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Abstract—A systematic geometric design methodology to gen-
erate a stable controller for simultaneous local and remote atten-
uation that was previously proposed is experimentally validated
on a structure. The local control path transfer function for this
experimental system is non-minimum phase due to which the
original broadband controller design would yield an unstable
controller. Here a modified procedure for systems with local non-
minimum phase dynamics is used to generate a stable controller.
According to this method, reduction in vibration at local and
remote points on a structure can be parameterised in terms
of the available design freedom and a controller is realised in
terms of the optimal selection of this using the minimum phase
counterpart of the local control path transfer function. The

modified method results in a controller that is both stable and
stabilizing and which achieves the desired vibration attenuation
at the local and remote points on the structure. An experimental
facility that replicates the vibration transmission through the
shaft of a propeller blade rig system is used to demonstrate the
method. Vibration for excitation near the first bending mode
frequency of the resonating part of this structure is attenuated
at the non-resonating part of the system without deteriorating
vibration at the resonating end.

I. INTRODUCTION

Active control for reduction of vibration at a specific point

on a complex interconnected structure can potentially enhance

vibration at other points on the structure [1]. A controller

design technique to address the vibration attenuation problem

at local and remote points on a structure simultaneously using

only a single locally placed sensor actuator pair was presented

for a discrete frequency excitation case in [2] and later

extended for the broadband case [3]. For vibration attenuation

over an arbitrary frequency band, controller implementation

involves inversion of the local control path transfer function.

When the local control path transfer function is non min-

imum phase, then the controller itself would be unstable.

This problem can be solved using a new design freedom [4]

to parameterise reduction in vibration at local and remote

points whereby the controller is implemented in terms of the

minimum phase counterpart of the local control path transfer

function. Additionally, to improve robustness to unmodelled

high frequency dynamics, a filter is incorporated into the

design freedom selection [5] such that the gain of the closed

loop system rolls off at high frequency without deteriorating

controller performance in the excitation frequency bandwidth.

The aim of this paper is to present experimental verification of

this design technique for attenuation of vibration at both local

and remote points on a blade rig simultaneously. Trade-offs

between stability robustness and disturbance attenuation are

also highlighted in terms of the values of the design freedom

parameter.

II. EXPERIMENTAL SET-UP

A schematic diagram of the blade rig is shown in figure

1. The primary excitation signal fp(t) is a common signal

fed to the two smaller shakers attached at both ends of the

bar which acts as the transient loading force due to rotation

of the propeller blades. The vibration at the blade end of

the shaft qp(t) is the summation of outputs measured by

two accelerometers connected near each of the disturbance

shakers. The control input fc(t) is applied to the control

shaker attached at the other end of propeller shaft on the

thrust block and a local accelerometer on the thrust block

measures local vibration levels qc(t). Vibration is transmitted

from the blade end along the shaft to the thrust block end and

is particularly detrimental at the blade resonant frequency. Due

to difficulties in measuring and actuating at the blade end for

most applications, it is desired to control both blade vibration

and its transmission using sensors and actuators placed at the

thrust block only1. This blade system can be considered as a

two input two output system with the transfer function matrix

relating the disturbance and control inputs to the remote and

local vibration outputs as
[

qc(jω)
qp(jω)

]

=

[

gcc(jω) gcp(jω)
gpc(jω) gpp(jω)

] [

fc(jω)
fp(jω)

]

(1)

In the next section, a design freedom parameter is introduced

which parameterizes reduction in vibration at the thrust block

and blade end. A controller implemented in terms of the

optimally selected values of this design freedom would achieve

the targeted vibration reduction.

III. GENERAL ALGORITHM

The detailed synthesis of a stable controller using the geo-

metric approach is given in [4], [5]. For the system described

in (1), the aim is to design a feedback controller k(jω) using as

feedback signal only from the thrust block to achieve vibration

1Note that this general concept is the subject of several BAE Systems
patents
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Figure 1. Schematic of blade rig

reduction at both the thrust block and blade end simultane-

ously. Using control action, fc(jω) = −k(jω)qc(jω), the

closed loop output respectively at the local and remote points

is then given as

qc(jω) =

[

1 +
−gcc(jω)k(jω)

1 + gcc(jω)k(jω)

]

gcp(jω)fp(jω) (2)

and

qp(jω) =
[

1 +
−gcc(jω)k(jω)

1 + gcc(jω)k(jω)

gcp(jω)gpc(jω)

gcc(jω)gpp(jω)

]

gpp(jω)fp(jω) (3)

