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Abstract— This paper studies the design of an optimal
stabilizing controller for output regulation of minimum phase
nonlinear systems in the Lyapunov redesign framework of our
earlier work [6], and investigates the asymptotic robustness
properties of the overall feedback design, given that the optimal
stabilizing controller itself possesses strong robustness proper-
ties by construction. The motivation comes from the flexibility
of incorporating any stabilizing controller within the proposed
framework, and we seek for control design methods that yield
stabilizing controllers with some additional desirable properties
like optimality, disturbance rejection and robustness in the
presence of matched uncertainties e.g. static nonlinearities,
uncertain parameters and the unmodeled fast dynamics. We
exploit the optimal control design methods developed by Koko-
tovic and his co-researchers [3], [4], [7] for nonlinear systems,
where it is shown that in addition to achieving the asymptotic
stability of the system and minimizing a cost functional, the
optimal feedback control guarantees stability margins which
characterize the robustness properties.

Index Terms— Nonlinear Systems, Inverse Optimal Control,
Lyapunov Redesign, Output Regulation

I. INTRODUCTION

In this paper, the problem of optimal output regulation of
minimum-phase nonlinear systems is considered. The output
regulation problem deals with the design of a controller to
make the output of a plant asymptotically track reference
signals and reject disturbance signals, both produced by an
autonomous external system called the exosystem. In our
earlier work [6], we used the Lyapunov redesign and sat-
urated high-gain feedback approach to design the stabilizing
compensator, and included a conditional servocompensator
by modifying the original controller that yields asymptotic
error regulation without degrading the transient performance.
One special feature of the Lyapunov redesign framework of
[6] is that it allows us to start with any stabilizing controller
and then include a conditional servocompensator by modi-
fying the original controller to achieve the desired control
objectives. This flexibility of incorporating any stabilizing
controller within our framework motivates us to seek for
control design methods that yield stabilizing controllers with
some additional desirable properties like optimality, distur-
bance rejection and robustness in the presence of matched
uncertainties e.g. static nonlinearities, uncertain parameters
and the unmodeled fast dynamics. Herein, we take into
consideration the optimal control design methods developed
by Kokotovic and his co-researchers [3], [4], [7] for the
stabilization of nonlinear systems, where it is shown that in
addition to achieving the asymptotic stability of the system
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and minimizing a cost functional, the optimal feedback
control guarantees stability margins which characterize the
robustness properties. A major handicap in designing such
controller is that it requires the solution of the complicated
Hamilton-Jacobi-Bellman (HJB) partial differential equa-
tions. Kokotovic and co-researchers introduced an inverse
approach [7] to the optimal control design for nonlinear
systems, which abrogates the requirement of solving the HJB
equations in order to design optimal feedback controllers. We
incorporate an optimal stabilizing controller in the Lyapunov
redesign framework of [6], to investigate the problem of
output regulation of nonlinear systems using conditional
servocompensators. We concentrate on the asymptotic ro-
bustness properties of the overall Lyapunov-redesign + con-
ditional servocompensator framework, given that the optimal
stabilizing controller itself possesses strong robustness prop-
erties (e.g. robustness to matched uncertainties and unknown
disturbances) by design.

The rest of the paper is organized as follows. We present
a brief review of Lyapunov redesign framework of [6] in
the next section. Section III introduces the definitions of
stability margins for nonlinear systems which are due to [7],
and can be considered as the starting point of control design
in this paper. Section IV states the problem formulation and
assumptions, and is followed by the closed-loop analysis in
Section V. A simple example is worked out in Section VI.
Finally, Section VII draws the conclusions.

