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II. APPLICATION

The CAN protocol enables robust serial communication
and was introduced by German automotive system supplier
Robert Bosch. It was chosen for embedded systems networked
applications in various markets such as medical equipment, test
equipment, industrial automation and mobile machines. More
recently, CAN networks have been popular in automation and
control applications too [4, 8]. The techniques used in this
paper were developed on the CAN network of a vehicle, but
they can also be used in any other applications apart from
vehicle industry in which CAN protocols are used.

III. DATA COLLECTION

For the data collection, specific experiments were carried
out on a representative vehicle network. The aim of these
experiments was to collect data relating to illegal vehicle wake-
up. The vehicle network is monitored and saved on computer,
utilising a CANcase device to interface to the high speed and
low speed networks via USB.

A. Message Types

Two types of messages are published through the CAN
network of car, periodic messages and non-periodic messages.
Periodic messages are sent regularly through the network for
long periods of time. Non-periodic messages are a
classification of messages which have an external actuator and
are the main focus of this paper. In this network, there are 14
message IDs in the high speed CAN and 47 message IDs in the
low speed CAN which are involved in the wake-up process.

B. Scenarios and Tests

The network of the vehicle enters sleep mode when there
are no interactions between ECUs to reduce the battery
consumption. The sleep mode is a very low-current standby
mode with bus wake-up capability [6].

When a non-periodic message is sent through the network,
ECUs start to communicate by sending information about their
task. After completion of the task, ECUs start to notify that
they are ready to enter sleep mode, and upon receiving a
confirmation message of �go to sleep mode� ECUs gradually 
start entering sleep mode [7]. The period of time which
network goes from sleep mode to wake-up mode and then
again back to sleep mode is called a test. The external action
causing data to flow, which classifies the type of the test, is
called a scenario.

If the non-periodic message which produced a test is
normal function defined by manufacturer, the scenario is
considered as a normal scenario. A fault scenario is caused by

artificially injecting a non-periodic message into the network.

C. Data Visualisation

Each test is stored as a text file into the computer. As each
message passing through the CAN is logged into the computer,
it is stored in a new line. Fig.2 shows a small part of data
collected from one normal scenario. The first column is time
which shows the time that messages were logged in. The
second column shows in which CAN the message has been
transmitted. If it is 1 it shows that message belongs to the High
speed CAN and if it is 2 the message belongs to the Low speed
CAN. The third row is the identification number or ID of
message in hexadecimal code. Each message has individual
number which shows specific data. The rest of 8 columns show
data within the message in hexadecimal code. Each message
has individual ID which shows specific data. In the analysis
stage, each ID is converted into decimal numbers. A normal
scenarios occurs when a valid wake-up message is sent, such as
pressing the lock button on the car key, and a fault scenario is
produced by sending a message not normally involved in
wake-up, such as message 1C8, into the data. As all normal
scenarios belong to the body functions of the vehicle, analysis
will be focused on the low speed CAN.

IV. DIAGNOSTIC APPROACHES

A. DNA Sequencing

The digital genomic information are characterised in a form
of sequence of finite numbers of entries coming after each
other [9]. There are some similarities between the collected
data from the real vehicle�s CAN network and DNA strands. 
As CAN messages enter the network through competitive
arbitration, the sequence of messages becomes a feature of the
network, similar to the sequence of bases in a DNA strand. In
this section signal processing tools are applied on these
sequences. Using classification methods described in section D
fault diagnosis in the CAN network of the vehicle is achieved.

B. Binary Indicators

47 different messages passing through the low speed CAN
network were identified as significant. Thus 47 numbers are
multiplied in its corresponding binary indicator sequences and
then all of them are summed in order to build the sequence.
Each sequence in the binary indicators (uIDi) is valued �1� if IDi

exists in that sequence or a value of �0� if IDi is not present in
that sequence:

x n =ID1.uID1
n +ID2.uID2

n +�+ID47.uID47
n

 n=0, 1, 2, 3, �, N-1 (1) 

Fig. 2 An example of data collected from vehicle in text file format opened in Windows Notepad.
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Fig. 4 Algorithm of comparing a test set with training sets for
classification.

