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Abstract—In this paper feasibility of modelling approach based
on a bilinear system approximation is demonstrated on one of the
most frequently met processes in chemical engineering, namely
a continuous stirred tank reactor. Selected examples of such
systems from the literature are considered and modelled with
a use of dynamic bilinear systems. Advantages of this approach
are presented and discussed.

I. I NTRODUCTION

Chemical reactor is often described as ‘the most important
unit operation in a chemical process’, see [1]. The task of
its modelling and control is commonly encountered in the
literature representing a practical nonlinear industrial problem,
see [2], [3], [4]. A popular model of a chemical reactor is
the so-called continuous stirred tank reactor (CSTR). CSTR
consists of a closed tank to which an input stream is fed
in and the output stream fed out in a continuous manner,
whilst a content is constantly stirred. Modelling of CSTRs
is challenging mainly due to i) possibility of occurrences of
rapid reactions (the so-called ignition-extinction phenomena),
hence fast changing process gain and dynamics, and also due
to ii) nonlinear steady-state behaviour, see [1] and [5].

This paper demonstrates that the CSTRs can be modelled
by employing an approach based on bilinear system (BS)
description. In order to increase modelling flexibility of BSs,
an extension consisting of a static nonlinearity that transforms
the input signal is proposed. Such a structure, referred to as a
Hammerstein-bilinear system (HBS), see [6], [7], is considered
and compared to BS and Hammerstein system (HS) models.

The use of BS based approach is motivated twofold. First,
BSs retain a close structural relationship with linear models,
hence standard well understood notions from classical linear
system theory such as system time constants, damping/natural
frequency and steady-state gain are to large extent retained.
This follows from the property that BS structure can be
interpreted as a linear time-varying system, which also greatly
facilitates the control design. Second, BSs preserve linearity
w.r.t. the parametrisation, which aids in their identification
by allowing for standard parameter estimation methods to be
used.

In this paper three different CSTR models are considered.
Two of the models are isothermal, whilst the third model is
an example of a diabatic CSTR, see [1].

II. M ODEL STRUCTURES

HBS structure belongs to a sub-class of so-called output
affine models, i.e. models that retain affinity w.r.t. the output
signals, see [8]. It comprises of a cascade connection of a
static (memoryless) nonlinearity followed by a dynamic time-
invariant affine BS and is given by

yk =

na
∑

j=1

ajyk−j+

nb
∑

i=1

bivk−i+

na
∑

j=1

nb
∑

i=1

ηijvk−iyk−j+c (1)

vk = f(uk) (2)

whereaj , bi, ηij andc are model parameters. The bilinearity
is defined as a product between system outputyk and the in-
termediate input variablevk, andf(·) denotes a general scalar
static nonlinear function. Note that not all bilinear coefficients
must necessarily be present in (1), hence a particular structure
can be obtained by setting selectedηij to zero.

The HBS can be interpreted as a generalisation of both of its
constituent subsystems, i.e. HS and BS models. In particular,
a BS is obtained from (1)-(2) by settinguk = vk, i.e. by
selectingf(x) = x, which gives

yk =

na
∑

j=1

ajyk−j +

nb
∑

i=1

biuk−i +

na
∑

j=1

nb
∑

i=1

ηijuk−iyk−j + c

(3)

Similarly, a HS is obtained by settingηij = 0 ∀ i, j in (1)-(2),
which leads to

yk =

na
∑

j=1

ajyk−j +

nb
∑

i=1

bivk−i + c (4)

vk = f(uk) (5)

Also, a linear (or more precisely an affine) structure is obtained
by imposing both restrictions simultaneously, i.e.ηij = 0 ∀i, j
anduk = vk.