II. OUTPUT REGULATION USING CONDITIONAL
SERVOCOMPENSATORS

In this section we briefly review the Lyapunov redesign
approach to output regulation problem using conditional
servocompensators [6]. Consider the SISO nonlinear system

ξ̇ = f̃(ξ, w) + g̃(ξ, w)u

e = h̃(ξ, w) (1)

where ξ ∈ Rn is the state, u is the control input, e is the
regulation error and the functions f̃ , g̃ and h̃ are sufficiently
smooth. The plant is subjected to a vector of exogenous input
variables, which are generated by the known exosystem

ẇ = S0w (2)

where S0 has distinct eigenvalues on the imaginary axis
and w(t) belongs to a compact set W . Suppose that for all
w ∈ W , there exist a continuously differentiable mapping
ξ = π(w), with π(0) = 0, and a continuous mapping χ(w),
generated by the internal model

∂τ(w)

∂w
S0w = Sτ(w), χ(w) = Γτ(w)
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where S has distinct eigenvalues on the imaginary axis, such
that

∂π(w)

∂w
S0w = f̃(π,w) + g̃(π,w)χ(w)

0 = h(π,w) (3)

With the change of variables x = ξ − π, the system (1) can
be represented by

ẋ = f(x,w) + g(x,w)[u− χ(w)] (4)

The system (4) is in the form where the state feedback
regulation problem can be formulated as a state feedback sta-
bilization problem by treating χ(w) as a matched uncertainty.
Suppose there is a locally Lipschitz function ψ(x,w), with
ψ(0, w) = 0, and a continuously differentiable Lyapunov
function V (x,w), possibly unknown, such that

α1(∥x∥) ≤ V (x,w) ≤ α2(∥x∥) (5)

∂V

∂w
S0w +

∂V

∂x
[f(x,w) + g(x,w)ψ(x,w)] ≤ −W (x) (6)

∀x ∈ X⊂ Rn, w ∈ W , where W (x) is a continuous positive
definite function and α1 and α2 are class K functions. The
system (4) can be re-written as

ẋ = f(x,w) + g(x,w)ψ(x,w)

+ g(x,w)u− g(x,w)[χ(w) + ψ(x,w)] (7)

Let Ω = {V (w, x) ≤ c1} ⊂ X be a compact set for some
c1 > 0 and δ(x) be a function such that

∥χ(w) + ψ(x,w)∥ ≤ δ(x) ∀x ∈ Ω, ∀w ∈ W (8)

Suppose (∂V/∂x)g(x,w) can be expressed as

(∂V/∂x)g(x,w) = υ(x)H(x,w) (9)

where υ(x) is a known, locally Lipschitz function, with
υ(0) = 0, and H(x,w) is a, possibly unknown, function
such that 0 < θ ≤ |H(x,w)| ≤ k, ∀x ∈ Ω, ∀w ∈ W .

A conditional servocompensator [6] is introduced via the
saturated high-gain feedback controller

u = −α(x)sat (s/µ) (10)

where s = υ(x)+K1σ, the saturation function is defined as

sat (s/µ) =

{ s
|s| if |s| ≥ µ
s
µ if |s| ≤ µ (11)

and σ is the output of the conditional servocompensator

σ̇ = (S − JK1)σ + µJsat

(
s

µ

)
(12)

with µ > 0 being the width of the boundary layer. The pair
(S, J) is controllable and K1 is chosen such that S − JK1

is Hurwitz. The function α(x) is chosen to satisfy

α(x) ≥ k

θ
δ(x) + α0, α0 > 0 (13)

It is shown in [6] that if σ(0) is O(µ), the state σ(t) of the
conditional servocompensator (12) will always be O(µ).

The analysis in [6] shows that, for sufficiently small µ,
every trajectory of the closed-loop system (2), (4), (10)
and (12) asymptotically approaches a disturbance-dependant
manifold of the form {x = 0, σ = σ̄}, on which the
regulation error is zero. The state feedback design is extended
to output feedback for a class of minimum-phase, input-
output linearizable systems. For this class of systems, the
state feedback control can be designed as a partial state
feedback law that does not use the states of the internal
dynamics. A reduced-order high-gain observer is used to
estimate the states of the linearizable part of the system,
which are derivatives of the output. The output feedback
controller, obtained by replacing the states by their estimates,
recovers the transient and asymptotic properties of the state
feedback controller. The performance recovery is shown
using the separation principle of [1] and [2].

