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Abstrat�This paper onerns the observer-based pole plae-ment ontrol for MIMO time varying non-lexiographially-�xeddisrete systems. If both of the reahability indies and theobservability indies are non-lexiographially-�xed, augmentedplant equation and augmented observer are needed. Designproedure of this ontrol system is proposed and the stabilityand the separation priniple of the total losed loop system isalso shown.Keywords - Pole Plaement; Observer; Time Varying System;Desrete System; Non-Lexiographially-Fixed SystemI. INTRODUCTIONIt is well known that the pole plaement ontrol an bedesigned for linear time-varying system by using the ontrolla-bility anonial form as in the time-invariant ase [5℄, [6℄. Thelinear time-varying multivariable system whose ontrollabilityindies or observability indies are not onstant is alledthe non-lexiographially-�xed system. Valase et. al. [7℄proposed the pole plaement design method for suh a systemby augmenting the system equation so that the augmentedsystem is lexiographially-�xed. This paper onerns the poleplaement and the observer design method for linear time-varying disrete non-lexiographially-�xed system. Usingthe Valase's idea, the proedure to extend a disrete non-lexiographially-�xed system to a lexiographially-�xedaugmented system will be presented. Then, the simple poleplaement tehnique an be applied to the augmented systemwithout transforming the system into any anonial form [12℄.Further, using the property of the anti-ausal dual system,it will be shown that the same design method an be usedfor the augmented observer for non-lexiographially-�xedsystems. Finally, as for the time-invariant ase, the stabilityand the separation priniple of the total losed loop systemare also shown for the ase where both of the augmented poleplaement ontroller and the augmented observer are used.

II. PRELIMINARIESConsider the following linear time-varying m-input p-outputMIMO disrete system.x(k + 1) = A(k)x(k) +B(k)u(k) (1)y(k) = C(k)x(k) (2)where x 2 Rn, u 2 Rm, and y 2 Rp are the state variable, theinput and output, respetively. A(k) 2 Rn�n, B(k) 2 Rn�mand C(k) 2 Rp�n are time-varying oef�ient matries.De�nition 1: System (1) is alled �ompletely reahable inn steps� if for any x1 2 Rn there exists a bounded input u(j)(j = k; � � � ; k+n� 1) suh that x(k) = 0 and x(k+n) = x1for all k.The reahability matrix, R(k), of this system is de�ned byR(k) = � b10(k) � � � bm0 (k) � � �� � � b1n�1(k) � � � bmn�1(k) � (3)Here, bli(k) 2 Rn is alulated by the following reurreneequations.bl0(k) = bl(k + n� 1)bli+1(k) = A(k + n� 1)bli(k � 1) (4)(i = 0; � � � ; n� 2; l = 1; � � � ;m )where, bl(k) 2 Rn is the l-th olumn of B(k).If the system (1) is ompletely reahable in n steps, the rankof R(k) is n, from whih we an de�ne the nonsingular n�nmatrix �R(k) using the reahability indies �i(i = 1; 2; � � � ;m)as follows.�R(k) = � b10(k); � � � ; b1�1�1(k)j � � �� � � jbm0 (k); � � � ; bm�m�1(k) � (5)The reahability indies satisfy that Pmi=1 �i = n and areassumed that �1 � �2 � � � � � �m without loss of generallity.Here, we state the de�nition of the observability in n stepsas a dual onept of the reahability in n steps.
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De�nition 2: The system (1), (2) is said to be ompletelyobservable in n steps if for any k, x(k) is determined uniquelyfrom y(k), y(k + 1), � � �, y(k + n� 1).The following steps are the pole plaement ontrol designproedure proposed by the authors in [11℄ without using atransformation into any anonial form.STEP 1 Chek the reahability of the system (1) and obtain�R(k) and �i (i = 1; � � � ;m).STEP 2Calulate the new output signal, ~y(k), by the followingequation, so that the relative degree from u(k) to ~y(k) is thesystem degree, n.~y(k) = ~C(k)x(k) =W �R�1(k � n)x(k) (6)where W is the matrix de�ned by the following.W = diag(w1; w2; � � � ; wm)wi = � 0 � � � 0 1 � 2 R1��i (7)STEP 3 Let qi(z) be the ideal and stable harateristipolynomial for the losed-loop system of degree �i, i.e.,qi(z) = z�i + �i�i�1z�i�1 + � � �+ �i1z + �i0 (8)Here, z is the shift operator. Then, we have the followingequation [11℄.264 q1(z) . . . qm(z) 375 ~y(k) = F (k)x(k) + �(k)u(k) (9)where �(k) 2 Rm�m is nonsingular. (See Appendix.)STEP 4 From (9), the state feedbaku(k) = D(k)x(k) = ���1(k)F (k)x(k) (10)makes the losed loop system264 q1(z) . . . qm(z) 375 ~y(k) = 0 (11)This implies that the losed loop state equationx(k + 1) = fA(k) +B(k)D(k)gx(k) (12)is equivalent to the time invariant system with desired poles,i.e., there exists some transformation matrix, P (k), that satis-�es the following equation.P (k + 1)fA(k) +B(k)D(k)gP�1(k) = A� (13)where det(zI �A�) = mYi=1 qi(z) (14)Then, if the matrix P (k) is the Lyapunov transformation,the losed loop system is stable and equivalent to some time-invariant system that has the ideal and stable eigen values.

