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Abstract—This paper aims to present an improved adaptive
sliding mode control (ASMC) design for rigid spacecraft attitude
maneuvers. An adaptive scheme is proposed for the switching
gain calculation when the upper bound of the system uncertainty
is unknown in advance. Unlike existing ASMC design, which may
result in an over-adaptation of the upper bound when the initial
system trajectory is located far from the sliding surface, this
paper presents a novel ASMC strategy by introducing a decay
term in the sliding function to reduce or eliminate the unrelated
factor in the adaptation scheme. Consequently, a lower-chattering
control signal is achieved. Simulation results are presented to
illustrate the effectiveness of the proposed strategy.

Index Terms—attitude maneuver, adaptive sliding mode con-
trol, over-adaptation, global sliding mode, chattering suppression.

I. INTRODUCTION

As a subclass of variable structure control systems, sliding
mode control (SMC) is a nonlinear control method that is well
known for its robust performance. In the pase decades, SMC
has been extensively studied in many practical control systems.
SMC can offer many good properties, such as insensitivity
to parameter variation, external disturbance rejection, and
fast dynamic response, which make it a potential approach
for spacecraft attitude control. In [1], the attitude regulation
problem was studied and the sliding function was determined
by solving an optimal control problem. A smoothing model-
reference SMC algorithm was presented in [2], where a desired
quaternion error response was predefined for the attitude
control system. To reduce the static error, an integral term
was added in the sliding function and modified Rodrigues
parameters (MRPs) were used instead of quaternion for the
non-redundancy in [3]. Moreover, in [4], a nonlinear sliding
function was defined according to the properties related to the
attitude kinematics.

However, for the SMC design mentioned above, a prior
knowledge of the system uncertainty upper bound is required.
When such a bound is unavailable in advance, conservative
method is generally adopted, where the switching gain is
selected sufficiently large. It is well known that the chattering
level is directly determined by the switching gain. Hence,
such a conservative method may aggravate the chattering
problem which could excite the unmodelled dynamics and may
lead to instability. Further investigations have proceeded along

two lines. On the one hand, technologies are studied for the
chattering reduction. Higher-order sliding mode control has
been recently proposed to reduce the chattering problem while
keeping the main advantages of conventional SMC ( [5]). In
[6], the control chattering is reduced by low-pass filtering
the control signal. In particular, in [7], three methods were
presented for the chattering suppression. Nonetheless, there
are no constructive conditions for the switching gain selection
in those algorithms and generally a prior knowledge of the
bound of the system uncertainty and/or the system states is
needed.

On the other hand, attention has also been focused on
eliminating the requirement of the prior knowledge of the
uncertainty bound. One way is using the disturbance observer
(DOB) technique, as suggested in [8] and [9]. However,
the DOB based SMC algorithms usually assume that the
model uncertainty is generated by a linear exogenous sys-
tem [10], which is hard to satisfy due to the complexity
and unpredictability of the uncertainty. The other effective
approach is to integrate adaptive scheme into SMC designs.
By updating the switching gain adaptively, the upper bound
of model uncertainty is not required to be known in advance.
At the first stage, it is generally assumed that the norm of
uncertainty was bounded by a linear function of the state-
norm. Correspondingly, adaptive laws were designed for the
linear function parameters, as suggested in [11], [12], [13]. In
particular, in [13], an ASMC algorithm was proposed for the
attitude stabilization of a rigid spacecraft, where the lumped
uncertainty is assumed to be bounded by a linear function of
the norms of angular velocity and quaternion. Afterwards, in
[14] the lumped uncertainty was assumed to be bounded by
an unknown constant and consequently a simple adaptive law
was proposed for the switching gain calculation. Subsequent
results can be found in many other applications such as
internal combustion engines ( [15]), induction servomotor (
[16]), planetary gear-type inverted-pendulum ( [17]), etc. The
major problem of the ASMC algorithms mentioned above is
their over-adaptation for the switching gain with respect to
the uncertainty bound, which results in the serious chattering
phenomena and unnecessary energy consumption.

