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Abstract— This paper is concerned with Fault Detection and
Isolation (FDI) and more specifically it focuses on a parameter-
free residual generation method. The residual signals are
obtained by projecting the measured signals onto the kernel
of an extended input matrix, which depends on the structure
of the system model. The method was not easily applicable in
real-world applications due to a high computational complexity.
In that paper, fault indicators are constructed differently,
using kernels properties, to avoid this complexity problem.
A simulated electromechanical actuator example is taken to
illustrate the applicability of the method.

Index Terms— Fault detection and isolation, data driven
methods, bilinear systems, electromechanical actuator.

I. INTRODUCTION

Real plants are subject to faults, that can affect the process
parameters, actuators or sensors. Online fault detection and
isolation (FDI) is an important task for human safety and
system dependability. Many approaches have been reported
in the literature to achieve this task. Two kinds of FDI
methods are distinguished [16]. Model-based and model-
free methods. Model-based methods consist in comparing the
actual system behavior with the one given by an analytical
model, i.e. a set of nonlinear differential equations. A signal
called residual is used to evaluate this comparison. In the
absence of fault and noise, if the process and the model are
exactly matched, the residual is zero, otherwise it is different
from zero which characterizes fault occurrence. The main
common methods for model-based residual generation are:

• observer-based methods [5], [6] and [7]
• analytical redundancy relation (ARR) -based methods

[1]
• parameters estimation methods [4], [8]

Unfortunately, the values of the model parameters are un-
known in most practical applications. For such case, model-
free FDI methods [2], [13] have been proposed. Some of
these methods use signal processing techniques to extract
special properties of measured signals, these methods are
called signal-based methods (see [16] and [17]). Other data
driven methods have been proposed recently for switching
systems in [10] and [11], for bilinear systems in [11].
The residual generation method that is proposed in that paper
is situated between model-based and model-free methods,
since the only information we need is the knowledge of

Assia HAKEM, Komi Midzodzi PEKPE and Vincent COCQUEMPOT,
LAGIS UMR CNRS 8219, LILLE 1 University Villeneuve d’Ascq 59655,
France,
assia.hakem@ed.univ-lille1.fr,
midzodzi.pekpe@univ-lille1.fr,
vincent.cocquempot@univ-lille1.fr

the input-output data and of the structure. The values of the
model parameters are not needed.
The advantages of the proposed method are as follows:

• The only needed data are inputs and outputs.
• The generated residuals are structured which allows

faults isolation.
• Multiple faults may be considered.

The bilinear system is a particular structure of nonlinear
systems, this special class of systems has been widely studied
in recent years [3]. Many real-world dynamical systems may
be represented by a bilinear model and such model can ap-
proximate a large class of nonlinear systems. Consequently,
bilinear models study is interesting from both theoretical and
practical points of view.
The data-projection method for residual generation was ex-
tended for bilinear structure models in a previous publication
by the authors [15].
The target of this paper is to enhance the parameter-free
residual generation method proposed in [15]. The general
principle of the method is kept. However, using kernel
properties, fault indicators are computed differently, to avoid
the computational complexity of method in [15].
The remainder of this paper is organized as follows. A
general description of our residual generation method for
bilinear models is provided in section 3.The input/output
relation is derived in section 3 while the residual expression
is derived in section 4. In section 5, simulation results
on an electromechanical actuator are presented to show
the effectiveness of our method. The final section gives a
conclusion.

II. OVERVIEW OF THE PARAMETER-FREE RESIDUAL
GENERATION METHOD

Consider known inputs uk ∈ Rm and outputs yk ∈ R`

affected by colored white noise wk ∈ R`. These input/output
signals are supposed to be collected on a physical plant that
can be modeled as a discrete-time bilinear system given by:{

xk+1 = Axk +G(xk ⊗ uk) +Buk
yk = Cxk +Duk + fk + wk

(1)

where ⊗ represents the Kronecker product, and fk ∈ R` is
the sensor fault vector. It is supposed that the linear dynamic
is stable i.e. ‖A‖i2 → 0.
The aim is to detect and to isolate sensor faults when
supposing that the only available information is the sys-
tem structure (bilinear) and input/output data. The system
parameters(A ∈ Rn×n, B ∈ Rn×m, C ∈ R`×n, D ∈ R`×m,
G ∈ Rn×nm) are supposed to be unknown.
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The data-based residual generation method for bilinear
systems is detailed in the next section. Let us give the general
principle of this method. Under the stability conditions, it
is possible to express the vector of measured outputs on a
given time-window as a function of the inputs. The following
expression is thus obtained.