In this paper, for simplicity, it is assumed that the input
static nonlinearity is modelled as a polynomial of ordernα,
i.e.

f(x) =

nα
∑

l=1

αlx
l (6)
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Consequently, a particular HBS structure is given by a quadru-
plet that defines the number ofa, b, η and α coefficients,
i.e. HBS(na,nb,nη,nα). Moreover, the sum of all coefficients
plus unity (to account for an offset), corresponds to the total
number of degrees of freedom (DoF) in a given structure. An
analogous notation is used w.r.t. other structures that can be
derived from the HBS model.

III. PARAMETER ESTIMATION

The HBS structure is bilinear in terms of parametrisation,
due to the products betweenα anda, and also betweenα and
η coefficients. A well known approach to solve such problems
is to use the so-called bilinear parametrisation method (BPM),
see [9]. The BPM solves the estimation problem in a two step
manner, where in the first stepα parameters are fixed anda, b,
η parameters are calculated, whilst in the second stepa, b and
η remain fixed andα parameters are computed [10]. Because
the two subproblems separately are linear w.r.t. the unknowns,
the ordinary least squares algorithm [9] can be applied, which
renders the overall procedure numerically efficient, and this is
the approach used here. An analogous technique can also be
applied to HS models, see [11], whilst the parameters of affine
and BS structures can be estimated by using a single ordinary
least squares technique.

IV. SIMULATION STUDIES

A. Performance criteria and experimental setup

In order to quantify the accuracy of models obtained,
two performance criteria are used. Namely, the coefficient of
determination and the (normalised) integral of absolute error,
defined, respectively, as follows

R2

T = 100

(

1−
‖y − ŷ‖2

2

‖y − ȳ‖2
2

)

(7)

IAE =
1

N

N
∑

k=1

|yk − ŷk| (8)

where y and ŷ denote vectors composed of the measured
(noisy) system outputs and outputs generated by the estimated
model, respectively, and̄y is the mean value ofy. The notation
‖ · ‖2 denotes the Euclidean norm.

Because the main interest of experiments lies in the mod-
elling capabilities of the model structures considered, rel-
atively long input-output data consisting ofN = 20, 000
samples are used. Three data sets are considered, i.e. iden-
tification and two validation data sets. The sampling time is
chosen as0.1s. In the case of the identification data set and
the first validation data set, the input signal is generated as
a series of uniformly distributed steps between the minimal
and maximal range for a given system. The probability of
transition to a different level is selected randomly with a
uniform switching probability of10%, providing a reasonable
compromise between the content of transient and steady-state
data. Additionally, to ensure that the input is sufficiently
exciting, a normally distributed, white and zero-mean noise
sequence of comparatively small variance is added. To render

the identification experiment more realistic, the measured out-
put is assumed to be contaminated with an additive, normally
distributed, white and zero-mean disturbances such that the
resulting signal-to-noise ratio is approximately37dB. The
second validation data set comprises of a monotonic staircase
input, which allows the performance of the identified models
to be evaluated with the emphasis placed on the steady-state
behaviour. Also, to provide an indication of the complexity of
the models, the corresponding DoF are considered.

B. Isothermal CSTR with a first-order irreversible reaction

1) System description:The first isothermal CSTR model
considered, referred to as the CSTR1, is given by the following
equations, see [1] for details, i.e.

dCA(t)

dt
=

F (t)

V
CAf −

(

F (t)

V
+ k

)

CA(t) (9)

dCB(t)

dt
= −

F (t)

V
CB(t) + kCA(t) (10)

and describes a first-order irreversible reactionA
k
−→ B where

k is the reaction rate per unit volume. The remaining variables
are: CA(t), CB(t) - concentrations of substancesA and B
inside the tank of a constant volumeV , respectively,F (t)
- inflow/outflow mass rate,CAf - inflow concentration of
substanceA. Only the substanceA is present in the inflow
stream, and inflow and outflow mass rates are equal. The actual
units are unimportant and hence are not included. It is assumed
that the manipulated variable isF (t) and thatCB(t) is the
output of interest. The task consists of identifying a model
betweenF (t) andCB(t).