Frequency domain analysis using DFT is performed, using
a sequence of length of N to provide the frequency content,
X[k], at a frequency of k.

X k =ID1.UID1
k +ID2.UID2

k +�+ID47.UID47
k

 k=0, 1, 2, 3, �, N-1 (2) 

In which UID1
k , UID2

k  � UID47
k are the DFT of each

of the binary indicator sequences x[n], producing a 47
dimensional representation of a frequency spectrum of a
sequence of the messages passing through the CAN. The total
spectral content, S[k], of a sequence of messages in the CAN at
frequency of k is:

S k = UID1
k

2
+ UID2

k
2
+�+ UID47

k
2

(3)

Three normal scenarios and two fault scenarios were
established to perform fault diagnosis. Fig. 3 illustrates the
Density Power Spectrum of the sequence of a test from one of
the normal scenarios. The peaks of the power spectrum alter
between scenarios, although all scenarios occur in a similar
frequency range. In the case of DNA sequences, there are only
four binary indicators and as a result there is only one peak that
occurs at the frequency of N/3 where N is the length of
sequence of x[n]. In the message sequences of the CAN
network, there are 47 binary indicators. Hence, there is more
than just one peak in the sequence of IDs.

Fig. 3 Density power spectrum of a test from scenario of pressing open
boot button on car key.

C. Clustering Data

Clustering is assigning a set of data into subsets or groups
so that data in the same clusters have similarity in some cases
[10]. The frequency peaks in the DPS cluster the tests from
these five scenarios into 3 different groups: normal scenario 1,
normal scenario 2 and faulty scenarios.

D. Classifier and Classification Method

Classification is a data mining process which aims to
accurately assign target classes to data sets. The classifier
which is used here is a hybrid system which effectively
combines hand-built classifiers and empirical learning methods
together [11]. This has the advantage of being able to utilise the
characteristics of entire power spectrum in the classification.

One of simplest classification problems is binary
classification between two states. This means that target group

has only two possible states and classifier predicts state of the
data set on a basis of whether they have the property or not.
This type of classification is used in this paper.

1) Training Set

Classification methods require training to be effective,
which means a training data set is needed. This training set
used to establish the relationship between predictors and
targets. Different features can be defined in order to extract
useful information from training set, and this information can
be used to determine classes of future test sets.

Since the length of sequences in different scenarios was
different, the test with the longest length, test l, was considered
as a basis length of the sequences (length l). The length of test l
according to the 100 randomly picked tests is 24592 sequences.
For the rest of data sets in the test sets, if the length of the
sequence of the messages in a test is less than l, then sequences
of zeros are added to all of the 47 binary indicator sequences of
uID1

k , uID2
k , �, uID47

k ; and if the length of the sequence
is greater than l, the first l sequences were considered, and the
rest discarded. This is done because the values produced by
this method are dependent on the length of the data sets. By
using a standard base length, this effect will be normalised.

Next, the DFT of all the binary indicators are calculated
and the density power spectrum of the whole sequence is
achieved using equation 3. The density power spectrum of a
discrete signal of the messages passing sequentially through the
CAN network of the vehicle is a discrete signal. For classifying
different scenarios, these discrete signals need to be compared
to each other and form the basis of the classification scheme.

2) Comparison Tool

The method chosen to compare these discrete signals is the
cross correlation. It is a common method for estimating the
correlation rate between two series. For a discrete signal, cross
correlation is:

Rxy d =
x n+d y* n d 0

l-d-1
n=0

Rxy
* d d<0

(4)

In which, l is the base length of the data sets and d is the
signal delay. With the delay of d in x[n], the degree of
correlation between x[n] and y[n] is calculated by dot-product
of these two signals. The signals are considered to be periodic,
so the cross correlation has twice of the length of its original
signals. This operation was performed in MATLAB using the
cross correlation command, which by default, computes the
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raw correlation between two signals without normalising it.
The lengths of all data sets are converted to l so the
normalised cross correlation which is the cross correlation
divided by the length of the signals is achieved in advance
(biased normalisation).