Y ∼= HM(u, y ⊗ u) (2)
where H depends on the system parameters, Y is a matrix
of outputs collected on a given time-window, M(u, y⊗u) is
a matrix constructed using inputs and the Kronecker product
between inputs and outputs. If the chosen time-window is
sufficiently large, we can then project equation (2) on the
right kernel Π of M(u, y ⊗ u) (UM(u, y ⊗ u)Π = 0) and
we can derive the relation:

YΠ = 0 (3)

This relation must be verified in absence of disturbances
and faults. Consider Yonline and Πonline, the Y and Π
matrices which are computed using online taken values of
inputs and outputs signals. In the no fault situation, the
signal ε = YonlineΠonline, is not exactly null because of the
measurement noise. However, it can be proved that r = E[ε]
equals 0, with E[.] the mathematical expectation. When a
fault occurs, r = E[YonlineΠonline] becomes different from
zero. Thus, r can be considered as a fault indicator (residual)
to be used for FDI.

It is clear that no system parameter or state estimation is
needed for residual computation since Π depends only on
inputs, which makes residual expression (3) independent on
model parameters.

III. INPUT-OUTPUT EXPRESSION OF BILINEAR SYSTEMS

The objective of this section is to show how to derive
equation (2) from system (1). A general expression of the
output yk is first obtained. Then it is shown that the influence
of the state may be neglected under the stability conditions,
which leads to equation (2).

A general output expression yk can be derived, which is
given in the following proposition and proved by induction.

Proposition 1: The general expression of the output yk in
function of the state xk−i, the inputs and system parameters
A, B, C, D, G is given by:

∀i ≥ 0 : yk = CAixk−i + H̃izk,i +Hiuk,i + fk + wk (4)

where H̃i, zk,i, Hi, uk,i are given as follows.
a) H̃i and Hi depend only on system matrices.

• H̃i depends on the system matrices C, A and G:

H̃i =
[
CAi−1G| · · · | CAG| CG

]
∈ R`×nmi.

• Hi depends on the system parameters C, A and B:

Hi =
[
CAi−1B| · · · | CB|D

]
∈ R`×m(i+1).

b) zk,i and uk,i depend on the system states and inputs on
a time-window of size i.

zk,i =
[
zTk−i| · · · | zTk−2| zTk−1

]T ∈ Rnmi×1.
with zk−i = xk−i ⊗ uki .
and uk,i =

[
uTk−i| · · · | uTk−1| uTk

]T ∈ Rm(i+1)×1.

Proof:
Inductive method is used to prove correctness of the gen-

eral output expression (4), which can be written differently
without using matrix representation:

yk = CAixk−i + C
i−1∑
j=0

AjG.zk−j−1

+C(Duk +
i−1∑
j=0

AjBuk−j−1) + fk + wk

(5)

Expression (5) is verified for i = 0 and i = 1. Assuming
that the proposal holds for i, let us prove that it holds for
i+ 1 also:

yk = CAi+1xk−i−1 + C
i∑

j=0

AjG.zk−j−1

+C(Duk +
i∑

j=0

AjBuk−j−1) + fk + wk

(6)

We replace xk−i = Axk−i−1 +G.zk−i−1 +Buk−i−1 into (5),
and derive the following equation:

yk = CAi+1xk−i−1+

C(AiG.zk−i−1 +
i−1∑
j=0

AjG.zk−j−1)

+C(AiBuk−i−1 +Duk +
i−1∑
j=0

AjBuk−j−1)

+fk + wk

(7)

By identifying expressions (6) and (7), it is straightforward
to prove that the proposal for i+1 (equation (6)) holds. This
ends the proof.
Because the linear dynamic is supposed to be stable, i.e. Ai

tends to zero for i sufficiently large which results to

CAixk−i → 0 (8)

As a consequence, for i sufficiently large, the state influ-
ence may be neglected in expression (4). This leads to the
following approximated expression of the output yk:

yk ∼= C
i−1∑
j=0

AjG.zk−j−1

+C(Duk +
i−1∑
j=0

AjBuk−j−1)

+fk + wk

(9)

The matrix representation of expression (9) is given by:

∀i ≥ 0 : yk = H̃izk,i +Hiuk,i + fk + wk (10)
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IV. DATA-PROJECTION RESIDUAL GENERATION