The values of the parameters were chosen asV = 1, k =
0.2, CAf = 1 and the initial states of the process asCa0 =
Cb0 = 0.5, where the subscript zero denotes the initial value.
The inputF (t) is in range of(0, 1].

It is observed that a product, i.e. bilinearity, between the
input F (t) and the stateCA(t) occurs in (9) and that an
analogous product between the inputF (t) and the stateCB(t)
is also present in (10). The steady-state characteristic of the
CSTR1 model is plotted in Figure 1, where it is observed
that the curve resembles the type of steady-state characteristics
typical of BSs. Therefore, these observations substantiate the
usage of a bilinear based modelling approach.

2) Identification results:Selected identification results are
given in Table I. First, it is observed that the model is consider-
ably nonlinear because the third order affine structure resulted
in R2

T below 90% for all three data sets. Further increase of
the order of the affine structure does not lead to any significant
improvements in modelling performance. HS models show
clear improvement, allowing for R2T of approximately 98%
in the case of the HS(1,1,4) to be achieved for all three data
sets. Further increase of the order of the input polynomial does
not lead to significant improvements in model fitting. This is
due to the fact that the nonlinear steady-state characteristic is
not a complex function, and it is rather the changing system
dynamics that is not captured by the HS type structures. When
considering the results obtained from BS models, an evident
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Fig. 1. CSTR1 - A steady-state characteristic.

structure Id. data set Val. data set 1 Val. data set 2

DoF R2

T IAE R2

T IAE R2

T IAE
×10−3 ×10−3 ×10−3

affine(3,3) 7 80.40 54.49 80.08 55.27 88.11 74.10

HS(1,1,2) 5 96.70 24.04 96.10 25.13 94.78 31.00

HS(1,1,3) 6 97.81 15.51 97.83 17.16 96.92 19.39

HS(1,1,4) 7 98.10 13.75 98.10 15.68 97.49 17.57

BS(1,1,1) 4 99.97 2.265 99.97 2.276 99.97 2.716

BS(2,1,1) 5 99.98 1.845 99.98 1.851 99.99 1.983

HBS(1,1,1,2) 6 99.97 2.275 99.97 2.304 99.97 2.748

HBS(1,1,1,3) 7 99.99 1.421 99.97 2.260 99.99 1.751

TABLE I
CSTR1 - QUANTIFIED IDENTIFICATION AND VALIDATION RESULTS FOR

MODEL STRUCTURES CONSIDERED.

improvement in the approximation performance is noted, i.e.
the R2T of almost 100% is obtained with the IAE criterion
decreasing by approximately 7 times, when compared to the
best HS model. This means that both, the nonlinear steady-
state characteristic and the changing system dynamics are
approximated well by the BS structures with only 4 or 5
DoF. Because the only source of nonlinearity in the underlying
process equations arises from product terms, cf. (9)-(10), this
result could have been anticipated.

Representative graphical results of the identification are
given in Figures 2 and 3, showing the performances of the
selected estimated models on arbitrarily chosen intervals of
the validation data sets 1 and 2, respectively. It is observed
that in the case of both figures the actual system output is vir-
tually undistinguishable from that generated by the identified
BS(2,1,1) structure. Consequently, it is concluded that a BS
structures are appropriate for modelling the CSTR1 process.
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Fig. 2. CSTR1 - Selected representative results of identification on validation
data set 1 in the interval[300, 800]s.
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Fig. 3. CSTR1 - Selected results of identification on validation data set 2.