Denote a design freedom parameter γ which is related to the

sensitivity function S(jω) as

γ(jω) =
1

gAP (jω)fLP (jω)
[S(jω)− 1] (4)

where gAP (jω) is the all pass transfer function formed from

the right half plane zeros of gcc(jω) and fLP (jω) is a low

pass or a bandpass filter which improves robustness at out-of-

band frequencies. The closed loop local and remote outputs

in (2) and (3) can be represented in terms of this parameter

variable as

qc(jω) = [1 + γ(jω)gAP (jω)fLP (jω)] gcp(jω)fp(jω) (5)

and

qp(jω) =
[

1 + γ(jω)gAP (jω)fLP (jω)
gcp(jω)gpc(jω)

gcc(jω)gpp(jω)

]

gpp(jω)fp(jω) (6)

The magnitude of the expression inside brackets in RHS of (5)

and (6) determines reduction in closed loop local and remote

output. The magnitude of these terms can be represented as
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Figure 2. Measured frequency response of primary excitation input to thrust
block vibration output

a circle at each discrete frequency in a γ−plane. A value for

γ from inside the circle corresponds to reduction in vibration.

If values for γ at discrete frequencies in the disturbance

frequency bandwidth [ωL, ωH ] is selected from inside the

circles given by inequalities (7) and (8), then reduction in

vibration at the local and remote points is possible.
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(8)

These optimal γ points are interpolated by a stable transfer

function and the controller is implemented as

k(jω) = −
γ(jω)fLP (jω)

[1 + γ(jω)gAP (jω)fLP (jω)]gMP (jω)
(9)

where gMP (jω) is the minimum phase counterpart of the local

control path transfer function.

The magnitude frequency response of the open loop path

from primary excitation input on the blade to the local and

remote outputs, denoted as gcp(jω) and gpp(jω) respectively,

is plotted in figures 2 and 3. It shows that near the frequency

of the first bending mode of the blade (i.e. the iron bar

connected to one end of the shaft), vibration transmission to

the thrust block is amplified. A feedback controller to achieve

simultaneous reduction in the thrust block and blade vibration

outputs will be designed for primary excitation around this

frequency range.

The first step in controller design is to determine an

LTI model for the open loop control path gcc(jω) from

the measured FRF. As the controller will target vibration

reduction in the low frequency region, the measured FRF of

the path from control shakers to acceleration on thrust block at

frequencies below 800 Hz is fitted with a 15th order transfer

function model using least squares. The dynamics neglected

at frequencies higher than 800 Hz will not be a problem as

they will not be excited by the control action due to low pass

370



0 200 400 600 800 1000
−10

0

10

20

30

40

50

Frequency Hz

|g
p
p
(j

ω
)|

 (
d
B

)

Figure 3. Measured frequency response of primary excitation input to blade
vibration output

Figure 4. Circles that represent remote vibration attenuation in γ− plane
at discrete frequencies between 200 Hz and 300 Hz. Unit radius circles
corresponding to local vibration attenuation appear as a cylinder that passes
through the origin

filter fLP (jω). This identified transfer function has 1 right

half plane zero so that gAP (jω) is of order 1 and gMP (jω)
has this RHP zero reflected into the LHP.

The circles in the γ−plane corresponding to reduction in

vibration at the local and remote outputs given by (7) and

(8) for frequencies around the first bending mode is shown in

figure 4. The circles corresponding to reduction in vibration at

the blade end are very large in the frequency region from 200

Hz to 220 Hz and above 270 Hz. The distance between the

centre of both circles will be large and so it will not be possible

to achieve considerable vibration reduction at the blade end

without amplifying vibration output at the thrust block end.

Optimal γ points at these frequencies are selected such that the

vibration level at the thrust block is reduced without enhancing

the vibration level at the blade end. fLP (jω) is chosen as a

bandpass filter with lower and higher cut-off frequency as 100

Hz and 600 Hz, respectively.

IV. NEVANLINNA-PICK INTERPOLATION

The set of selected optimal γ points at discrete frequencies

in the disturbance frequency bandwidth is interpolated by a

stable transfer function using the Nevanlinna Pick interpolation

algorithm [6]. This interpolation problem can be stated as

follows: given n distinct points s1, . . . , sn in the right half

plane Π+ and a collection of complex numbers H1, . . . , Hn,

determine a transfer function f(s) that is analytic in Π+ with

sup |f(s)| ≤ 1

such that f(si) = Hi, for all i = 1, . . . , n. The solution of this

interpolation exists if and only if the associated Pick matrix

P

P =

[

1−HkHl

sk + sl

]n

k,l=1

is positive definite, where • denotes complex conjugate. The

points si according to the above theorem should strictly belong

to the Right Half Plane, whereas the set of optimal selected

values for the design freedom γ have to be interpolated on the

imaginary jω axis. The frequency points are shifted into the

RHP using transformation of Lemma 2 in [8] and is stated as

follows: for the optimal γ data values at n discrete frequencies

ωi, for i = 1, . . . , n, a stable transfer function γ(jω) exists if

and only if the associated Pick matrix

P =

[

1−WkW l

sk + sl

]n

k,l=1

(10)

is positive definite, where Wi = γi/M and si = σ + jωi,

for i = 1, . . . , n. where M is the maximum modulus of

interpolated transfer function and σ a positive real number.