III. POLE PLACEMENT OFNON-LEXICOGRAPHICALLY-FIXED SYSTEMSIn the previous setion, the reahability indies are supposedto be �xed. Suh indies are said to be lexiographially-�xed.However, sine the system has time-varying parameters, thereahability indies might be variable as well. Suh indiesare said to be non-lexiographially-�xed. In this setion,we onsider the pole plaement ontrol designing proedurefor a system with non-lexiographially-�xed indies. Valaseket. al. proposed the pole plaement design method for non-lexiographially-�xed multivariable ontinuous systems in[8℄. In this paper, we apply this idea to the disrete systemtogether with the new pole plaement tehnique stated in theprevious setion.Suppose that the system (1) is ompletely reahable in nsteps, and has non-lexiographially-�xed reahability indies.It is assumed that the maximum value of eah reahabilityindex �i is known, i.e.,vi = maxk �i(k) (i = 1; � � � ;m) (15)Using vi, we de�ne ng byng = mXi=1 vi (16)De�ne the augmented system byxg(k + 1) = Ag(k)xg(k) +Bg(k)u(k) (17)8>><>>: xg(k) = � x(k)xe(k) �Ag(k) = � A(k) 0A2(k) A1(k) � ; Bg(k) = � B(k)Be(k) �where xg 2 Rng and xe 2 Rng�n. A1(k) 2 R(ng�n)�(ng�n),A2(k) 2 R(ng�n)�n, and Be(k) 2 R(ng�n)�m are designparameter matries so that the above augmented system haslexiographially-�xed reahability indies, vi (i = 1; � � � ;m).The reahability matrix Rg(k) of this augmented system isRg(k) = � bg 10(k) � � � bg m0 (k) � � �� � � bg 1ng�1(k) � � � bg mng�1(k) � (18)where bg li(k) 2 Rng is de�ned by the following reurreneequations.bg l0(k) = bg l(k + ng � 1)bg li+1(k) = Ag(k + ng � 1)bg li(k � 1) (19)(i = 0; � � � ; ng � 2; l = 1; � � � ;m )Here, bg l(k) 2 Rng is the l-th olumn of Bg(k).For the augmented system to have lexiographially-�xedreahability indies, vi, the following ng � ng matrix �Rg(k)should be nonsingular for all k.�Rg(k) = � bg 10(k); � � � ; bg 1v1�1(k)j � � �� � � jbg m0 (k); � � � ; bg mvm�1(k) � (20)
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On the other hand, �Rg(k) an be written as�Rg(k) = � �Rv(k)�Re(k) � (21)where �Rv(k) 2 Rn�ng and �Re(k) 2 R(ng�n)�ng are�Rv(k) = � b10(k); � � � ; b1v1�1(k)j � � �� � � jbm0 (k); � � � ; bmvm�1 � (22)�Re(k) = � re 10(k); � � � ; re 1v1�1(k)j � � �� � � jre m0 (k); � � � ; re mvm�1(k) � (23)Sine, from the assumption, the rank of �Rv(k) is n, thereexists a matrix, �Re(k), suh that �Rg(k) is nonsingular for allk. The problem is to �nd A1(k), A2(k), and Be(k) that givesuh re li(k) 2 Rng�n.From (20)-(23), we havebg l0(k) = � b l0(k)re l0(k) � (24)then, using (17) and (24), the reurrene equation (19) an bemodi�ed as follows.bg l0(k) = � bl0(k)re l0(k) � = � bl(k + ng � 1)be l(k + ng � 1) �bg li+1(k) = � bli+1(k)re li+1(k) �= � A(k + ng � 1) 0A2(k + ng � 1) A1(k + ng � 1) � bg li(k � 1)= � A(k + ng � 1)bli(k � 1)� A2(k + ng � 1) A1(k + ng � 1) � bg li(k � 1) �(i = 0; 1; � � � ; l = 1; � � � ;m ) (25)Here, bel(k) is the l-th olumn of Be(k). From (25), therelation between re li(k) and A1(k), A2(k), and Be(k) isobtained as follows.Be(k + ng � 1) = � re 10(k) � � � ; re m0 (k) �� A2(k + ng � 1) A1(k + ng � 1) � �Rg(k � 