In this section, a data-based residual εk is generated for
sensor fault detection and isolation.
By right-multiplying (Kronecker product) the measurement
equation of system (1) by uk, and using the following
Kronecker product properties:

• (Q1 ⊗Q2)(Q3 ⊗Q4)=(Q1 Q3) ⊗ (Q2 Q4)
• (Q1 ⊗Q2)=(Q1 ⊗ I)Q2

where Q1, Q2, Q3 and Q4 are matrices with appropriate
dimensions, we can derive the following expression:

pk = (C ⊗ Im)zk + (D ⊗ Im)qk+
(fk ⊗ uk) + (wk ⊗ uk)

(11)

where Im is the identity matrix of dimension m×m andzk = xk ⊗ uk
pk = yk ⊗ uk
qk = uk ⊗ uk

.

Consider an integer L, which is chosen such that
L > mi+ `. The following subsequent vectors and matrices
are introduced:

sk =

[
pk
qk

]
=

[
yk ⊗ uk
uk ⊗ uk

]
∈ R(`+m)m×1

sk,i =
[
sTk−i| · · · | sTk−2| sTk−1

]T ∈ R(`+m)mi×1.

Sk =
[
sk−L+1,i · · · sk−1,i sk,i

]
∈ R(`+m)mi×L.

Zk =
[
zk−L+1,i · · · zk−1,i zk,i

]
∈ Rnmi×L.

fk,i =
[
(fk−i ⊗ uk−i)T | · · · | (fk−2 ⊗ uk−2)T |

(fk−1 ⊗ uk−1)T
]T ∈ R`mi×1.

F k =
[
fk−L+1,i · · · fk−1,i fk,i

]
∈ R`mi×L.

wk,i =
[
(wk−i ⊗ uk−i)T | · · · | (wk−2 ⊗ uk−2)T |

(wk−1 ⊗ uk−1)T
]T
wk,i ∈ R`mi×1.

W k =
[
wk−L+1,i · · ·wk−1,i wk,i

]
∈ R`mi×L.

Mi =


C ⊗ Im 0`m×nm · · · 0`m×nm

0`m×nm C ⊗ Im
. . .

...
...

. . .
. . . 0`m×nm

0`m×nm · · · 0`m×nm C ⊗ Im

 ∈ R`mi×nmi.

Ki =
[
I`m|D ⊗ Im

]
0`m×(`m+m2) · · · 0`m×(`m+m2)

0`m×(`m+m2)

[
I`m|D ⊗ Im

] . . .
...

...
. . .

. . . 0`m×(`m+m2)

0`m×(`m+m2) · · · 0`m×(`m+m2)

[
I`m|D ⊗ Im

]


where Ki ∈ R`mi×(`+m)mi.

By putting the terms dependent on the system input and
output on the left side of equality (11), the rest of the terms

are put on the right side, the following expression is derived
at time k: [

I`m|D ⊗ Im
]
sk =

(C ⊗ Im)zk + (fk ⊗ uk) + (wk ⊗ uk)
(12)

Expression (12) at k − 1 is given similarly as follows:

[
I`m|D ⊗ Im

]
sk−1 =

(C ⊗ Im)zk−1 + (fk−1 ⊗ uk−1) + (wk−1 ⊗ uk−1)
(13)

Equation (13) can be rewritten differently as follows:

0`m×(`m+m2)sk−i + · · ·+ 0`m×(`m+m2)sk−2+[
I`m|D ⊗ Im

]
sk−1 = 0`m×nmzk−i + · · ·+ 0`m×nmzk−2

+(C ⊗ Im)zk−1 + (fk−1 ⊗ uk−1) + (wk−1 ⊗ uk−1)
(14)

By writing expression (12) at k − 2

[
I`m|D ⊗ Im

]
sk−2 =

(C ⊗ Im)zk−2 + (fk−2 ⊗ uk−2) + (wk−2 ⊗ uk−2)
(15)

Equation (15) can be rewritten differently as follows:

0`m×(`m+m2)sk−i + · · ·+ 0`m×(`m+m2)sk−3+[
I`m|D ⊗ Im

]
sk−2 + 0`m×(`m+m2)sk−1 =

0`m×nmzk−i + · · ·+ 0`m×nmzk−3 + (C ⊗ Im)zk−2+
0`m×nmzk−1 + (fk−2 ⊗ uk−2) + (wk−2 ⊗ uk−2)

(16)
By following the same procedure till k − i, the common

matrix representation of all the obtained equations is given
by:

Kisk = Mizk + fk + wk (17)

By concatenating equation (17) over columns on a time-
window of size L, we can derive the following equation:

KiSk = MiZk + F k +W k (18)

The derived equation (18) and following theorems will be
useful in the sequel. We are now ready to express the main
results of our paper as Theorem 4.2 and Proposition 2.