Increasing M or decreasing σ increases the positive definitness

of the pick matrix but for a stable controller and good

performance at intermediate frequencies, M and σ values have

to be finely tuned. It should be noted that small values of σ
will give interpolated transfer function γ(jω) with poles that

are close to the imaginary axis. This would cause oscillations

in the frequency response of the identified transfer function

γ(jω) leading to gain and phase crossover at intermediate

frequencies. As the non-interpolated points in the disturbance

frequency band for small values of σ may lie outside (7) and

(8) circles in γ−plane, this would deteriorate controller perfor-

mance. Although large value of σ gives better approximation at

intermediate frequencies, M values will have to be increased

to get a positive definite pick matrix. A large value of M
can result in the nyquist contour of γ(jω)gAP (jω)fLP (jω)
encircling the critical point which will cause the controller to

become unstable as can be seen from (9). If the Pick matrix

(10) of optimally selected γ points is not positive definite,

then an approximate set of sub-optimal points adjusted to lie

inside the circles is obtained using Linear Matrix Inequalities

that also satisfy the pick condition. This new set of γ points

is used to obtain the interpolating function using the classical

N-P interpolation algorithm.

The first step in iterative classical N-P interpolation algo-

rithm is to compute the elements of Fenyves array T .

Tk,l =
sl + s̄k−1

sl − sk−1

Tk−1,l − Tk−1,k−1

1− Tk−1,lT k−1,k−1

2 < k < n, k < l < n (11)
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Figure 5. Final operating γ points as the frequency response of a stable
bounded real interpolated transfer function γ(jω)

where T1,l = Wl, for 1 < l < n. The next step is to recursively

estimate W1(s) from

Wk(s) =
Tk,k +Wk+1(s)

s−sk
s+s̄k

1 + T k,kWk+1(s)
s−sk
s+s̄k

, k = n, n− 1, . . . , 2, 1

(12)

If the set of data points (si,Wi) for interpolation is aug-

mented with its complex conjugate (s̄i,W i), then a sta-

ble bounded real analytic interpolating function is given by

γ(s) = M × 1

2

[

W1(s+ σ) +W 1(s+ σ)
]

for any arbitrarily

selected initial stable bounded analytic function Wk+1(s) in

(12). There will be at least 4 poles and zeros in γ(jω) transfer

function for every interpolated γ point which will affect the

order of the final compensator transfer function k(jω). In

the frequency interval from 200 Hz to 300 Hz there are 164

discrete frequencies at which an optimal γ point is selected.

Only 6 of the optimal γ points are used as interpolation data

points in order to get a lower order controller.

The final operating γ points obtained from the frequency

response of the interpolating function γ(jω) for frequency

225 Hz to 250 Hz is shown in figure 5. It is seen that in

the frequency range 230 Hz to 245 Hz, circles representing

remote vibration reduction converge towards the origin and

become very small. Due to this several more optimal γ points

have to be selected in this frequency band alone to get a good

transfer function approximation, but this will increase the order

of interpolated transfer function considerably. At all other fre-

quencies in the disturbance frequency band, circles represent-

ing reduction in vibration at the remote point are considerably

larger than the unit circle that corresponds to local vibration

attenuation. Hence, final operating γ points from inside the

unit circle will lie on the boundary of the remote vibration

reduction circle. This is predicted to achieve only slight reduc-

tion in the blade vibration output using a 58th order controller

transfer function. This vibration attenuation problem is a case

of very extreme magnitude for the dimensionless parameter

discussed in [7], which is equivalent to the function formed

by the centre of remote vibration reduction circle given as

−gcc(jω)gpp(jω) [gcp(jω)gpc(jω)gAP (jω)fLP (jω)]
−1

. The

magnitude of this function is a measure of the severity of

the trade-off between disturbance attenuation and stability
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Figure 6. Magnitude plot of the frequency response of controller
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Figure 7. Magnitude plot of the frequency reponse from disturbance to local
output with (dashed) and without (solid) feedback controller

robustness.