III. INVERSE OPTIMAL CONTROL DESIGN [7]

It is well known that the optimal control as a design
tool guarantees robustness and stability margins. This design
approach deals with the problem of finding a feedback
control u(x) for the nonlinear system

ẋ = f(x) + g(x)u (14)

with the objective that the u(x) achieves asymptotic stability
of the equilibrium x = 0 and minimizes the cost functional

J =

∫
0

∞
(l(x) + uTR(x)u)dt (15)

where l(x) ≥ 0 and R(x) > 0 for all x. A direct
determination of the optimal feedback law u(x) for nonlinear
optimal control problems requires us to solve the Hamilton-
Jacobi-Bellman (HJB) partial differential equations. On the
other hand, the robustness properties achieved as a result
of the optimality do not depend on a particular choice of
functions l(x) ≥ 0 and R(x) > 0. This motivated Freeman
and Kokotovic’ [3], [4] to pursue the development of the
design methods that solve the inverse problem of optimal
stabilization. In the inverse approach, a stabilizing feedback
is designed first and then shown to be optimal for the cost
functional (15). The problem is inverse since the functions
l(x) ≥ 0 and R(x) > 0 are determined through the
stabilizing feedback design process rather than being chosen
by the designer.

A. Design of the Stabilizing Inverse Optimal Control

A stabilizing control law u(x) solves an inverse optimal
control problem for the system (14) if it can be expressed as

u = −k(x) = −1

2
R−1(x)(LgV (x))T , R(x) > 0, (16)

where V (x) is a positive semidefinite function (to be called
a Control Lyapunov Function (CLF), hereafter) and satisfies
the following condition, with u = −1

2k(x),

V̇ = LfV (x)− 1

2
LgV (x)k(x) ≤ 0 (17)
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With the choice of l(x) , −LfV (x) + 1
2LgV (x)k(x) ≥ 0,

V (x) is a solution of the HJB equation

l(x) + LfV (x)− 1

4
(LgV (x))R−1(x)(LgV (x))T = 0 (18)

Therefore, the control law u(x) is an inverse optimal
stabilizing control law for the system (14) if it achieves
the asymptotic stability of x = 0 for the system (14) and
is of the form (16) with V (x) that satisfies the condition (17).

The importance of the existence of a CLF in the frame-
work of inverse optimal control design is that, when a CLF
is known, an inverse optimal stabilizing control law can be
given by Sontag’s formula [8]

us(x) =


−
(
c0 +

ax+
√

ax
2+(bxT bx)2

bxT bx

)
bx , bx ̸= 0

0 , bx = 0

(19)

where ax = LfV (x), bx = (LgV (x))T , and c0 is a positive
constant. It is shown in [7] that the control law (19) is
Lipschitz continuous at x = 0, if V (x) is a CLF that satisfies
the small control property1 for the nonlinear system (14), and
is optimal stabilizing for the cost functional

J =

∫
0

∞
(
1

2
p(x)bT (x)b(x) +

1

2p(x)
uTR(x)u)dt (20)

where

p(x) =


c0 +

ax+
√

ax
2+(bxT bx)2

bxT bx
, bx ̸= 0

c0 , bx = 0

(21)

An important consequence of the optimality of the control
law (19) is that it has a sector stability margin ( 12 ,∞), and,
under certain assumptions, it achieves a disk stability margin
D(12 ). These stability margins, which are defined below,
provide guaranteed robustness in the presence of matched
uncertainties e.g. static nonlinearities, uncertain parameters
and the unmodeled fast dynamics.