Rxy, biased d =
1

l
Rxy d (5)

20 tests are chosen from each of the five scenarios, giving
a total of 100 tests. The density power spectrum of all the 100
tests is calculated. Hence, there are 100 discrete time signals
available. The cross correlation of each of the two of these
power spectrums are calculated. The result of these
calculations are stored in a massive cell with a dimension of
100×100 and in each of these cells, the cross correlation
results with the length of 2×l is stored.

The peak of these cross correlations shows the maximum
correlation of the two tests. The cross correlation of the
density power spectrum of each test set and each test in the
training sets are calculated and stored in a massive cell. For
the calculated cell of the cross correlation with the dimension
of 100×100 maximum values of the cross correlation is stored
in a matrix with the same dimensionality to create the training
sets.

Next, the matrix is divided into 5 matrices with dimension
of 20×20 which are the maximum values of cross correlation
between the scenario 1 and all the 5 scenarios (including auto-
correlation with scenario 1). This is the procedure of making
the training set for the first scenario. This should be completed
for the second scenario, the third scenario and so on.

The maximum value of the cross correlation, shows rate of
correlation between two scenarios. Average of maximum
values of the cross correlation (AMVXC) of the 20 tests of
each matrix are calculated and saved for each scenarios (Table
1). Also the Standard Deviation (STD) of these maximum
values of the cross correlation of these 20 tests are calculated
and stored for each scenario (Table 2).

The average value and the standard deviation of each
matrix create the training sets for the classification. Fig. 5
shows the steps and the procedure of creating the training sets

for the classification of first scenario. So the result of all these
calculation will be a 5×5 matrix of average of the maximum
values of the cross correlation between the scenarios and
another 5×5 matrix is the standard deviation of the maximum
values of the cross correlation between the scenarios.

3) Classifying a Test Set

For each given test set the cross correlation between the
density power spectrum of that test set and the density power
spectrum of the 100 tests used to build the training set is
calculated. This results in 100 cross correlations.

The maximum value of the cross correlation between the
test set and the 20 tests of the scenario 1 will be stored in a
separate matrix; the maximum value of the cross correlation
between the test set and the 20 tests of the second scenario
will also be stored in another matrix and so on. Eventually,
there will be 5 matrices with dimension of 1×20. The average
of these values in each matrix will be calculated and stored in
a matrix called Average of XCorrelation of Test Set or
AXCTS (i ,j) (Table 3).

The AXCTS is then subtracted from each of the scenario�s 
AMVXC (Table 4). Comparing each row with its counterpart
in Table 2, it can be seen that this example test belongs to
scenario 2 (normal scenario group 1) as the values in this row
are less than those in Table 2. This algorithm is illustrated in
Fig.4.

V. RESULTS

Six test sets from each of the 5 scenarios (total of 30 tests)
are randomly picked and considered as the test sets. The
classification procedure is carried out on each test set. The
confusion matrix in Table 5 shows 100% accuracy for
assigning scenarios to the 3 classification groups. Fig.6 shows
these 30 test sets in AXCTS matrix classified in the three
clusters. In this plot each row of the AXCTS matrix is shown
with 5 markers representing AXCTS value for its
corresponding scenario. As it can be seen for all tests, the
clusters are distinguished.

TABLE I. THE AVERAGE OF THE MAXIMUM VALUES OF THE CROSS CORRELATION FOR THE TRAINING SET

AMVXC Scenario1 Scenario2 Scenario3 Scenario4 Scenario5
Scenario 1 68.5296E+11 64.8896E+11 90.7273E+11 32.8471E+11 34.0116E+11
Scenario 2 64.8896E+11 61.6390E+11 85.9672E+11 31.5055E+11 32.6112E+11
Scenario 3 90.7273E+11 85.9672E+11 623.5030E+11 45.9586E+11 47.3855E+11
Scenario 4 32.8471E+11 31.5055E+11 45.9586E+11 18.4082E+11 18.9465E+11
Scenario 5 34.0116E+11 47.3855E+11 18.9465E+11 19.5366E+11 24.0919E+11

