, max(|θ|) >
θth, and θ(0) < 0: The sign of curvature transits from
negative to positive in case of the right lane change.

• Closing gap (6) max(af ) min(af ) < 0, and af (0) >
0: When the driver wants to close gap to the preceding
vehicle, the sign of acceleration transits from positive to
negative.

• Widening gap (3) max(af ) min(af ) < 0, and af (0) ≤
0: Contrary to the case of closing gap, the sign of
acceleration transits from negative to positive.

• Accelerating ahead (5) max(af ) min(af ) > 0, and
af (0) > 0: The sign of acceleration keeps positive.

• Decelerating ahead (4) max(af ) min(af ) > 0, and
af (0) ≤ 0: The sign of acceleration keeps negative
contrary to the case of the accelerating ahead.

C. Behaviour detection

This section introduces behaviour detection scheme to find
suspicious behaviour using driving mode histories of ground
vehicles. The key tools for this detection scheme are symbolic
dynamics and string matching. The mathematical subject of
symbolic dynamics originally arose in the theory of dynam-
ical systems and was motivated by the qualitative approach
to dynamics in which the character of trajectories is more
important than their numerical values. String matching theory
is a well-developed area of text processing. String matching
consists in finding all the occurrences of a string (called a
pattern) in a text where the pattern is a string x of length m,
while the text is a string y of length n. In this study, using the

driving mode set Md = {0, · · · , 8}, a symbolic time series of
driving modes ydk = {md

l ∈Md|l = 1, . . . , Nsm} is generated
by trajectory classification for each time step k, where Nsm
represents a moving window length for string matching. The
suspicious behaviour is also expressed as strings xs consisting
of nine numbers.

Intuitive string matching method we can apply is the exact
matching which detects exactly the same pattern in the driving
mode history as the pre-defined suspicious string. However,
assuming a reference suspicious string of ’145048’, ’145548’
or ’145448’ cannot be ignored as well in the detection scheme,
whose fourth element of the string might be one of the
following forward driving modes: ’3’; ’4’, ’5’, ’6’, instead
of ’0’. To tackle this, an approximate matching is applied by
defining a cost which is called as Edit distance measuring
distance or similarity between reference and test patterns. The
Edit distance D(S1, S2) [10] between two string patterns S1

and S2 is defined as the minimum number of editions including
changes C, insertions I , and deletions R required to change
pattern S1 into S2. The details of approximate string matching
can be found in [6].

Although above edit distance can provide the measure
of suspiciousness computing similarity between pre-defined
suspicious strings and current driving mode history within
a certain time window, additional information needs to be
considered to finally confirm characteristic of behaviour while
avoiding frequent false alarms. From the following section,
what types of information can be used and how to combine
them will be dealt with.

III. FUZZY EXPERT RULE-BASED DECISION MAKING

For airborne behaviour monitoring, this section proposes a
decision making algorithm to find suspicious or anomalous
vehicle based on a fuzzy logic. To systematically exploit all
available information interconnected and influenced by each
other obtained from complex environment, fuzzy system is
applied considering its ability to classify complex sources
into simple and intuitive form (fuzzification) resulting in the
final decision (defuzzification) with some degree of confidence
(rather than single certain decision) through expert rules (fuzzy
inference). The proposed fuzzy expert rule-based decision
making allows to concurrently accommodate several aspects of
behaviour as well as spatiotemporal environment factors with
supervision of human providing a level of alert to operator
monitoring complex scene. Fuzzy system used in this study
consists of four fuzzy membership functions for inputs and
one output with 36 expert inference rules.

A. Fuzzification

A fuzzy input for behaviour monitoring includes four as-
pects: location, behaviour cost, speed of the vehicle, and
environmental aspect as:
• Location: A time history of the location which is a

relative position of the suspicious ground vehicle to the
critical area (e.g. the centre of complex activities and
the base walls of military facilities) or an index of road
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that the ground vehicle has moved along is an important
source for behaviour monitoring. Assuming that the local
roadmap information is readily available in advance, the
indexes of the local roads in region of interest can
be annotated by a sequence of road numbers. If the
vehicle travelling on one of identified roads of interest,
the location is categorised as ’Region of interest (R)’;
otherwise is ’General (G)’ as shown in Fig. 2(a).

• Behaviour cost: As a key factor for the behaviour
monitoring, the edit distance D is used resulting in time
history of a behaviour cost. Let Xs = {x1s, · · · , xNsus }
be the set of pre-defined suspicious behaviours. Then,
the behaviour cost Cbk with respect to current time series
of driving modes ydk and suspicious behaviours at time
step k can be defined as:

Cbk =
1

mini∈Xs D
(
xiS , y

d
k

)
+ 1

(8)

Three fuzzy membership functions with linguistic vari-
able ’Normal (N)’, ’Suspicious (Su)’, and ’Worrying (W)’
are used to categorise the behaviour cost as shown in
Fig. 2(b).