B. Stability Margins for Nonlinear Systems

The basic robustness properties of nonlinear feedback
systems can be characterized in terms of stability margins,
e.g. gain, sector and disk stability margins. Consider the
nonlinear feedback system shown in Figure.1 where u and
y are of the same dimension and ∆ represents modeling
uncertainty at the input side. Under the nominal conditions,
the feedback loop consists of the (nominal) nonlinear plant
H with the nominal control u = −k(x) = −y, and ∆
is identity. The nominal system is denoted by (H, k) and
the perturbed system by (H, k,∆). The input uncertainties
can be static or dynamic. The two most common static
uncertainties are unknown static nonlinearity and unknown

1A nonlinear system ẋ = f(x, u), with a known Lyapunov function
V (x), is said to satisfy the small control property if for every ϵ > 0 there
exists a δ > 0 such that for all ∥x∥ < δ there exists u with ∥u∥ < ϵ so
that V̇ (x) is negative definite.

h ∆ H k- - - - -
6

yu x

Fig. 1. Nonlinear Feedback Loop with the Control Law u = k(x) and
an Input Uncertainty ∆

parameters. The dynamic uncertainty arises due to unmod-
eled fast dynamics of the system. The following definitions
are due to [7].

Definition 1. (Gain Margin) The nonlinear system (H, k) is
said to have a gain margin (α, β) if the perturbed closed-
loop system (H, k,∆) is globally asymptotically stable for
any ∆ which is of the form diag{κ1, · · · , κm} with constants
κi ∈ (α, β), i = 1, · · · ,m.

Definition 2. (Sector Margin) The nonlinear system (H, k)
is said to have a sector margin (α, β) if the perturbed closed-
loop system (H, k,∆) is globally asymptotically stable for
any ∆ which is of the form diag{φ1(·), · · · , φm(·)} where
φi(·)’s are locally Lipschitz static nonlinearities which be-
long to the sector (α, β).

Definition 3. (Disc Margin) The nonlinear system (H, k) is
said to have a disc margin D(α) if the perturbed closed-loop
system (H, k,∆) is globally asymptotically stable for any ∆
which is globally asymptotically stable and input feedforward
passive [7], with a radially unbounded storage function.

It follows from the definition of disc margin that a non-
linear system having a disc margin D(α) also has gain and
sector margins (α,∞). A disk margin guards against two
types of input uncertainties: static nonlinearities and dynamic
uncertainties arising from unmodeled fast dynamics of the
system.

IV. PROBLEM FORMULATION AND CONTROL
DESIGN

Consider the single-input single-output minimum-phase
nonlinear system

ζ̇ = f̃(ζ, w) + g̃(ζ, w)φ(u)

e = h̃(ζ, w) (22)

where ζ ∈ Rn is the state, u is the control input, and e
denotes the regulation error. The nonlinear function φ(u)
belongs to a sector [θ1, θ2] and satisfies the inequality

θ1u
2 ≤ uφ(u) ≤ θ2u

2, 0 ≤ θ1 ≤ θ2 (23)

The plant is subjected to a set of exogenous input variables
w that belong to a compact set W ∈ Rw, which include
unknown disturbances to be rejected and references to be
tracked. The functions f̃ , g̃ and h̃ are sufficiently smooth in
ζ on a domain Ξ ⊂ Rn and are continuous in w for w ∈ W .
Our goal is to design a controller to asymptotically regulate
e to zero.
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We now cast the given output regulation problem in the
Lyapunov redesign framework of Section II. As described
there, ζ = π(w) is a zero-error invariant manifold and χ(w)
is the steady-state control that maintains the motion on this
manifold, in the presence of any exogenous input w, which is
generated by the exosystem (2). With the change of variables
x = ζ − π(w), the system (22) can be represented by

ẋ = f(x,w) + g(x,w)[φ(u)− χ(w)] (24)

where f(x,w) = f̃(x + π,w) − f̃(π,w) + [g̃(x + π,w) −
g̃(π,w)]χ(w) and g(x,w) = g̃(x+ π,w).