1)= �Re+(k) (26)where �Re+(k) is de�ned by�Re+(k) = � re 11(k) � � � re 1v1(k)j � � �� � � jre m1 (k) � � � re mvm(k) � (27)From the above, design parameter matries suh that theaugmented plant (17) has lexiographially-�xed reahabilityindies, vi(i = 1; � � � ;m), an be alulated as follows. First,determine �Re(k) so that �Rg(k) is nonsingular for all k. Then,using arbitrarily determined parameters re 1v1(k),� � �, re mvm(k)in (26) and (27), and then, A1(k)，A2(k) and Be(k) areobtained byBe(k) = � re 10(k � ng + 1) � � � ; re m0 (k � ng + 1) �� A2(k) A1(k) � = �Re+(k � ng + 1) �R�1g (k � ng) (28)

The state feedbak for the pole plaement an be obtainedas the following form by applying the pole plaement designproedure stated in the previous setion to this augmentedsystem.u(k) = [Dx(k); De(k)℄ � x(k)xe(k) � = Dg(k)xg(k) (29)This implies that there exists the time-varying transformationmatrix Pg(k) 2 Rng�ng that satis�esPg(k + 1)fAg(k) +Bg(k)Dg(k)gP�1g (k) = A�g (30)Hene, if the transformation matrix Pg(k) is the Lyapunovtransformation, the losed loop system is stable and equivalentto some time-invariant system that has desired and stableonstant eigenvalues.IV. OBSERVER OF NON-LEXICOGRAPHICALLY-FIXEDSYSTEMSIn this setion, we onsider the design of the observer forthe system that has non-lexiographially-�xed observabilityindies. Suppose that the system (1),(2) is ompletely observ-able in n steps and has observability indies, �i(i = 1; � � � ; p),whih are non-lexiographially-�xed. Further, it is assumedthat the following di are known.di = maxk �i(k) (i = 1; � � � ; p) (31)Using these di, we de�ne ns byns = mXi=1 di (32)If the system has lexiographially-�xed observability in-dies, its observer an be written as follows.x̂(k + 1) = A(k)x̂(k) +B(k)u(k)�H(k)(y(k)� C(k)x̂(k)) (33)where x̂(k) 2 Rn is the state estimation of x(t). Then, theproblem is to �nd the observer gain matrix H(k) 2 Rn�p.But, sine the observability indies are non-lexiographially-�xed, we augment the observer system as follows.x̂(k + 1) = A(k)x̂(k) +B(k)u(k)�H(k)(y(k)� C(k)x̂(k))�(A4(k) +H(k)Ce(k))�(k) (34)�(k + 1) = A3(k)�(k) +He(k)(y(k)� C(k)x̂(k))+He(k)Ce(k)�(k) (35)Here, �(k) 2 Rns�n is an auxiliary signal and A3(k)2 R(ns�n)�(ns�n)，A4(k) 2 Rn�(ns�n)，and Ce(k) 2Rp�(ns�n) are design parameter matries determined later.Using the state estimation error, e(k) = x(k) � x̂(k) thefollowing state error equation is obtained from (1)，(2)，(34)，and (35).es(k + 1) = As(k)es(k) +Hs(k)Cs(k)es(k) (36)
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where8>><>>: es(k) = � e(k)�(k) � ; As(k) = � A(k) A4(k)0 A3(k) �Hs(k) = � H(k)He(k) � ; Cs(k) = � C(k) Ce(k) �(37)From this, the observer design problem is to �ndHs(k) so thatAs(k) + Hs(k)Cs(k) is equivalent to some onstant matrixwhih has desired onstant eigenvalues.For this purpose, onsider the following anti-ausal systemas a dual system of the system (As(k)，Cs(k)).