Theorem 4.1: If the number of independent rows of the
matrix C is equal or greater than the number of independent
columns of C, then the matrix Mi is left invertible. In other
words, it exists a matrix Vi such that the following relation
holds:

ViMi = Iiα (19)

where α is the number of independent rows of the matrix
C. If the number of independent rows of the matrix C is
equal to the number of independent columns of C, then
Vi = M−1

i .
If the number of independent rows of the matrix C is greater
than the number of independent columns of C, then
Vi = (MT

i Mi)
−1MT

i .
Theorem 4.2: If Γ ∈ R.×L is a matrix, where the number

of independent rows is equal or less than the number of
independent columns, then the right kernel of Γ is given by:
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ΠΓ = IL − ΓT (ΓΓT )−1Γ ∈ RL×L (20)

where ΠΓ is the right projection matrix of Γ, and conse-
quently we have:

ΓΠΓ = 0 (21)
Using left invertibility property of Mi, and by left multi-

plying equation (18) by Vi, matrix Zk is given by

Zk = ViKiSk − ViF k − ViW k (22)

Right projecting matrix Zk on the right kernel matrix

Π[Sk
Uk

] of
[
Sk
Uk

]
, the equation (22) becomes:

ZkΠ[Sk
Uk

] = −ViF kΠ[Sk
Uk

] − ViW kΠ[Sk
Uk

] (23)

where Uk =
[
uk−L+1,i| · · · | uk−1,i| uk,i

]
∈ Rm(i+1)×L.

Proposition 2: The proposed parameter-free residual is
defined as follows:

εk = YkΠ[Sk
Uk

] (24)

where Yk =
[
yk−L+1,i| · · · | yk−1,i| yk,i

]
∈ R`×L.

The mathematical expectation of εk,r = E[εk] is used for
fault detection.

Proof:
By concatenating equation (10) over columns on a time-

window of size L, we can derive the following equation:

∀i ≥ 0 : Yk = H̃iZk +HiUk + Fk +Wk (25)

where Fk and Wk are constructed similarly as Yk.
1) If there is no sensor fault (fk = 0): [we will prove in

this case that E[εk] = 0]

By concatenating the output in equation (4) on a time-
window of size L, the evaluation form of the proposed
parameter-free residual is given by:

εk = YkΠ[Sk
Uk

] ∼= H̃iZkΠ[Sk
Uk

] +WkΠ[Sk
Uk

] (26)

where Wk and Fk are constructed similarly as Yk.
By replacing (23) into (26), and knowing that Π[Sk

Uk

]
is a right kernel of Uk, we get:

εk ∼= −H̃iViW kΠ[Sk
Uk

] +WkΠ[Sk
Uk

] (27)

The evaluation form (27) of the proposed residual is
a linear combination of a centered noise w, which
implies that E[εk] = 0 when there is no sensor fault.

2) If there is a sensor fault: [we will prove in this case
that E[εk] 6= 0]

From equation (27), the evaluation form of the pro-
posed parameter-free residual is given by:

εk ∼= −H̃iViF kΠ[Sk
Uk

] − H̃iViW kΠ[Sk
Uk

]+
WkΠ[Sk

Uk

] + FkΠ[Sk
Uk

] (28)

Following the same procedure as in the no fault case to
get the equation (27), the evaluation form of the math-
ematical expectation of the proposed (28) parameter-
free residual becomes:

E[εk] ∼= −E[H̃iViF kΠ[Sk
Uk

]]+
E[FkΠ[Sk

Uk

]] 6= 0 (29)

which shows the sensitivity of the mathematical ex-
pectation of the proposed residual to sensor faults.

A. Sensor fault isolability

As shown previously the sensor fault is detectable, in
addition to that an important process is to isolate this fault
which means the decision on which sensor is in faulty case.
To achieve this process we distinguish two cases, when the
sensor fault is a constant bias fault at least during the time
window of L+ i+ 1 and when it is not.