In what follows, we assume that an optimal stabilizing
state feedback controller ψ(x) is available for the nominal
system

ẋ = f(x,w) + g(x,w)u (25)

such that the origin of the nominal closed-loop system

ẋ = f(x,w) + g(x,w)ψ(x) (26)

is uniformly asymptotically stable. It is shown in [7] that if
ψ(x) is an optimal stabilizing state feedback controller for
the system (25) for a cost functional

J =

∫
0

∞
(l(x) + uTR(x)u)dt (27)

with l(x) ≥ 0 and R(x) > 0 for all x, then it achieves
a sector margin ( 12 ,∞). The optimal stabilizing feedback
control ψ(x) takes the form

ψ(x) = −1

2
R−1(x)(LgV (x))T , R(x) > 0, (28)

where the optimal value function V (x) is radially un-
bounded, and is such that the time-derivative of V along
the solutions of the closed-loop system (26) is

V̇ = LfV (x)− 1

4
LgV (x)R−1(x)(LgV (x))T ≤ 0 (29)

As reviewed in Section III, we use the inverse design
approach [7], in which a stabilizing feedback controller
is designed first and then shown to be optimal for the
cost functional (27). When V (x) (called Control Lyapunov
Function, hereafter) is known, an inverse optimal stabilizing
feedback control ψ(x) for the nominal system (25) can
be given by Sontag’s formula (19), that yields in a sector
stability margin ( 12 ,∞), and, if R(x) = I , it achieves a disk
stability margin D( 12 ).

Assumption 1. There exists a smooth positive-definite, and
radially unbounded function V (x,w) for the system (25) that
satisfies

LgV (x,w) = 0 ⇒ LfV (x,w) < 0, ∀x ̸= 0 (30)

Remark 1. Any Lyapunov function whose time-derivative
can be rendered negative definite is a CLF. The importance
of CLF concept in the framework of inverse optimality is
that, when a CLF is known, an inverse optimal stabilizing
control such as (19) can be designed, and the CLF becomes
an optimal value function.

It follows that, with a known V , the optimal feedback
control ψ(x) can robustly stabilize the system (25) in the
presence of any sector-bounded nonlinearity φ that belongs
to a sector [θ1, θ2]. Our goal is to show that with the optimal
feedback control ψ(x) we can solve the problem of robust
output regulation in the presence of sector nonlinearity φ.
The results of [6] can not be directly applied since the
nature of problem differs in that, the Equation (4) depends
linearly on control, whereas in the current problem the
control depends on a sector-bounded nonlinear function φ.
Furthermore, with Assumption 1, Equations (5)-(6) can be
written as

α1(∥x∥) ≤ V (x,w) ≤ α2(∥x∥) (31)
∂V

∂w
S0w+

∂V

∂x
[f(x,w)+g(x,w)φ(ψ(x))] ≤ −W (x) (32)

∀x ∈ X ⊂ Rn and ∀w ∈ W , where α1 and α2 are some
class K functions, W (x) is a continuous positive definite
function, and X is a given domain that contains the origin.

The system (24) can also be written as

ẋ = f(x,w) + g(x,w)φ(ψ(x)) + g(x,w)φ(u)

− g(x,w)[χ(w) + φ(ψ(x))] (33)

We use Lyapunov redesign to construct the saturated high-
gain feedback controller to deal with the uncertain term
[χ(w) + φ(ψ(x))]. Let Ω = {supw∈WV (x,w) ≤ c1} ⊂ X ,
for some c1 > 0, and δ(x) be a continuous function,
independent of the sector-bounded nonlinearity φ(·), such
that

∥χ(w) + φ(ψ(x))∥ ≤ δ(x), ∀x ∈ Ω, ∀w ∈ W (34)