C. Isothermal CSTR with the Van de Vusse reaction

1) System description:The second isothermal CSTR model
considered, see [1], referred to as the CSTR2, is given by

dCA(t)

dt
=

F (t)

V

(

CAf−CA(t)
)

−k1CA(t)−k3C
2

A(t) (11)

dCB(t)

dt
= −

F (t)

V
CB(t) + k1CA(t) + k2CB(t) (12)

dCC(t)

dt
= −

F (t)

V
CC(t) + k2CB(t) (13)

dCD(t)

dt
= −

F (t)

V
CD(t) +

1

2
k3C

2

A(t) (14)

with the behaviour governed by the so-called Van de Vusse
reaction kinetics. The reactions

A
k1−→ B

k2−→ C (15)

2A
k3−→ D (16)
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Fig. 4. CSTR2 - A steady-state characteristic.

structure Id. data set Val. data set 1 Val. data set 2

DoF R2

T IAE R2

T IAE R2

T IAE
×10−3 ×10−3 ×10−3

affine(3,3) 7 10.92 44.68 7.724 46.06 5.539 54.19

HS(1,1,4) 7 84.07 15.67 84.03 16.86 89.50 25.10

HS(1,1,5) 8 91.48 10.70 91.16 12.38 94.40 16.13

HS(1,1,6) 9 94.99 8.552 94.56 8.803 97.32 11.28

HS(1,1,7) 10 96.43 6.591 96.09 6.800 98.61 8.118

HBS(1,1,1,3) 7 92.96 10.72 92.78 11.43 98.23 11.31

HBS(1,1,1,4) 8 98.11 4.335 98.11 4.726 99.86 3.000

HBS(1,1,1,5) 9 98.34 3.257 98.33 3.551 99.60 3.747

TABLE II
CSTR2 - QUANTIFIED IDENTIFICATION AND VALIDATION RESULTS FOR

MODEL STRUCTURES CONSIDERED.

are irreversible and described by the reaction rate constants
k1, k2 and k3. The remaining variables are:CA(t), CB(t),
CC(t), CD(t) - concentrations of substancesA, B, C and
D inside the tank of constant volumeV , respectively,F (t)
- inflow/outflow mass rate,CAf - inflow concentration of
substanceA. Only the substanceA is present in the inflow
stream, and inflow and outflow mass rates are equal. It is
assumed that the manipulated variable isF (t), whilst CB(t)
is the output of interest. Therefore, the modelling task consists
of identifying a model betweenF (t) andCB(t).

The values of the parameters were chosen as:V = 1, k1 =
5/6, k2 = 3, k3 = 10/6, CAf = 10 and the initial states of
the process areCa0 = Cb0 = 0. The inputF (t) is postulated
to vary between(0, 9].

It is observed that a bilinearity between the inputF (t)
and the stateCA(t) is present in (11) and an analogous
bilinearity between the inputF (t) and the stateCB(t) appears
in (12). However, in contrast to (9) corresponding to the
CSTR1 model, here the product term is not the only source
of nonlinearity in the evolution ofCA(t). This is due to the
presence of the expressionC2

A(t) in (11), whose influence is
controlled by the rate constantk3.

Consequently, it is concluded that although the underlying
system equations indicate that a bilinear type behaviour is
present, it may be infeasible to model the process by a BS
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Fig. 5. CSTR2 - Selected representative results of identification on validation
data set 1 in the interval[100, 500]s.
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Fig. 6. CSTR2 - Selected results of identification on validation data set 2.

only over the entire range of its operation. This hypothesis is
confirmed by considering the steady-state characteristic of the
CSTR2 process given in Figure 4, where it is observed that the
system exhibits the input multiplicity (IM) property [3]. Such
static behaviour cannot be captured by a BS, due to its inherent
structural limitations. This stands in contrast to HS and HBS
that are structurally capable of IM, hence are anticipated to be
more appropriate for modelling of the CSTR2 process.

2) Identification results:The identification results are given
in Table II, where a low value of R2T for all three data sets in
the case of the affine model indicates that the overall process
is considerably nonlinear. Further increase of the order of the
affine structure does not result in noticeable improvements
in fitting. The performance criteria of BS structures are not
included in the table because it was not possible to fit such
models, i.e. the corresponding R2

T values were negative. This
result confirms the inappropriateness of using BS structures
for approximating processes exhibiting IM. A considerable

476



improvement is achieved in the case of HS structures, when
compared to the affine model, with R2T of about 97% on aver-
age for all three data sets obtained by HS(1,1,7) with 10 DoF.
The results obtained by the HBS(1,1,4) and HBS(1,1,5), with
8 and 9 DoF, respectively, show further fitting improvements
with both models achieving R2T of approximately 98% for the
identification data set and the validation data set 1, and almost
100% for the validation data set 2. Compared to the HS(1,1,7)
the IAE was reduced by approximately threefold in the case
of the first two data sets, and fourfold in the case of the third
data set.