Considering the shortcomings of the chattering suppression
techniques and current ASMC design, it is necessary to put
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forward a novel ASMC strategy, which does not need a
prior knowledge of the upper bound and has the chattering
suppression ability. Such a problem was recently investigated
in [18], where two new methodologies for the ASMC design
were proposed. Unfortunately,those two methods only reduce
the switching gain in the sliding phase without considering
the reaching phase. Similar to the ASMC design mentioned
before, which will be called the ASMC-I algorithm in the
following contents, the switching gain is also overestimated in
[18] due to its failure in accounting for the initial system error
in the adaptation scheme. With this in mind, this paper tries to
present an improved ASMC design principle by addressing the
attitude control problem for a rigid spacecraft in the presence
of inertia matrix uncertainty and external disturbance. The
key feature of the proposed ASMC algorithm, referred as the
ASMC-II algorithm, is that a decay function is introduced
to reduce or eliminate the impact of initial system error in
the adaptation scheme. By this modification, the ASMC-II
algorithm can give a more accurate estimation of the uncer-
tainty bound and generate a lower-chattering control signal.
A large angle attitude reorientation maneuver is employed in
the simulation, where the simulation results demonstrate the
effectiveness of the proposed strategy.

II. PRELIMINARY AND PROBLEM STATEMENT

Rigid spacecraft attitude control for large angle maneuvers
poses a difficult problem, including nonlinear characteristics in
both the dynamics and the kinematics, modelling uncertainty,
and persistent external disturbance. In this paper, we will
resolve this problem in the ASMC framework. Before moving
on, some notations and assumptions are presented here. Three
coordinate frames are used in this paper, which are the inertia
reference frame FI , body-fixed frame FB , and the desired
frame FD. Unless otherwise specified, all the quantities are
expressed in their corresponding frames. And it is assumed
that the spacecraft attitude and angular velocity are available
and the dynamics of actuator is neglected.

A. Mathematical Model

Consider a thruster control rigid spacecraft, whose dynamics
is described as follows:

Jω̇b + ω×
b Jωb = Tb + Td (1)

where J ∈ R
3×3 is the spacecraft inertia matrix, ωb =

[ωb1 ωb2 ωb3]
T ∈ R

3 is the angular velocity vector of FB

with respect to FI . The superscript (·)× on ωb denotes the
skew-symmetric matrix operator performing the cross product
between two vectors, e.g.,

α×β = α× β (2)

where α and β are two vectors in R
3. Tb =

[Tb1 Tb2 Tb3]
T ∈ R

3 is the vector of control torque
provided by the thrusters, Td = [Td1 Td2 Td3]

T ∈ R
3

is the external disturbance vector, including gravitational
torque, aerodynamic torque, radiation torque, and other
environmental and non-environmental torques. Furthermore,

the inertia matrix uncertainty is taken into account. Let
J = Ĵ +ΔJ with ΔJ the uncertainty caused by the change
in mass properties and Ĵ = diag(J1, J2, J3) the nominal
inertia matrix. Then the attitude dynamics is given by:

Ĵ ω̇b + ω×
b Ĵωb = Tb + Td −ΔJω̇b − ω×

b ΔJωb (3)

According to the structural feature in (3), one can merge
all the elements caused by inertia matrix uncertainty and
external disturbance as the lumped uncertainty, i.e., let d =
[d1 d2 d3]

T ∈ R
3 with d = Td − ΔJω̇b − ω×

b ΔJωb.
Correspondingly, the attitude dynamics is rewritten as:

Ĵ ω̇b + ω×
b Ĵωb = Tb + d (4)

From (4), it is clear that the lumped uncertainty is matched
to the system. Without loss of generality, it is assumed that d
is bounded by an unknown upper bound, e.g., ‖d‖∞ < dmax

with ‖ · ‖∞ the vector infinite-norm.
By introducing the shadow MRPs, the MRPs set can provide

a nonsingular, bounded, minimal attitude description. Hence,
MRPs are utilized in this paper instead of quaternion, whose
kinematics is:

