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Abstract—In many practical applications, constraints are often
present on, for example, the magnitudes of the control inputs.
Recently, based on a novel successive projection framework, two
constrained iterative learning control (ILC) algorithms were de-
veloped with different convergence properties and computational
requirements. This paper investigates the effectiveness of these
two methods experimentally on a gantry robot facility, which
has been extensively used to test a wide range of linear model
based ILC algorithms. The results obtained demonstrate the
effectiveness of the algorithms in solving one form of the general
constrained ILC problem.

I. INTRODUCTION

Iterative Learning Control (ILC) is a technique for control-

ling systems operating in a repetitive or trial-to-trial mode with

the requirement that a reference trajectory yref (p) defined over

a finite interval 0 ≤ p ≤ α is followed to a high precision,

where the constant α denotes the finite trial duration or length.

The basic idea in ILC is that information from previous trials

is used to update the control input for the next trial in order

to sequentially improve performance. Moreover, the next trial

input is typically computed during the time taken to reset

between successive trials.

Since the original work by [1], ILC has developed into an

established area in control systems research and applications.

Initial sources for the relevant literature are the survey pa-

pers [2] and [3]. These show that a wide range of algorithms

have been developed, many of which, particularly those based

on a linear plant model, have been experimentally tested.

In many practical applications, constraints are present due,

for example, to physical limitations or performance require-

ments. Hence ILC design must take these constraints into

account but most of the currently available ILC results are

for unconstrained systems and there are relatively few results

for the constrained case. One set of results is due to [4] where

a novel nonlinear controller for process systems with input

constraints is developed where the learning scheme requires

relatively little knowledge of the process model. In [5] an ILC

problem with soft constraints is studied where Lagrange multi-

plier methods are used to develop a solution. [6] uses quadratic

optimal design to formulate a constrained ILC problem and

suggests that a quadratic optimal design has the capability of

dealing with constraints. Also [7] uses a constrained convex

optimization technique to solve the constrained ILC problem

for linear systems with saturation constraints.

Recently, the ILC design problem with general convex input

constraints has been considered in [8]. This work shows that

the constrained ILC problem can be formulated in a recently

developed successive projection framework, which provides

an intuitive but rigorous method for system analysis and

design. Based on this, a systematic approach for constraints

handling is provided and two algorithms to solve this problem

developed. The convergence analysis shows that when perfect

tracking is possible, both algorithms can achieve this goal

whereas the computation of one algorithm is much less than

the other at the cost of slightly slower convergence rate. When

perfect tracking is not possible, both algorithms converge to

asymptotic values representing a ”best fit” solution. Again

the more computationally complex algorithm has the best

convergence properties. It was also found that the input and

output weighting matrices have an interesting effect on the

convergence properties of the algorithms.

The main aim of this paper is to give experimental results to

verify the effectiveness of the constrained ILC algorithms us-

ing a gantry robot facility previously used to test a wide range

of ILC algorithms, including Norm Optimal ILC (NOILC) [9].

The paper is organized as follows. In Section 2, the required

results from the derivation of the constrained ILC algorithms

are given. Then in Sections 3 and 4, the gantry robot facility

and the test parameters are described. The experimental results

are given in Section 5 and Section 6 gives conclusions and

suggestions for further research.
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II. ITERATIVE LEARNING CONTROL FOR CONSTRAINED

LINEAR SYSTEMS

Consider the following discrete linear time-invariant system

xk(t+ 1) = Axk(t) +Buk(t),

yk(t) = Cxk(t), (1)

where t is the time index (i.e. sample number), k ≥ 0 is the

trial index and xk(0) = x0, k = 1, 2, · · · is the same for all

trials. The control objective is to track a given reference signal

r(t) and uk(t), xk(t), yk(t) are input, state and output vectors,

respectively, of the system on trial k. In operation, a trial is

completed, the system is reset and a new trial begins. The

ILC design uses information from previous trial(s) to compute

the control input for the next trial in a manner that improves

tracking performance from trial-to-trial.

Before presenting the main results, the operator form of the

dynamics is introduced using the well-known lifted-system

representation, which provides a straightforward ”N × N
matrix” approach in the analysis of discrete-time ILC [10],

[11].

Assume, for simplicity, the relative degree of the system is

unity, i.e. the generic condition CB �= 0 is satisfied (the case

when the system relative degree is greater than one follows as

an obvious generalization), then the system state-space model

(1) on trial k can be written in the form

yk = Guk + d, (2)

where G and d are the N ×N and N × 1 matrices

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

CB 0 · · · 0 0

CAB CB
. . . 0 0

CA2B CAB
. . .