For simplicity, with H = 1, (∂V/∂x)g(x,w) as given in (9)
can be expressed as

(∂V/∂x)g(x,w) = υ(x), ∀x ∈ Ω, ∀w ∈ W (35)

where υ(x) is a known, locally Lipschitz function, with
υ(0) = 0. We introduce the conditional servocompensator
via the saturated high-gain feedback controller

u = −α(x)sat (s/µ) (36)

where s = υ(x) + K1σ, the continuous function α(x) is
chosen such that

α(x) ≥ δ(x) + α0, α0 > 0 (37)

the saturation function is defined as in (11) and σ is output
of the conditional servocompensator (12).

V. CLOSED-LOOP ANALYSIS
We will now show that, for sufficiently small µ, the set

Φ = Ω ×
{
V0(σ) ≤ µ2c2

}
is a subset of the region of

attraction, and for all initial conditions in Φ, every trajectory
of the closed-loop system

ẇ = S0w

ẋ = f(x,w) + g(x,w)φ(ψ(x))

+ g(x,w)φ (−α(x)sat (s/µ))
− g(x,w)[χ(w) + φ(ψ(x))] (38)

σ̇ = (S − JK1)σ + µJsat (s/µ)
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asymptotically approaches an invariant manifold on which
the error is zero. The forthcoming analysis follows the outline
of the analysis in [6], with various technical differences due
to the nature of the problem under consideration. We start by
showing that the set Φ is positively invariant and there is a
class K function ρ such that every trajectory in Φ enters the
set Φµ = {∥x∥ ≤ ρ(µ)} ×

{
V0(σ) ≤ µ2c2

}
in finite time

and stays thereafter. The derivative of V (x,w) along the
trajectories of the closed-loop system (38) satisfies

V̇ =
∂V

∂w
S0w +

∂V

∂x
[f(x,w) + g(x,w)φ(ψ(x))]

+
∂V

∂x
g(x,w)φ (−α(x)sat (s/µ))

− ∂V

∂x
g(x,w)[χ(w) + φ(ψ(x))]

=
∂V

∂w
S0w +

∂V

∂x
[f(x,w) + g(x,w)φ(ψ(x))]

+ υ(x)φ (−α(x)sat (s/µ))
− υ(x)[χ(w) + φ(ψ(x))]

≤ −W (x) + [s−K1σ]φ (−α(x)sat (s/µ))
− [s−K1σ][χ(w) + φ(ψ(x))]

= −W (x) + sφ (−α(x)sat (s/µ))
− (K1σ)φ (−α(x)sat (s/µ))
− s[χ(w) + φ(ψ(x))] + (K1σ)[χ(w) + φ(ψ(x))]

Inside Φ, ∥σ∥ ≤ µ
√
c2/λmin(P0). Using this along with

(23), (37) and (11), it can be shown that when |s| ≥ µ, we
have 2

V̇ ≤ −W (x)− θ1α(x) |s|+ θ1α(x) ∥K1∥ ∥σ∥
+ δ(x) |s|+ δ(x) ∥K1∥ ∥σ∥

V̇ ≤ −W (x)− [θ1α(x)− δ(x)] |s|+ [θ1α(x)

+ δ(x)] ∥K1∥ ∥σ∥
≤ −W (x) + µγ1 (39)

where γ1 = maxx∈Ω k0[θ1α(x) + δ(x)], in which the
constant k0 = ∥K1∥

√
c2/λmin(P0).