• Speed: The velocity profile of the vehicle with respect to
its position or time step also needs to be investigated since
it can provide the measures of the suspicious or abnormal
behaviour inherently. Three functions with ’Slow (Sl)’,
’Moderate (M)’, and ’Fast (F)’ are used as shown in
Fig. 2(c).

• Environment: The last input considers an environmental
condition with a human interaction for the behaviour de-
cision process. Depending on the traffic flow density, two
functions with ’Normal traffic (Nt)’ and ’Congestion (C)’
are used as membership functions as shown in Fig. 2(d).
Even though only traffic flow is used in this study, it
can be easily replaced with time zone such as day/night
or weekday/weekend or any other environmental aspects.
This input allows for incorporating human supervision
on a certain environment into decision making instead of
relying only fully autonomous decision process which can
be vulnerable to unexpected and dynamic environments.

A fuzzy output for behaviour monitoring is the level of alert
of each ground vehicle consisting of four membership func-
tions with linguistic variable ’Allow’, ’Monitor’, ’Investigate’,
and ’Respond’ as shown in Fig. 3.

B. Fuzzy inference

In this study, a fuzzy inference system is designed by using
a Mamdani model [11]. Inhere, expert knowledge can be
expressed in a natural way using linguistic variables defined
above as Table. I∼II. In the table, rules can be interpreted as:
• Rule 1: If Location is ’G’ and Behaviour is ’N’ and Speed

is ’Sl’ and Environment is ’Nt’, then Alert is ’Allow’.
Note that depending on the location and environment, rules
are changed slightly. For instance, if location of the vehicle
is ’G’ (i.e. general area), speed ’Sl’ does not mean something
significant leading to alert ’Allow’, whereas if the location

(a) Location (b) Behaviour cost

(c) Speed (d) Environment (Traffic flow)

Fig. 2. Membership functions for fuzzy inputs

Fig. 3. Membership function for fuzzy output

is ’R’ (i.e. region of interest), slow speed or stopping of the
vehicle can be identified as suspicious one (monitoring the
specific facility or placing of improvised explosive devices)
leading to alert ’Investigate’ as Rule 1 and 19. However, even
though the location is ’R’ and speed is ’Sl’, if the environment
is ’C’ (i.e. congestion), its alert level should be alleviated as
Rule 20 since slow speed is more likely to be observed.

C. Deffuzification

By using input variables and defined fuzzy rules, the fuzzy
outputs for all rules are then aggregated to one output fuzzy
set. Finally, to obtain a crisp decision value for level of
alert, a defuzzification process needs to be performed. Even
though there are several algorithms for this defuzzification,

TABLE I
FUZZY RULE 1∼18: LOCATION IS ’G’ (GENERAL ROAD)

Rule No. Behaviour Speed Environment Alert
1 / 2: N Sl Nt / C Allow / Allow
3 / 4: N M Nt / C Allow / Allow
5 / 6: N F Nt / C Monitor / Investigate
7 / 8: Su Sl Nt / C Monitor / Allow

9 / 10: Su M Nt / C Monitor / Allow
11 / 12: Su F Nt / C Investigate / Investigate
13 / 14: W Sl Nt / C Investigate / Monitor
15 / 16: W M Nt / C Investigate / Monitor
17 / 18: W F Nt / C Respond / Respond
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TABLE II
FUZZY RULE 19∼36: LOCATION IS ’R’ (REGION OF INTEREST)

Rule No. Behaviour Speed Environment Alert
19 / 20: N Sl Nt / C Investigate / Monitor
21 / 22: N M Nt / C Allow / Allow
23 / 24: N F Nt / C Investigate / Monitor
25 / 26: Su Sl Nt / C Investigate / Monitor
27 / 28: Su M Nt / C Monitor / Monitor
29 / 30: Su F Nt / C Investigate / Investigate
31 / 32: W Sl Nt / C Respond / Investigate
33 / 34: W M Nt / C Investigate / Investigate
35 / 36: W F Nt / C Respond / Respond

this study uses the method of taking the centre of gravity of
the aggregated output fuzzy set [12].

IV. NUMERICAL SIMULATIONS

This section carries out a numerical simulation for both
synthetic and civilian traffic scenario using the proposed fuzzy
expert rule-based airborne monitoring algorithm for moving
ground targets using UAVs loitering over a certain area.