TABLE II. THE STD OF THE MAXIMUM VALUES OF THE CROSS CORRELATION FOR THE TRAINING SET

STD Scenario1 Scenario2 Scenario3 Scenario4 Scenario5
Scenario 1 2.8279E+11 3.5061E+11 5.5539E+11 2.6415E+11 2.4432E+11
Scenario 2 3.5061E+11 3.9585E+11 6.5875E+11 2.6612E+11 2.5055E+11
Scenario 3 5.5539E+11 6.5875E+11 32.5400E+11 3.1451E+11 3.1038E+11
Scenario 4 2.6415E+11 2.6612E+11 3.1451E+11 1.6417E+11 1.5966E+11
Scenario 5 2.4432E+11 2.5055E+11 3.1038E+11 1.5966E+11 1.5493E+11

TABLE III. THE AVERAGE VALUE OF THE MAXIMUM VALUES OF THE CROSS CORRELATION BETWEEN GIVEN TEST SET AND THE TRAINING SETS
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AXCTS Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Test Set 65.4680E+11 62.0810E+11 85.616E+11 31.673E+11 32.792E+11

TABLE IV. DIFFERENCE BETWEEN THE AMVXC OF THE TRAINING SETS AND AXCTS OF THE TEST SET

|AXCTS � 
AMVXC|

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Scenario 1 3.06E+11 2.81E+11 5.11E+11 1.17E+11 1.22E+11
Scenario 2 0.58E+11 0.44E+11 0.35E+11 0.17E+11 0.18E+11
Scenario 3 25.30E+11 23.90E+11 538.00E+11 14.30E+11 14.60E+11
Scenario 4 32.60E+11 30.60E+11 39.70E+11 13.30E+11 13.80E+11
Scenario 5 99.50E+11 109.00E+11 105.00E+11 51.20E+11 56.90E+11

Fig. 5 Procedure of creating training set to be used for DPS method for classification for first scenario

Fig. 6 Results, showing the matrix of AXCTS classified the 30 test sets in 3 clusters; Diamond: Fault scenario, Circle: Normal Scenario 1, Triangle: Normal
Scenario 2
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VI. CONCLUSION

In this paper, development and diversity of networks in
vehicles was studied. The main focus was the Controller Area
Network (CAN) protocol as a communication tool. Moreover,
it was discussed that fault diagnosis in electronic systems and
networks of a vehicle is becoming an increasingly important
factor.

For the fault detection, a data mining technique was
applied and, from comparison to DNA, the sequencing nature
of the data was considered as a feature that could be used as a
classifier. The algorithm used here as a diagnosis tool was
developed and coded using MathWorks MATLAB R2009a.

Signal processing methods where used to derive the
density power spectrum of the binary indicator sequences
from the messages sequences in each test. It can be concluded
that the place of occurrence of the peaks in the density power
spectrum are different among the scenarios and it can be used
as the classification feature. According to this feature, three
clusters were identified: the normal scenario 1 cluster, the
normal scenario 2 cluster and the fault scenario cluster.

Furthermore, instead of just considering the peaks the
whole sequence of the power spectrum density was
considered. The density power spectrum is a discrete signal in
frequency domain and as comparison tool for the
classification. The available data was split into training sets
and the test sets. The cross correlation of the training sets and
the test sets was utilised as a classification feature. This hybrid
classifier was able to distinguish the fault scenarios from the
normal scenarios in 100% of cases, showing that this method
is an effective classifier for these data sets.

This technique was developed on the CAN network of a
vehicle, but application of it is not limited to vehicle industry.
It can also be used on other backgrounds which use the CAN
protocol or even on other networks in a vehicle such as LIN
and MOST. Also new methods which adopt real time fault
detection and on-board fault diagnosis and use the large
amount of information available from the system network to
pinpoint the cause of detected faults can use the technique
introduced here. The real time fault detection system requires
a generic electronic control unit (generic ECU) to monitor data

at fast speeds in order to find faults. This requires algorithms
with a small numbers of variables in order to respond quickly
to faults. This extracted feature may be a useful variable for
this purpose.

This method is most effective when a sequence of
messages is expected in response to an event (such as network
wake-up and shutdown), with the advantage of not needing to
understand the underlying network functions. However, other
types of faults may not be as clearly defined as this. Network
fault detection and diagnosis is a complex issue with no single
answer, requiring multiple approaches to categorise faults.
This method can provide an additional tool to further research
in this area.
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Group 1 6 6 0 0 0
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Faults 0 0 0 6 6
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