When the sensor fault is a constant bias fault at least
during the time window of L+ i+ 1, we have the following
expression:

−H̃iViF kΠ[Sk
Uk

] = 0 (30)

As a result the expression (28) becomes:

εk ∼= −H̃iViWkΠ[Sk
Uk

] +WkΠ[Sk
Uk

] + FkΠ[Sk
Uk

] (31)

Following the same procedure as in the no fault case to get
the equation (27), the evaluation form of the mathematical
expectation of the proposed (31) parameter-free residual
becomes:

E[εk] ∼= FkΠ[Sk
Uk

] (32)

which shows that the mathematical expectation of the
proposed residual is structured, which means that the first
row of E[εk] is dedicated for the first sensor, the second row
of E[εk] is dedicated for the second sensor and so on, in this
case only the corresponding mathematical expectation of the
residual is not zero when the corresponding sensor is in a
faulty case.
If the fault fluctuates instantaneously and H̃iVi = 0, it is the
same case as for constant bias sensor faults.
But if the fault fluctuates instantaneously and H̃iVi 6= 0, a
more convenient decision algorithm should be developed and
this case is not treated in this paper for brevity reasons (for
signature table the reader is referred to [20] and [21]).
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V. EXAMPLE AND SIMULATION

An electromechanical actuator [19] is used to show the
effectiveness of the proposed residual generation method for
sensor fault detection and isolation.

Fig. 1. Electromechanical actuator

This plant may be modeled by a bilinear state-space
model: {

xk+1 = Axk +G(xk ⊗ uk) +Buk
yk = Cxk +Duk + fk + wk

(33)

with

A =


−Ra

La
0 0 0

0 −Fm

Jm
− kr
NJm

0

0 1
N 0 −1

0 0 kr
Jc

−Fc

Jc

,

G =


0 0− ka

La
0 0 0 0 0

ka
Jm

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

, B =


0 1
La

0 0
0 0
0 0

,

C =

(
1 0 0 0
0 0 0 1

)
, D =


0 0
0 0
0 0
0 0


The model parameters are defined in table 1, these parame-
ters are not used for residuals generation but they are used
to simulate the model and to generate output data.

Parameter Description Value Unit
Te sampling time 0.03 [sec]
Jm motor shaft inertia 2.4e− 4 [m2kg]
Jc load shaft inertia 0.0825 [m2kg]
Fm motor viscous friction 0.0032 [m2kg/sec]
Fc load viscous friction 0 [m2kg/sec]
ka motor torque constant 0.156 [m2kg/sec2]
kr coupling rigidity coefficient 37.7 [m2kg/sec2]
Ra motor resistance 1 [Ω]
La motor inductance 0.05 [H]
N gear ratio 20
i time-window 16
L time-window 339

Table 1

The 4 states are given in table 2:
State Description
ia armature current
wm motor shaft velocity
∆ angular rotation
wc load shaft angular velocity

Table 2

The input vector is plotted in Fig.2:

Fig. 2. (a): u(1, :) = ie is the stator current, (b): u(2, :) = va is the
armature voltage

The two outputs are plotted in Fig.3:

Fig. 3. (a): y(1, :) is the armature current, (b): y(2, :) is the angular
velocity

There are two calculated residuals since the number of
sensors is 2, the calculated residuals using the proposed
method are presented in Fig.4.

Fig. 4. (a): εk(1) is the first residual, (b): εk(2) is the second residual
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Fig. 5. Blue:(a): E[εk(1)], (b): E[εk(2)], Red: Thresholding the finite
moving average of the proposed residual

In Fig. 5, the blue curve represents the mathematical
expectation of the proposed residuals, this mathematical
expectation is calculated in a moving time-window of size
339. The red curve represents the result of the decision
procedure called Finite Moving Average (FMA) [22] (see the
FMA algorithm in Fig. ??), this is due to the fault sensitivity
of the residual mean, which seems to be well dedicated to
decide whether there is a fault or not, a good choice of the
threshold is needed which can be achieved offline using a
healthy database, where the threshold is chosen greater than
the maximum value of E[εk], for this example the threshold
is equal to 0.001 for the first sensor and 0.0015 for the second
sensor. Moreover, the FDI can be realized if multiple faults
occur simultaneously.

CONCLUSION

A data-projection residual generation method is presented
for bilinear systems, where an output matrix is projected
on the input right kernel matrix. A new way for input-
output matrices construction is proposed to avoid complexity
problem of the method presented in paper [15]. The online
diagnosis is then easily implemented. Simulation results of
an electromechanical actuator show the effectiveness of the
proposed method.
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