Similarly, when |s| ≤ µ, we have

V̇ ≤ −W (x)− θ1α(x)
s2

µ
+ θ1α(x) ∥K1∥ ∥σ∥

s

µ
+ δ(x) |s|+ δ(x) ∥K1∥ ∥σ∥

≤ −W (x) + µγ2 (40)

2When |s| ≥ µ, from (23) and (11), we have:

θ1u
2 ≤ uφ(u)

θ1

(
−α(x)

s

|s|

)2

≤ −α(x)sat (s/µ)φ (−α(x)sat (s/µ))

−α(x)θ1
s2

|s|
≥ sφ (−α(x)sat (s/µ))

⇒ −α(x)θ1 |s| ≥ sφ (−α(x)sat (s/µ))

Similarly, when |s| ≤ µ, we have:

−α(x)θ1(s
2/µ) ≥ sφ (−α(x)sat (s/µ))

where γ2 = maxx∈Ω k0 [θ1α(x) + δ(x)(1 + 1/k0)] ≥ γ1.
From (39) and (40),

V̇ ≤ −W (x) + µγ2, ∀(x, σ) ∈ Φ

Hence, from [5, Theorem 4.18], for sufficiently small µ, Φ
is positively invariant and all trajectories starting in Φ enter
the positively invariant Φµ in finite time and stay thereafter.

In the next step, we use Vs = 1
2s

2, and Assumption 2,
below, to show that the trajectories reach the boundary layer
{|s| ≤ µ} in finite time.

Assumption 2. (∂υ/∂x)g(x,w) can be expressed as

(∂υ/∂x)g(x,w) = β(x), kp ≤ |β(x)| ≤ kq, kq > kp > 0

for all x ∈ {∥x∥ ≤ ρ(µ)} and for all w ∈ W . Furthermore,
α(0) ≥

(
kq

θ1kp

)
δ(0) + α0, α0 > 0.

For (x, σ) ∈ Φµ

sṡ = s
∂υ

∂x
[f(x,w) + g(x,w)φ(ψ(x))]

+ sβ(x)φ (−α(x)sat (s/µ))
− sβ(x)[χ(w) + φ(ψ(x))] + sK1(S − JK1)σ

+ µsK1Jsat (s/µ)

When |s| ≥ µ, we have

sṡ ≤ −kpθ1α(x) |s|+ kq ∥[χ(w) + φ(ψ(x))]∥ |s|

+

∥∥∥∥∂υ∂x [f(x,w) + g(x,w)φ(ψ(x))]

∥∥∥∥ |s|
+ ∥σ∥ ∥K1∥ ∥(S − JK1)∥
+ µ ∥K1∥ ∥J∥ |s|

Inside Φµ, ∥σ∥ ≤ µ
√
c2/λmin(P0). Also, the func-

tion ∂υ
∂x [f(x,w) + g(x,w)φ(ψ(x))] is continuous such that

∂υ
∂x [f(0, w) + g(0, w)φ(ψ(x)(0, w))] = 0. Therefore, the
norm

∥∥∂υ
∂x [f(x,w) + g(x,w)φ(ψ(x))]

∥∥ together with the
norms ∥σ∥ ∥K1∥ ∥(SJK1)∥, µ ∥K1∥ ∥J∥, ∥α(x)− α(0)∥,
and ∥δ(x)− δ(0)∥ can be bounded by a class K function
ρ1(µ). Hence,

sṡ ≤ −θ1kpα(0) |s|+ kqδ(0) |s|+ ρ1(µ) |s|

⇒ V̇s ≤ −kp
[
θ1α0 −

ρ1(µ)

kp

]
|s| (41)

Thus, for sufficiently small µ, all trajectories inside Φµ would
reach the boundary layer {|s |≤ µ} in finite time. Inside the
boundary layer, the closed-loop system (38) is given by

ẇ = S0w

ẋ = f(x,w) + g(x,w)φ(ψ(x))

+ g(x,w)φ (−α(x)s/µ)
− g(x,w)[χ(w) + φ(ψ(x))] (42)

σ̇ = Sσ + Jυ(x)

By following the analysis in [6], it can be shown that inside
the boundary layer, the trajectories of the closed-loop system
(42) will asymptotically approach an invariant manifold on
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which the regulation error is zero. These conclusions are
formally summarized in the following theorem.