Representative graphical results obtained from the identifi-
cation procedure are presented in Figures 5 and 6, showing the
performances of the selected estimated models on arbitrarily
chosen intervals of the validation data set 1 and 2, respectively.
Whilst in the case of Figure 5 slight discrepancies between the
actual output and that generated by the estimated HBS(1,1,1,4)
model are observed, the two corresponding curves are virtually
indistinguishable in the case of Figure 6. Also, it is noted that
the system exhibits a non-minimum phase behaviour when
F (t) is high and changes to a lower value. This behaviour,
which is observed to be manifested by spikes in theCB(t)
signal, increases the difficulty of obtaining an acceptable
approximation. Consequently, despite such a challenging task,
the modelling results obtained by the HBS(1,1,1,4) structure
can be treated as very satisfactory in overall.

D. Diabatic CSTR

1) System description:The considered diabatic CSTR
model, see [1] and [5], referred to as the CSTR3, is given
by

dCA(t)

dt
=

F (t)

V

(

CAf − CA(t)
)

− k0r(t)CA(t) (17)

dT (t)

dt
=

F (t)

V

(

Tf − T (t)
)

+
−∆H

ρcp
k0r(t)

−
US

V ρcp

(

T (t)− Tj(t)
)

(18)

where the first order reaction rate per unit volume is given by
the so-called Arrhenious expression, i.e.

r(t) = exp

(

∆E

RT (t)

)

(19)

The other variables are:CA(t) - concentration of substanceA
inside a tank of the constant volumeV , F (t) - inflow/outflow
mass rate,CAf - inflow concentration of substanceA, k0 -
pre-exponential factor,R - ideal gas constant,∆E - activation
energy,T (t) - reactor temperature,Tf - inflow (feed) temper-
ature, Tj(t) - jacket temperature,U - overall heat transfer
coefficient,−∆H - heat of reaction,ρ - density,S - area
for heat exchange,cp - heat capacity. Only the substanceA
is present in the inflow stream, and inflow and outflow mass
rates are equal. It is assumed that the manipulated variable is
Tj(t), whilst CA(t) is the output of interest. Therefore, the
modelling task consists of identifying a model betweenTj(t)
andCA(t).
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Fig. 7. CSTR3 - A steady-state characteristic.

structure Id. data set Val. data set 1 Val. data set 2

DoF R2

T IAE R2

T IAE R2

T IAE
×10−3 ×10−3 ×10−3

affine(3,3) 7 88.86 99.53 88.84 99.38 90.73 96.42
HS(1,1,3) 6 96.92 49.26 96.88 49.52 96.65 54.41
HS(1,1,5) 8 97.31 45.51 97.30 45.63 97.20 49.03
HS(1,1,7) 10 97.89 39.41 97.86 39.74 98.00 40.15
HS(2,2,3) 8 97.19 45.61 97.15 45.88 98.46 40.48
HS(2,2,5) 10 97.61 41.52 97.57 41.80 98.79 36.90
HS(2,2,7) 12 98.16 35.46 98.12 35.77 99.16 31.27
BS(1,1,1) 4 98.98 27.52 98.96 27.09 99.20 23.82
BS(2,1,1) 5 98.90 28.35 98.88 28.75 99.14 25.08
BS(2,2,2) 7 99.16 23.35 99.13 23.90 99.58 16.72
HBS(1,1,1,3) 7 99.13 25.63 99.11 26.00 99.15 24.77
HBS(1,1,1,5) 9 99.19 24.61 99.18 24.98 99.21 23.58
HBS(1,1,1,7) 11 99.28 22.50 99.27 22.97 99.36 20.16
HBS(2,2,2,3) 10 99.39 20.96 99.37 21.40 99.52 18.68
HBS(2,2,2,5) 12 99.46 19.53 99.44 20.05 99.58 16.96
HBS(2,2,2,7) 14 99.56 17.25 99.54 17.84 99.70 13.52