A. Synthetic scenario

Figure 4 shows the scenario description where a ground
vehicle is moving around region of interest. In the map, at
the southern area of a river, there is a stadium of strategic
importance to be protected, which has a surrounding roadmap
to be passed by a civilian ground vehicle near the base wall.
A ground vehicle considered in this scenario circles clockwise
round the stadium twice. During that time, the vehicle stops
for ten seconds on the mid of road 3 near 420s. After that
it crosses on the bridge and then travelling on the general
road network. The vehicle trajectory data are used to generate
virtual MTIR measurements composed of the relative range
and azimuth angle adding the white Gaussian noise having
the standard deviation of (σr, σφ) = (10m, 3deg).

The trajectory classification histories shows a reasonable
performance capturing the turning or stopping manoeuvre
timely as shown in Fig. 5 in conjunction with the trajectory
estimation result with blue lines and numbered time history
in Fig. 4. In this scenario, only road 3 and 4 are assumed to
be of interest (i.e. location is ’R’) as red line in Fig. 6(a), and
suspicious behaviour xs is selected as ’4 4 0 0 0 0’ (which
means deceleration and then stopping) to detect the vehicle
which stops around stadium suspiciously. In addition, the size
of driving mode history yD is set to Nsm = 6 which is the
same as that of xs.

Figure 6 shows the fuzzy rule-based decision making result
including location information, behaviour cost and speed of
the vehicle. Note that even if yD and xs are totally different,
since edit distance D between them is six in this case, the
lowest behaviour cost would be 1/7 instead of zero according
to Eq. (8) as shown in Fig. 6(b). In normal traffic shown as
blue line in Fig. 6(d), level of alert has high value when the
location is ’R’, behaviour cost is high as well as speed is slow.
Besides, if there is congestion in the traffic, the effect of the

behaviour cost and slow speed on level of alert is reduced as
red line in Fig. 6(d) since those conditions are more likely to
happen due to the congestion.

Fig. 4. Trajectory estimation for synthetic scenario

Fig. 5. Trajectory classification for synthetic scenario

(a) Location (b) Behaviour cost

(c) Speed (d) Level of alert

Fig. 6. Fuzzy rule-based decision making results for synthetic scenario

B. Civilian traffic scenario

The ground target trajectory is obtained from S-Paramics
[13] traffic model of Devizes map in the UK at 2 Hz as shown
in Fig. 7. Figure 8(a) shows trajectory estimation result of
a given S-Paramics data with frequent lane changes inserted
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artificially (to generate suspicious behaviour) as shown in
Fig. 8(b). This manoeuvre is called weaving or evasive, and
can be viewed as one of the most dangerous behaviours in
civilian traffic. In this scenario, every road is assumed to
be general road (i.e. location is ’G’ only), and suspicious
behaviour xs is selected as ’2 7 2 7’ and ’7 2 7 2’ (2: right lane
change and 7: left lane change) to detect evasive manoeuvre.

Figure 9 shows the fuzzy rule-based decision making result
including behaviour cost with trajectory classification and
speed of the vehicle. In normal traffic shown as blue line in
Fig. 9(d), level of alert has high value when the behaviour
cost is high (which means evasive manoeuvre is likely to be
happening) around 20∼40 seconds or velocity is fast around
10 second. In case there is congestion as red line in Fig. 9(d),
although level of alert shows the same tendency, the effect of
the behaviour cost is reduced as frequent lane change is more
likely to happen due to the congestion. On the contrary, the
effect of fast speed is enhanced around 10 second since fast
ground vehicle in the congested traffic could be regarded as
dangerous one.

Fig. 7. Trajectory of a ground vehicle within the Devizes road network with
GIS satellite data overlaid thanks to Google earth

(a) Entire trajectory (b) Evasive manoeuvre part

Fig. 8. Trajectory estimation result and artificial evasive manoeuvre

V. CONCLUSIONS

This paper proposed a fuzzy expert rule-based airborne
monitoring methodology of ground vehicle behaviour to iden-
tify suspicious or abnormal behaviour considering spatiotem-
poral environment factors as well as behaviour itself. Numeri-
cal simulation results using synthetic scenario and realistic car
trajectory data showed the feasibility of the proposed approach

(a) Trajectory classification (b) Behaviour cost

(c) Speed (d) Level of alert

Fig. 9. Fuzzy rule-based decision making result for civilian traffic scenario

successfully providing a recommended level of alert. The study
could be applied to various scenarios in view of both military
and civil applications: monitoring urban/rural area of interest,
detecting unknown intent of terrorists, providing a protective
surveillance around military facilities, and enhancing situa-
tional awareness of traffic movements both on land and at
sea. As a future work, additional relevant aspects of behaviour
will be considered as fuzzy inputs such as cultural background
related to driving habits and deviation from general behaviour.
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