σ̇b = M(σb)ωb (5)

where σb = [σb1 σb2 σb3]
T ∈ R

3 denotes the inertial
MRPs vector of FB with respect to FI . M : R3 → R

3×3

such that M(σb) is the Jacobian matrix with M(σb) =
(1− ‖σb‖2)I3 + 2σ×

b + 2σbσ
T
b

4
, ‖·‖ is the vector 2-norm and

I3 is the 3 × 3 identity matrix. Moreover, MT (σb)M(σb) =
m(σb)I3 with m : R

3 → R such that m(σb) = (1 +
‖σb‖2)2/16. The transition matrix from FI to FB in terms
of MRPs is given by:

R(σb) = I3 +
8σ×

b σ
×
b − 4(1− ‖σb‖2)σ×

b

(1 + ‖σb‖2)2 (6)

A typical Rest-to-Rest attitude maneuver is studied in this
paper. The objective is reorienting the spacecraft from an
arbitrary stationary attitude to a desired attitude with zero
angular velocity. The attitude variables of the desired frame,
FD, are denoted by σd ∈ R

3 and ωd ∈ R
3. Then, the error

attitude variables are defined as follows:

σe =σb ⊕ σ∗
d (7)

ωe =ωb −R(σe)ωd (8)

where σe = [σe1 σe2 σe3]
T ∈ R

3, ⊕ is the MRPs
production operator characterizing the successive rotations.
For two MRPs expressed in their corresponding frames, e.g.,
σ1 ∈ R

3 and σ2 ∈ R
3, it is operated as follows:

σ1 ⊕ σ2 =
(1− ‖σ2‖2)σ1 + (1− ‖σ1‖2)σ2 − 2σ×

1 σ2

1 + ‖σ2‖2‖σ1‖2 − 2σT
2 σ1

(9)

σ∗
d is the inverse of σd, which is extracted from the inverse

of R(σd) and σ∗
d = −σd. R(σe) and R(σd) are the transition

matrices from FD to FB and from FI to FD, their expressions
can be obtained by replacing σb by σe and σd in (6). As
ωd = 0, ωe = ωb. Therefore, the error attitude dynamics
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is expressed same as (4). With respect to the error attitude
kinematics, following lemma is introduced.

Lemma 1: If the attitude variables pairs (σb, ωb) and
(σd, ωd) satisfy the MRPs kinematics formulation described in
(5), then the error attitude variables pair (σe, ωe) also satisfies
that MRPs kinematics formulation.

Proof: The proof is based on the successive rotations in
terms of transition matrix. See [20] for further details.

Then, the system is governed by the following equations:{
Ĵ ω̇b = Tb + d− ω×

b Ĵωb

σ̇e = M(σe)ωb

(10)

B. Problem Statement

Our aim can be summarized as follows: find a SMC
algorithm to steer the attitude variables pair (σb, ωb) from
(σb(0), 0) to (σd, 0) in the presence of the lumped uncertainty,
and find an adaptive law to update the estimation of the
unknown dmax for the switching gain calculation which has
the chattering suppression ability.

III. MAIN RESULTS

A. AMSC-I Algorithm Design

In this section, we will briefly apply the ASMC-I algorithm
for the attitude control problem under consideration. First, the
sliding function defined in [4] is given by:

S = ωb + λ
MT (σe)

m(σe)
σe (11)

where S = [s1 s2 s3]
T ∈ R

3 and the corresponding sliding
surface is determined by S = 0, λ > 0 is the sliding function
gain. In the following derivations, M(σe) and m(σe) will be
denoted by M and m for clarity.

By a left multiplication of (11) with M and using the fact
that MTM = mI3, one has:

MS = σ̇e + λσe (12)

When the sliding mode occurs, i.e., S = 0 holds, it is
easy to conclude that an exponential convergence of the error
MRPs, i.e., σe(t) = e−λ(t−tr)σe(tr), can be obtained if a
proper SMC law is designed, where tr is the time of arrival
at the sliding surface. Such a SMC algorithm can be derived
by producing a negative definite derivative of the following
Lyapunov function:

V =
1

2
ST ĴS (13)

On the basis of [4], one can get the following SMC
algorithm:

Tb = ω×
b Ĵωb − λĴ

(
4M − 2σeσ

T
e

)
ωb

1 + ‖σe‖2 − Γsgn(S) (14)

where Γ = diag(γ1, γ2, γ3) is the switching gain matrix with
its elements γi > dmax (i = 1, 2, 3) to guarantee the system
stability and sgn(·) is the sign function.