. . .
...

...
. . .

. . . CB 0
CAN−1B · · · · · · CAB CB

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

d =
[
CAx0 CA2x0 CA3x0 · · · CANx0

]T
.

(3)

The N × 1 vectors of input, output and reference time series

uk, yk and r are defined as

uk =
[
uk(0) uk(1) · · · uk(N − 1)

]T
,

yk =
[
yk(1) yk(2) · · · yk(N)

]T
,

r =
[
r(1) r(2) · · · r(N)

]T
.

(4)

Also no loss of generality arises from assuming that d = 0
(non-zero d can be incorporated into the reference signal by

replacing r with r − d). Hence (2) becomes

yk = Guk, (5)

where G is nonsingular and hence invertible.

Tracking error improvements from trial-to-trial are achieved

in ILC by the design of a control law of the following general

form

uk+1 = f (ek+1, . . . , ek−s, uk, · · · , uk−r) . (6)

When s > 0 or r > 0, (6) is termed a higher order updating

law. This paper only considers algorithms of the form uk+1 =
f (ek+1, ek, uk). For higher order algorithms, refer to [12],

[13] and the references therein. The ILC design problem can

now be stated as finding a control updating law (6) such that

the system output has the asymptotic property that ek → 0 as

k → ∞.

There are many design methods to solve the ILC problem.

The one used in this paper is based on a quadratic (norm)

optimal formulation [14] where, on each trial, a performance

index is minimized to obtain the system input time series

vector to be used on the next trial. The basis of this paper

is NOILC that designs the control input to minimize the

performance index

Jk+1(uk+1) = ‖ek+1‖2Q + ‖uk+1 − uk‖2R, (7)

subject to the constraint ek+1 = r − Guk+1, where G is the

operator representation of the system (1) and Q and R are

positive definite weighting matrices. Also ‖e‖2Q denotes the

quadratic form eTQe and similarly for ‖ · ‖2R. Solving this

optimization problem gives the following optimal choice for

the time series vector uk+1

uk+1 = uk +R−1GTQek+1 (8)

which, when k → ∞, asymptotically achieves perfect track-

ing. This well-known NOILC algorithm has many appealing

properties including implementation in terms of Riccati state

feedback. More details concerning NOILC can be found in

[14]–[17].

In practical applications, system constraints are encountered

and of different forms, e.g., input constraints, input rate

constraints and state or output constraints. Constraints can be

divided into two classes termed hard and soft, respectively.

Hard constraints are those on magnitude(s) at each point in

time, for example, output limits on actuators. Soft constraints

are those that are applied to the whole function rather than its

point-wise values e.g. constraints on total energy usage. This

paper only considers input constraints.

Suppose the input is constrained to be in a set Ω, which is

taken to be a closed convex set in some Hilbert space H. In

practice, the set Ω is often of simple structure. For example,

the following are often encountered:

• input saturation constraint:

Ω = {u ∈ H : |u(t)| ≤ M(t)}
• input amplitude constraint:

Ω = {u ∈ H : λ(t) ≤ u(t) ≤ μ(t)}
• input sign constraint:

Ω = {u ∈ H : 0 ≤ u(t)}
• input energy constraint:

Ω = {u ∈ H :
N−1∑
t=0

u2(t) ≤ M}
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If there are no constraints, the ILC design problem is

relatively easy to solve and there are many design methods

in the literature. However, when constraints are present, the

problem becomes more complicated since it is now necessary

to decide how to incorporate them into the design process and

retain known performance properties. In what follows, two

constrained ILC algorithms recently developed in [8] using a

novel successive projection framework are summarized.

Algorithm 1: Given any initial input u0 satisfying the con-

straint with associated tracking error e0, the input sequence

uk+1, k = 0, 1, 2, · · · , defined by

uk+1 = argmin
u∈Ω

{
‖r −Gu‖2Q + ‖u− uk‖2R

}
, (9)

also satisfies the constraint and iteratively solves the con-

strained ILC problem.

Constrained Algorithm 1 has the following properties:

Theorem 1: Algorithm 1 converges to point u∗
s which is

uniquely defined by the following optimization problem

u∗
s = argmin

u∈Ω
‖r −Gu‖2Q. (10)

Moreover, this convergence is monotonic in the tracking error,

that is,

‖ek+1‖ ≤ ‖ek‖, k = 0, 1, · · · . (11)

In the case when perfect tracking is possible, Constrained

Algorithm 1 will converge to zero tracking error and has

desirable properties of monotonic convergence in tracking

error norm. However, it requires the solution of a quadratic

programming (QP) problem and can be computationally de-

manding and in [8] two efficient solution methods were

developed but are omitted here for brevity.