TABLE III
CSTR3 - QUANTIFIED IDENTIFICATION AND VALIDATION RESULTS FOR

MODEL STRUCTURES CONSIDERED.

Considering equations (17) and (18), it is noted that in each
case bilinearities are present, i.e. products betweenF (t) and
the stateCA(t) in the first equation and betweenF (t) and
the stateT (t) in the second equation. These, however, are
clearly not the only contributions that render nonlinearity of
the overall behaviour. This is due to the presence of nonlinear
relationships involving an exponent ofT (t) that appear in both
equations.

A steady-state characteristic of the CSTR3 model, given in
Figure 7, shows the presence of the output multiplicity (OM)
property [3]. Because non of the model structures investigated
in this paper is structurally capable of OM, see [8], only a
restricted range of the process operation is considered, i.e.
the range ofTj ∈ [273, 306) within which OM is absent.
Consequently, because the operating range is limited, it might
be possible that a bilinear type behaviour will, in fact, be
prevailing.

The values of the parameters were chosen as:F (t) = 1,
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Fig. 8. CSTR3 - Selected representative results of identification on validation
data set 1 in the interval[600, 1100]s.

V = 1, k0 = 9703 × 3600, −∆H = 5960, ρcp = 500,
US = 150, ∆E = 11843, R = 1.987 and the initial states of
the process areCA0 = 8.5 andT0 = 305.

2) Identification results:The identification results obtained
are collected in Table III, from where it is observed that the
affine model achieved reasonable results close to 90% in terms
of R2

T in the case of all three data sets. Further increase of the
order of the affine structure does not provide any considerable
improvements. First order HS structures yielded results that
are better by approximately 8% on average in terms of the
R2

T criterion and approximately twice on average in terms
of the IAE criterion. This indicates a clear improvement and
justifies the need for a nonlinear model structure. The best
fitting among HS structures is obtained for a second order HS
structure, i.e. HS(2,2,7) with a seventh order polynomial and
12 DoF in total. It is interesting to notice that these values are
close to those produced by a relatively simple BS structure,
i.e. BS(1,1,1), with only 4 DoF. A boundary of 99% in terms
of the R2T criterion is exceed by a second order BS model with
7 DoF. The fitting is improved, if at all, only slightly by first
order HBS structures, and it is the second order HBS model,
i.e. HBS(2,2,2,7), in the case of which the results improve
more significantly. However, this comes at the cost of 14 DoF,
when compared to only 7 DoF in the case of BS(2,2,2).

Representative graphical results generated from the esti-
mated models are depicted in Figures 8 and 9, and demonstrate
the performances of the selected models on arbitrarily chosen
intervals of the validation data set 1 and 2, respectively. It is
observed that the outputs of the estimated models BS(2,2,2)
and HBS(2,2,2,7) are both virtually undistinguishable from the
actual system output in both figures. Consequently, by taking
into account the corresponding DoF and a pragmatic point of
view, it is the second order BS that appears to be a preferable
choice in this case.
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Fig. 9. CSTR3 - Selected results of identification on validation data set 2.

V. CONCLUSIONS

The paper has demonstrated feasibility of BS based mod-
elling approach for approximating CSTRs. It has been shown
that BS models are capable of capturing both, i.e. the dy-
namic and static behaviour of the exemplary CSTR systems
considered. In the case of the CSTR process exhibiting the IM
property, a BS structure with an additional nonlinear memory-
less element transforming the input, i.e. a HBS structure, has
shown to be an appropriate choice.
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