�s(k � 1) = ATs (k)�s(k) + CTs (k)v(k)ATs = � AT (k) 0AT4 (k) AT3 (k) � ; CTs (k) = � CT (k)CTe (k) �(38)Sine the system (A(k),C(k)) is ompletely observable inn steps and has the observability indies, �i(i = 1; � � � ; p),its dual system is ompletely reahable in n steps and hasreahability indies, �i.The reahability matrix, Rs(k), of the augmented dualsystem (38) an be written asRs(k) = � s 10(k) � � � s m0 (k) � � �� � � s 1ns�1(k) � � � s mns�1(k) � (39)where s li(k) 2 Rns is de�ned by the following reurreneequations.s l0(k) = s l(k � ns + 1)s li+1(k) = ATs (k � ns + 1)s li(k + 1) (40)(i = 0; � � � ; ns � 2; l = 1; � � � ;m )Here, s l(k) 2 Rns is the l-th olumn of CTs (k).For the augmented system to have lexiographially-�xedreahability indies, di, the following ns � ns matrix, �Rs(k),should be nonsingular for all k.�Rs(k) = � s 10(k); � � � ; s 1d1�1(k)j � � �� � � js m0 (k); � � � ; s mdm�1(k) � (41)�Rs(k) an be written as�Rs(k) = � �Rd(k)�Rh(k) � (42)where, �Rd(k) 2 Rn�ns and �Rh(k) 2 R(ns�n)�ns are de�nedby �Rd(k) = � 10(k); � � � ; 1v1�1(k)j � � �� � � jm0 (k); � � � ; mdm�1 � (43)�Rh(k) = � rh 10(k); � � � ; rh 1d1�1(k)j � � �� � � jrh m0 (k); � � � ; rh mdm�1(k) � (44)Sine, the anti-ausal dual system is reahable in n steps,the rank of �Rd(k) is n, and, hene, there always exists the

matrix, �Rh(k), suh that the rank of �Rs(k) is ns for all k.Thus, as the previous setion, CTe (k)，AT3 (k)，and AT4 (k)an be obtained byCTe (k) = � rh 01(k + ns � 1) � � � rh 0m(k + ns � 1) �� AT4 (k) AT3 (k) � = �Rh+(k + ns � 1) �R�1s (k + ns):(45)Here, �Rh+(k) is de�ned by�Rh+(k) = � rh 11(k) � � � rh 1d1(k)j � � �� � � jrh m1 (k) � � � rh mdm(k) � (46)where rh 1d1(k),� � �, rh mdm(k) are arbitrarily determined param-eters.From the above, the anti-ausal augmented dual system,(38), has lexiographially-�xed reahability indies, di. Thus,using the pole plaement tehnique stated in the setion 2, thematrix HTs (k) an be obtained so that ATs (k)+CTs (k)HTs (k)is equivalent to some onstant matrix A�To whih has desiredonstant eigenvalues. i.e., there exists some transformationmatrix, Qs(k) 2 Rns�ns , suh thatQs(k + 1)fAs(k) + Cs(k)Hs(k)gQ�1s (k) = A�o (47)Hene, if Qs(k) is the Lyapunov transformation, (34) and (35)beomes the augmented observer, and e(k) and �(k) onvergeto 0. V. STABILITY OF THE TOTAL CLOSED LOOPIf the system (1), (2) has both of non-lexiographially-�xed reahability indies and non-lexiographially-�xed ob-servability indies, the augmented plant and the augmentedobserver are needed for the observer based pole plaement. Inthis setion, for suh a system, the stability of the total losedloop system and the separation priniple are onsidered.The augmented plant is (17), and the augmented observer is(34)，(35). Then, for the observer based pole plaement, thestate feedbak (29) is modi�ed tou(k) = � Dx(k) De(k) � � x̂(k)x̂e(k) � (48)where x̂(k) is the state estimation. In this state feedbak, x̂e(k)is used instead of xe(k), beause, in the seond equation of(17), x(t) should be replaed by x̂(k).Hene, the total losed loop system for this ase beomesas follows.2664 x(k + 1)x̂e(k + 1)x̂(k + 1)�(k + 1) 3775 = 2664 A BDe0 A1 +BeDe�HC BDeHeC 0BDx 0A2 +BeDx 0A+BDx +HC �A4 �HCe�HeC A3 +HeCe 37752664 x(k)x̂e(k)x̂(k)�(k) 3775(49)