Another algorithm that is less computationally demanding

is the following.

Algorithm 2: Given any initial input u0 satisfying the con-

straint with associated tracking error e0, the input sequence

uk+1, k = 0, 1, 2, · · · , defined by the solution of the input

unconstrained NOILC optimization problem

ũk = argmin
u

{
‖r −Gu‖2Q + ‖u− uk‖2R

}
, (12)

followed by the simple input projection

uk+1 = argmin
u∈Ω

‖u− ũk‖ ∈ Ω, (13)

also satisfies the constraint and iteratively solves the con-

strained ILC problem.

Remark 1: The first step in Algorithm 2 requires the so-

lution of the input unconstrained NOILC optimization prob-

lem (12). Unlike Algorithm 1, which may cause computational

problems in solving the large constrained QP problem (9), (12)

has a real-time Riccati solution [16]

uk+1(t) = uk(t)−R−1BTM(t),

M(t) := K(t)(I +BR−1BTK(t))−1 ×
A(xk+1(t)− xK(t))− ξk+1(t), (14)

where K(t) satisfies the Riccati equation

K(t) = ATK(t+ 1)A+ CTQC −ATK(t+ 1)B×
(BTK(t+ 1)B +R)−1BTK(t+ 1)A (15)

with final time condition K(N) = 0. Moreover, ξk+1(t)
satisfies the differential equation

ξk+1(t) = (I +K(t)BR−1BT )−1(AT ξk+1(t+ 1)

+ CTQek(t+ 1)), (16)

which is computable in reverse time as it is driven by tracking

error from the previous trial k [16].

Remark 2: The second step in Algorithm 2 requires the

solution of the problem (13) and would appear to need the

application of optimization methods. However, in practice the

input constraint Ω is often a point-wise constraint and the

solution of (13) can be computed easily. For example, when

Ω = {u ∈ H : |u(t)| ≤ M(t)}, the solution is

uk+1 (t) =

⎧⎨
⎩

M (t) : ũk (t) > M (t)
ũk (t) : |ũk (t)| ≤ M (t)
−M (t) : ũk (t) < −M (t)

(17)

for t = 0, · · · , N − 1.
Constrained Algorithm 2 requires less computational effort

but, unlike Constrained Algorithm 1, it cannot guarantee

monotonic convergence of the tracking error norm. Instead,

it achieves monotonic convergence of weighted error norm, as

shown in the following theorem.

Theorem 2: When perfect tracking is not possible, Algo-

rithm 2 converges to a point u∗
s which is uniquely defined by

the following optimization problem,

u∗
s = argmin

u∈Ω

{‖Ee‖2Q + ‖Fe‖2R
}
. (18)

Moreover, this convergence is monotonic with respect to the

following performance index

Jk = ‖Eek‖2Q + ‖Fek‖2R, (19)

where

e = r −Gu

E = I −G
(
GTQG+R

)−1
GTQ

F =
(
GTQG+R

)−1
GTQ

. (20)

It was also shown in [8] that when perfect tracking is

not possible, the choice of Q and R in Algorithm 2 has an

interesting effect on the convergence properties. In particular,

there is a compromise between the convergence rate and the

tracking performance: using a smaller R will result in faster

convergence, however, with a larger final tracking error.

Simulation studies have demonstrated that the two algo-

rithms considered above can solve the constrained ILC prob-

lem efficiently, with different convergence properties and com-

putational requirements. The remainder of this paper examines

the performance of the algorithms experimentally on a gantry

robot that has been used to tests an extensive range of linear

model based ILC algorithms [9], [18].
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III. GANTRY ROBOT TEST FACILITY

This approach has been experimentally implemented on a

3-axis gantry robot. Figure 1 shows this experimental facility

where the robot head performs a ‘pick and place’ task and

is similar to systems which can be found in many industrial

applications. These include food canning, bottle filling or

automotive assembly, all of which require accurate tracking

control, each time the operation is performed, with a minimum

level of error in order to maximize production rates. This is

an obvious general area for application of ILC.

Each axis of the gantry robot has been modeled based on

frequency response tests where, since the axes are orthogonal,

it is assumed that there is minimal interaction between them.

Here we first consider the X-axis (the one parallel to the

conveyor in Figure 1) and frequency response tests (via Bode

approximate gain plots in Figure 2) result in a 7th order

continuous-time transfer-function as an adequate model of the

dynamics on which to base control systems design.