A controller realized in terms of this γ(jω) transfer function

by substituting in (9) has a magnitude frequency spectrum as

shown in figure 6. The gain of controller starts to roll-off at

600 Hz due to the filter action thereby improving robustness to

unmodelled high frequency dynamics. The theoretical closed

loop frequency response of local and remote points with the

designed controller is compared with the open loop frequency

response as shown in figures 7 and 8.

V. EXPERIMENTAL RESULTS

The controller obtained in the previous section is a com-

pensator transfer function in continuous time domain. It is

integrated with the experimental set-up through Simulink using

a dSPACE real time interface prior to which it has to be

converted to a discrete time model. A discrete model of

compensator using first order hold method with a sampling

frequency of 5 kHz is obtained which matches exactly the

frequency characteristic of the continuous time domain com-

pensator in the disturbance frequency bandwidth. For different

primary excitation inputs fp(t), the acceleration output at the

thrust block qc(t) and blade end qp(t) are measured to compare

closed loop output against open loop output.
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Figure 8. Magnitude spectrum of the frequency reponse from disturbance
to remote output with (dashed) and without (solid) feedback controller
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Figure 9. Power spectral density of output from thrust block when primary
excitation is discrete frequency excitation at 247 Hz

A. Sinusoidal excitation at discrete frequency 247 Hz

The power spectral density of measured acceleration at the

thrust block with and without feedback control for a primary

excitation signal at 247 Hz is plotted in figure 9. It shows

more than 14 dB reduction in magnitude at 247 Hz using

feedback controller and the power spectral density of measured

acceleration at the blade end in figure 10 shows around 3

dB reduction in magnitude at 247 Hz. A peak at 534 Hz in

the PSD of both closed loop outputs can be noticed which

is not present for the open loop case. This is caused by

the peak at this frequency in the magnitude of controller

frequency response spectrum. In the next section, this peak is

reduced without affecting controller performance in the design

frequency bandwidth using a notch filter.

VI. RESULTS AFTER AUGMENTING A NOTCH FILTER

The controller implementation involves inversion of the

minimum phase counterpart of the local control path transfer

function so an antiresonance at frequency 534 Hz in the

local control path transfer function appears as a peak in the

controller FRF. Filter fLP (jω) has a high cut-off frequency

600 Hz which is higher than the frequency (534 Hz) at
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Figure 10. Power spectral density of output from blade end when primary
excitation is discrete frequency excitation at 247 Hz

which the peak in controller FRF appears. If the high cut-

off frequency of fLP (jω) is reduced below 534 Hz and the

order of filter is increased in order to take account of the

sharp increase in this peak then due to limitations as quantified

by Bode’s sensitivity integral, amplification at out-of bound

frequencies will not be spread over a large frequency range

and there will be peaks appearing in the closed loop frequency

response. Therefore, the controller is implemented in series

with a notch filter which has a notch at 534 Hz in order to

reduce the peak at this frequency. The magnitude and phase

of the controller is unaffected in the disturbance frequency

bandwidth. The acceleration measurements at the thrust block

and blade end are taken for different disturbance excitation

signals to compare reduction in closed loop output.

A. Sinusoidal excitation at discrete frequency 247 Hz

The power spectral density of acceleration measured at

the thrust block with and without feedback control for a

primary excitation signal at 247 Hz shows 16 dB reduction

in magnitude as shown figure 11. The power spectral density

of acceleration measured at the blade end in figure 12 shows

around 3 dB reduction in magnitude at 247 Hz. The peak at

534 Hz is reduced considerably because of the notch filter at

this frequency.

B. Broad band frequency white noise excitation

The primary excitation signal input to the disturbance shaker

is a random white noise signal and the power spectral density

of acceleration outputs from the thrust block qc(t) and blade

end qp(t) with and without feedback control action is plotted

in figures 13 and 14. The PSD of acceleration measured at

the thrust block shows around 12 dB attenuation in the distur-

bance frequency bandwidth while the PSD of measured blade

acceleration shows no amplification and a small attenuation as

designed.

VII. CONCLUSION

A geometric design methodology for vibration control using

remotely located stable control systems has been demonstrated
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Figure 11. Power spectral density of output from thrust block when primary
excitation is discrete frequency excitation at 247 Hz
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Figure 12. Power spectral density of output from blade end when primary
excitation is discrete frequency excitation at 247 Hz
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Figure 13. Power spectral density of output at thrust block with primary
excitation as random white noise excitation
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Figure 14. Power spectral density of output at blade end with primary
excittion as random white noise excitation

experimentally on a blade rig experimental set-up, which

mimicks the vibration transmission problems encountered due

to propeller blade excitations encountered in many aerospace

and maritime applications. The limitations on actuator and

sensor placement can be overcome using this control design

approach and shows considerable reduction in closed loop

output at the thrust block side near the problematic blade

resonant frequency.
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