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Using the transformation matrixT = 2664 I 0 0 00 I 0 0I 0 �I 00 0 0 I 3775 (50)the total system (49) is transformed into2664 x(k + 1)x̂e(k + 1)e(k + 1)�(k + 1) 3775 = 2664 A+BDx BDeA2 +BeDx A1 +BeDe0 00 0�BDx 0�A2 �BeDx 0A+HC A4 +HCeHeC A3 +HeCe 37752664 x(k)x̂e(k)e(k)�(k) 3775= � Ag +BgDg E0 As + CsHs �2664 x(k)x̂e(k)e(k)�(k) 3775 (51)where E(k) = � �B(k)Dx(k) 0�A2(k) +Be(k)Dx(k) 0 � : (52)In (49) and (51), the symbol �(k)� is omitted beause of thesmall spae.From the above, using the transformation matrix�(k) = � Pg(k) 00 Qs(k) � (53)the following relation is obtained.�(k + 1) � Ag(k) E(k)0 As(k) ���1(k)= � A� Pg(k + 1)E(k)Q�1s (k)0 A�o � (54)Thus, sine the system matrix of (49) is equivalent to theright hand side of (54), if. Pg(k) and Qs(k) are the Lyapunovtransformation matries, the total losed system is stable andhas a property of the separation priniple.VI. NUMERICAL EXAMPLEConsider the system (1), (2) withA(k) = 24 2 os(1:5k) 0 02 sin(1:5(k � 1)) 0 �22 sin(1:5k) 2 os(1:5k) 0 35 (55)B(k) = 24 1 00 1sin(1:5k) 0 35 (56)C(k) = � 12 os(1:5(k � 1)) 0 12 os(1:5(k � 1))0 12 0 �(57)This system has non-lexiographially-�xed reahabilityindies and non-lexiographially-�xed observability indies.

We design the observer based pole plaement for this system.Beause of the small spae, we use the following symbols, i.e.,S = sin(1:5k); S1 = sin(1:5(k � 1)); C = os(1:5k); C1 =os(1:5(k � 1))The reahability indies of this system is �1 = 2, �2 = 1or �1 = 1, �2 = 2. From this v1 = v2 = 2. The Augmentedplant equation (17) beomesxg(k + 1) = Ag(k)xg(k) +Bg(k)u(k) (58)8>><>>: xg(k) = � x(k)xe(k) �Ag(k) = � A(k) 0A2(k) A1(k) � ; Bg(k) = � B(k)Be(k) �where xg(k) 2 R4 and xe(k) 2 R1, andBe(k) = � �1 0 � (59)� A2(k) A1(k) � = � 2S2S21(C1 + 1) �2S�2C1S2S1 �2C21S2 � : (60)On the other hand, the observability indies of this systemis also �1 = 2, �2 = 1 or �1 = 1, �2 = 2. Then, the augmentedobserver beomesx̂(k + 1) = A(k)x̂(k) +B(k)u(k)�H(k)(y(k)� C(k)x̂(k))�(A4(k) +H(k)Ce(k))�(k) (61)�(k + 1) = A3(k)�(k) +He(k)(y(k)� C(k)x̂(k))+He(k)Ce(k)�(k): (62)Here, �(k) 2 R1 and CTe (k) = � 2 0 � (63)� AT4 (k) AT3 (k) � = � 0 0 0 0 � : (64)Using the following desired stable harateristi polynomialfor both of the pole plaement and the observerq1(z) = �12z2 + �11z + �10 = z2 + 0:4z � 0:05 (65)q2(z) = �22z2 + �21z + �20 = z2 + 0:4z � 0:05 (66)the simulation results are shown in Fig.1 and Fig.2.Fig.1 shows the response of the augmented system,[x(k); x̂e(k)℄ = [x1(k); x2(k); x3(k); x̂e(k)℄, and Fig.2shows the response of augmented state estimation error,[e(k); �(k)℄ = [e1(k); e2(k); e3(k); �(k)℄.VII. CONCLUTIONSIn this paper, the design proedure of the observer-based pole plaement for linear time-varying MIMO sys-tems is proposed. Espeially, the system is supposed to havethe non-lexiographially-�xed reahability indies and non-lexiographially-�xed observability indies. The total losedloop stability and the separation priniple are also established.
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Fig. 1. Response of the Augmented Plant of the Observer-Based PolePlaement Control for the non-lexiographially-�xed System
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