GX(s) =
13077183.4436(s+ 113.4)

s(s2 + 61.57s+ 1.125× 104)
× · · ·

(s2 + 30.28s+ 2.13× 104)

(s2 + 227.9s+ 5.647× 104)(s2 + 466.1s+ 6.142× 105)
.

(21)

The dynamics have been sampled at Ts = 0.01 seconds to
yield the discrete state space model which can be used to
compute the model matrix G according to (3). The same
procedure has been applied to the Y-axis and Z-axis. For the

Fig. 1. The multi-axis gantry robot.

Fig. 2. Frequency response test results and fitted model

details see [9].

Ax =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.035 1.000 0 0 0 0 0
−0.008 0.035 −0.071 0.156 0 0 0

0 0 −0.158 1.000 0 0 0
0 0 −0.078 −0.158 0.569 0.698 1.319
0 0 0 0 0.388 1.000 0
0 0 0 0 −0.390 0.388 1.080
0 0 0 0 0 0 1.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Bx =
[
0 0 0 0.0164 0 0.0134 0.0197

]T
,

Cx =
[ −0.0003 −0.0054 −0.0145 0.0316 0 0 0

]
.

IV. TEST PARAMETERS

The gantry robot is designed to repeatedly complete a pick-

and-place motion in synchronization with a moving conveyor.

A reference trajectory for the gantry movement has been pre-

defined with the purpose of synchronizing its motion with

that of the conveyor, which is running at a constant speed.

Each axis is controlled individually and has its own reference

trajectory and they are combined to form the 3D reference

trajectory given in Figure 3 which clearly shows the ‘pick and

place’ action. The signal duration is 2 seconds.

V. EXPERIMENTAL RESULTS

This section gives the results of experimental performance

of the two constrained ILC algorithms given in Section 2. Input

constraints were imposed such that for each axis, the amplitude

of the input voltage was limited to be 90% that of the optimal

input u∗, which produces performance tracking. Note that

under these constraints perfect tracking is not possible, which

is more practically relevant than the trivial case where perfect

tracking is achievable).
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Fig. 3. 3-D combined reference trajectory.
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The cost function weighting matrices are chosen as diagonal

matrices with common diagonal entries of 100 and 0.01 for all

three axes and the experimentally results are given in Figure 4.

These results confirm that both algorithm solve the constrained

ILC problem and converge to some final values. The conver-

gence of Constrained ILC Algorithm 1 is monotonic in the
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Fig. 6. Output on the 100th trial for the X-axis

tracking error norm, whereas Constrained ILC Algorithm 2 is

not. Moreover, the final tracking error norm of Constrained

ILC Algorithm 1 is smaller than that of Algorithm 2, which

is consistent with the theoretical predictions.

To expand the discussion of these results , the input, output

and tracking error on 100th trial for X-axis are given in

Figures 5-7. Using Constrained ILC Algorithm 1, a smaller

tracking error (on average) is obtained, compared to Con-

strained ILC Algorithm 2. Note also that the input computed

by Algorithm 2 does not just enforce saturation on the original

input but adds some compensation (Figure 5).

Figures 8 shows the effects of varying the selection of the

weighting matrices keeping the diagonal structure but chang-

ing the control input weighting to 0.1. Compared to the results

in Figure 4, this new choice puts larger weighting on the input

change, leading to slower convergence. Varying this weighting

value has no effect on the final tracking error for Algorithm 1
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but in Algorithm 2 it results in a better (almost optimal)

tracking accuracy, which verifies the theoretical results of

Section 2.

Using these results, it can be concluded that Constrained

ILC Algorithm 1 performs better than Algorithm 2. However,

this is achieved at the expense of higher computational load,

which may be not acceptable in some applications but Al-

gorithm 2 achieves nearly optimal performance using a quite

simple computation, which is equally (if not more) important

in many cases.

VI. CONCLUSIONS

In this paper, two constrained ILC algorithms developed

based a successive project framework in [19] have been tested

on a gantry robot facility. The results confirm that both algo-

rithms can solve the constrained ILC problem efficiently, while

the computation of one algorithm is much less than the other at

the cost of slightly sacrificed convergence performance. This

requires a compromise between the performance/accuracy and

the computational cost.
The experimental results in this paper are based on a

linear model of the gantry robot, where nonlinearities are

neglected and can be treated as model uncertainty. The results

clearly demonstrate certain robustness of the algorithms used.

However, further theoretical robustness analysis still needs to

be done and constitutes part of planned future research.
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