During the above derivations, the sliding function gain λ
can be determined according the desired system response in
the sliding phase. In order to determine the switching gain
in the absence of a prior knowledge of dmax, the ASMC-I
algorithm can be applied.

Consider the modified Lyapunov function:

V =
1

2
ST ĴS +

1

2c
d̃2 (15)

where c > 0 is the adaptive gain, d̃ = d̂ − dmax is the
estimation error with d̂ the estimation of dmax. According to
the ASMC-I design principle in [14], the adaptive switching
gain law for the attitude control is:

d̂ = c

t∫
0

‖S‖1dτ (16)

where ‖ · ‖1 is the vector 1-norm.
Correspondingly, the ASMC-I algorithm is given by:

Tb = ω×
b Ĵωb − λĴ

(
4M − 2σeσ

T
e

)
ωb

1 + ‖σe‖2 − d̂sgn(S) (17)

B. Over-adaptation in ASMC-I Algorithm

From the ASMC-I algorithm design in Section III-A, one
can see that the ASMC-I algorithm is based on conventional
SMC algorithm. It is well known that the system trajectory
employing the SMC algorithm consists two parts, the reaching
phase and the sliding phase, as illustrated in Fig. 1.

Fig. 1. System trajectory and sliding function response using SMC algorithm
in (14)

Recalling the adaptive law in (16), it is obvious that the
basic idea of the ASMC-I technique lies in that dmax can
be adjusted by the deviation from the sliding surface. From
(16), the integral action starts from the very beginning and any
departure from the sliding surface, S = 0, will result in the
increase of the switching gain. In other words, the switching
gain adaptation depends on the initial value of the sliding
function besides the lumped uncertainty. However, the initial
system trajectory is generally located far from the sliding
surface as shown in Fig. 1. Hence, d̂ would increase quickly
at the beginning due to a large ‖S(0)‖1 and the resulting d̂ is
much larger than dmax, which leads to an over-adaptation of
the switching gain and correspondingly the serious chattering
problem in the ASMC-I algorithm.
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Moreover, if we divide the adaptive law in (16) into two
parts, i.e.,

d̂ = c

tr∫
0

‖S‖1dτ + c

t∫
tr

‖S‖1dτ (18)

Then, it is obvious that the first integral term in (18) deals with
the deviation in the reaching phase, which is mainly caused
by the initial system error; while the second term handles the
departure in the sliding phase, which is mainly affected by the
lumped disturbance.

C. ASMC-II Algorithm Design

To address the over-adaptation problem in the ASMC-I
design, it is natural to reduce or eliminate the proportion of
the first integral term in (18). With this in mind, we present
the ASMC-II algorithm. First, the sliding function in (11) is
modified as

S(t) = ωb − f(t)ξ + λ
MT

m
[σe − f(t)ρ] (19)

where S(t) = [s1(t) s2(t) s3(t)]
T ∈ R

3, f(t) is a
continuous, strictly decreasing function on t ∈ [0,∞) with
its initial value f(0) ∈ [0, 1] and its final value ff = 0,
ξ = [ξ1 ξ2 ξ3]

T ∈ R
3, ρ = [ρ1 ρ2 ρ3]

T ∈ R
3 are the

coefficients related to the initial system states, and ρ = σe(0),
ξ = ωb(0).

According to the above definition, we can find that the initial
value of the sliding function is reduced to a small value or even
becomes zero by the additional decay function. Therefore, if
a proper SMC algorithm is designed to achieve the sliding
motion, the sliding surface related to (19) is a new kind of
sliding surface, which is illustrated in Fig. 2.

Fig. 2. System trajectory and sliding function response using sliding function
in (19)

Therefore, if the sliding function in (19) is used for the
switching gain adaptation, the unrelated effect of the initial
system error can be reduced or eliminated in the adaptation
scheme and the upper bound of the lumped uncertainty can
be estimated more precisely, which is the motivation for the
ASMC-II algorithm.