Theorem 1. Under stated assumptions, consider the closed-
loop system (38). Suppose w(0) ∈ W . Then, there exists
µ∗ > 0 such that ∀µ ∈ (0, µ∗], the set Ψ = Ω ×{
V0(σ) ≤ µ2c2

}
is a subset of the region of attraction, and

for all initial conditions in Ψ, the state variables are bounded
and limt→∞ e(t) = 0.

VI. ILLUSTRATIVE EXAMPLE

Consider the nonlinear system

ζ̇1 = ζ2

ζ̇2 = 2ζ1ζ2 + u+ d(t) (43)
y = ζ1

It is desired to achieve optimal regulation of the system’s
output y to a constant reference signal r0 in the presence of
a disturbance signal, d(t) = d0sin(ωt). Both these signals
are generated by the exosystem

ẇ=

 0 ω 0
−ω 0 0
0 0 0

w,w(0) =
 d0

0
r0

 , [ d(t)
r0

]
=

[
w1

w3

]
With change of variables x1 = ζ1 − w3, x2 = ζ2, we have

ẋ1 = x2

ẋ2 = 2(x1 + w3)x2 + u+ w1 (44)
e = x1

To achieve a sector margin for the nominal system, we
use a CLF to design an optimal stabilizing control [7]. With

A =

(
0 1
0 0

)
, B =

(
0
1

)
, P =

(
1 c
c 1

)
,

the Ricatti inequality ATP +PA−PBBTP < 0 is satisfied
for any c ∈ (0, 1). Then, V = xTPx is a CLF for the
nominal nonlinear system. Assumption 1 is satisfied with this
CLF which is also an optimal value function. Furthermore,
using Sontag’s Formula (19), we get the optimal stabilizing
control law for the nominal system as

ψ(x) = −2x1x2

−
α1x1 +

√
(2x1x2α2 + x2α1)2 + α2

4

α2
(45)

in which α1 = x1 + cx2, and α2 = cx1 + x2. This optimal
stabilizing control law has two desirable properties, namely,
it has a sector margin ( 12 ,∞), and it can achieve a disk
margin ( 12 ) for the nominal system. The system (44) can
also be written as

ẋ = Ax+B[f(x,w) + g(x,w)(u− χ(w))]

e = Cx (46)

where

A =

(
0 1
0 0

)
, B =

(
0
1

)
, C =

(
1 0

)
,

f(x,w) = 2(x1 + w3)x2 + w1 + g(x,w)χ(w)

and χ(w) = −
(

w1+2w3

g(w)

)
. With this formulation, the prob-

lem fits into the Lyapunov redesign framework as given by
(33) with an optimal stabilizing controller (45), and by using
the control u of the form (36), it can be shown that the system
yields zero steady-state regulation error in the presence of
disturbance signal generated by the exosystem.

VII. CONCLUSIONS

This paper incorporates an optimal stabilizing controller
in the Lyapunov redesign framework of [6], and investi-
gates the asymptotic robustness properties of the overall
feedback design, given that the optimal stabilizing controller
itself possesses strong robustness properties by design. The
motivation comes from the flexibility of incorporating any
stabilizing controller within the framework as proposed in
[6], and we seek for control design methods that yield sta-
bilizing controllers with some additional desirable properties
like optimality, disturbance rejection and robustness in the
presence of matched uncertainties e.g. static nonlinearities,
uncertain parameters and the unmodeled fast dynamics. The
synthesis of such controller requires the solution of the
complicated Hamilton-Jacobi-Bellman (HJB) partial differ-
ential equations. Here, we exploit the inverse optimal control
design methods presented in [7] for nonlinear systems, where
it is shown that in addition to achieving the asymptotic
stability of the system and minimizing a cost functional, the
optimal feedback control law which is designed based on the
existence of a Control Lyapunov Function (CLF), guarantees
stability margins which characterize the system’s robustness
properties. A simple illustrative example is also presented to
delineate the overall design process.
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