Remark 1: Actually, the sliding function defined in (19) is
an extension of the time-varying sliding function investigated
in [21] and [22]. In particular, in [21], it was proved that a
global sliding mode would be achieved by using the sliding

function like (19) with f(t) selected as the exponential decay
function f(t) = e−κt and κ > 0. However, due to the sensor
noise, the initial system error can not be entirely cancelled.
Furthermore, if the total time-varying sliding mode case, i.e.,
S(0) = 0, is used for the switching gain adaptation, the system
cannot provide enough information for the adaptation due to
the fact that there is no departure from the sliding function
at the initial time, which will slow down the adaptation
procedure. Therefore, in this paper, we introduce a weight in
the decay function, e.g., let f(t) = pe−κt with p ∈ [0, 1] in the
following derivations, which will produce an initial departure
from the sliding surface purposefully to speed up the adaptive
process. When p = 0, the sliding function in (19) turns out to
be the sliding function in (11); whereas if p = 1, it becomes
the total time-varying sliding function studied in [21].

For the attitude reorientation control problem, we have
ωb(0) = 0, i.e., ξ = 0. For simplicity, the κ in the decay
function is selected same as the sliding function gain λ, i.e.,
let κ = λ. Then the sliding function is specified as:

S(t) = ωb + λ
MT

m

(
σe − pe−λtρ

)
(20)

Then, we are ready to present the following theorem:
Theorem 1: For the system governed by (10), by adopting

the sliding function in (20) and the ASMC-II algorithm in (21),
the system trajectory will converge to the sliding function as
t → ∞.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Tb = λpe−λtĴ d
dt

(
MT ρ
m

)
− λĴ

(4M−2σeσ
T
e )ωb

1+‖σe‖2

+ω×
b Ĵωb − λ2pe−λtĴ MT ρ

m − d̂sgn(S(t))

d̂ = c
t∫
0

‖S(t)‖1dτ
(21)

where

d

dt

(
MT ρ

m

)
=8

σT
e ρMωb − (ρ− μ+ ε)×Mωb

(1 + ‖σe‖2)2

− 4MT ρσT
e Mωb

(1 + ‖σe‖2)m
where μ = [σe3ρ2 σe1ρ3 σe2ρ1]

T ∈ R
3 and ε =

[σe2ρ3 σe3ρ1 σe1ρ2]
T ∈ R

3.
Proof 1: Considering the following Lyapunov function:

V =
1

2
ST (t)ĴS(t) +

1

2c
d̃2 (22)

The time derivative of the above Lyapunov function along
the closed-loop system trajectory is:

V̇ =ST (t)Ĵ Ṡ(t) +
d̂− dmax

c
˙̂
d

=ST (t)
(
d− d̂sgn(S(t))

)
+ (d̂− dmax)‖S(t)‖1

=ST (t)d− d̂‖S(t)‖1 + d̂‖S(t)‖1 − dmax‖S(t)‖1

=−
3∑

i=1

(dmax|si(t)| − disi(t)) ≤ 0
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Let χ =
3∑

i=1

(dmax|si(t)| − disi(t)) and it is obvious that

χ is uniformly continuous. By integrating the above equation
from zero to t, one has:∫ t

0

V̇ dτ ≤ −
∫ t

0

χdτ ⇒ V (0) ≥
∫ t

0

χdτ (23)

Taking the limits as t → ∞ on both sides of (23) gives:

∞ > V (0) ≥ lim
t→∞

∫ t

0

χdτ (24)

On the basis of Barbalat lemma, one can obtain

lim
t→∞χ = 0 (25)

which implies that lim
t→∞S(t) = 0.

Remark 2: Above proof implies that the ASMC-II algo-
rithm can only guarantee the asymptotic stability of the
sliding function but not the attitude variables, i.e., the system
trajectory will converge to the sliding surface in infinite time.
However, from the adaptation law in (21), one can see that
the switching gain d̂ will keep increasing if S(t) 
= 0. When
d̂ increases up to a value large enough to suppress the lumped
uncertainty, e.g., d̂ > dmax + δ with δ a sufficiently small
positive scalar, the sliding mode will start in finite time.
Similarly, denote the arrival time as tr. By a left multiplication
of (20) with M , following 3-dimensional first-order vector
differential equation can be obtained:

σ̇e + λσe = λpe−λtρ (26)

The analytical solution for σe is:

σe(t) = e−λ(t−tr)(λpρt+ σe(tr)) (27)

It is obvious lim
t→∞σe(t) = 0 and lim

t→∞ωb(t) = 0 from (20).
Hence, the attitude control system in (10) with the ASMC-II
algorithm in (21) is globally asymptotically stable.

Remark 3: Recalling the adaptive law in (21), d̂ will be-
come unbounded due to the fact that the sliding function
is not identically equal to zero, which may be caused by
the finite switching frequency or measurement noise. For
implementation in practice, the adaptive law has to be modified
to get a bounded switching gain, such as the σ modification
method in [12]. Here, the approach proposed in [18] will be
used, where the adaptive law in (21) is modified as

d̂ =

{
c
∫ t

0
‖S(t)‖1sgn(‖S(t)‖1 − η)dτ if d̂ > �∫ t

0
�dτ if d̂ ≤ �

(28)

where � > 0 is a very small scalar to ensure d̂ is positive
and η > 0 is carefully chosen to deal with the trade-off in
control accuracy and bounded switching gain. Further details
on η tuning can refer to [18].

IV. NUMERICAL SIMULATION

In this section, a comparison of the ASMC-I and ASMC-II
algorithms is employed for a large angle attitude maneuver to
test the effectiveness of the proposed strategy.

The inertia matrix for the controller design is given by
Ĵ = diag(48, 25, 61.8) (kg.m) and the uncertainty is 10%
of the nominal value. The external disturbance is Td =
[0.02 sin(0.01t) 0.02 cos(0.01t) 0.04 sin(0.01t)]

T
(N.m).

The initial attitude variables are σb(0) = [−0.2 0.3 0.1]
T

and ωb(0) = [0 0 0]
T

(rad/s). The desired attitude is
σd = [0.1 0.2 − 0.3]

T with the desired angular velocity
ωd = [0 0 0]

T
(rad/s). For comparison, same control

parameters are selected for both the ASMC-I algorithm and
the ASMC-II algorithm, where c = 1, λ = 0.25 and the
initial value of d̂ is zero. The weight p is selected as 0.8.
The simulation results are shown in Fig.3–Fig.6.
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Fig. 3. Error MRPs responses of ASMC-I and ASMC-II
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Fig. 4. Angular velocities of ASMC-I and ASMC-II

The maneuver evolutions controlled by ASMC-I and
ASMC-II are compared in Fig. 3 and Fig. 4 with the cor-
responding control torque commands shown in Fig. 5. From
Fig. 3, it is clear that both the ASMC-I and the ASMC-II
can accomplish the attitude reorientation in the absence of the
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Fig. 6. Adaptive switching gains of ASMC-I and ASMC-II

prior knowledge of dmax and the system responses are similar.
Fig. 4 shows the angular velocity response comparison, where
the angular velocity controlled by the ASMC-II is smoother
than that controlled by the ASMC-I. Nonetheless, there is a
significant difference in the control torque commands as shown
in Fig. 5. According to Fig. 5, it is obvious that the chattering
in ASMC-I is much more serious than that in ASMC-II, which
verified the effectiveness of the proposed strategy. Moreover,
as shown in Fig. 6, the adaptive switching gain generated
by ASMC-II is much smaller than the ASMC-I case, where
d̂ ≈ 1.62 for ASMC-I and d̂ ≈ 0.046 for ASMC-II, which
verified the chattering suppression ability of ASMC-II.

V. CONCLUSION

The attitude control problem of a rigid spacecraft involving
inertia matrix uncertainty and external disturbance has been
considered. An effective solution has been presented to address
the over-adaptation problem in current ASMC design. Such
an improvement is achieved by reducing or eliminating the

influence caused by initial system error on the switching gain
adaptation. It has been shown by theoretical analysis and
simulation results that the proposed strategy can produce a
much smaller switching gain as compared with current ASMC
design and achieve a smoother system response.
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