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Abstract— This paper is concerned with the problem of sta-
bility of systems with time-varying delay in a given interval. A
novel Lyapunov-Krasovskii functional is proposed to obtain new
stability conditions. Some triple integral terms are introduced
in the Lyapunov-Krasovskii functional and the information
on the lower bound on the delay are sufficiently used. New
delay-dependent stability criteria are derived using integral
inequalities and formulated in terms of linear matrix inequality
(LMI). Comparing numerical examples show that the proposed
criteria yield a larger upper bound on the delay for a given
lower bound on the delay than existing results.

I. INTRODUCTION

During the past few years, time-delay systems have been
an active research area. Much attention has been paid to
the stability and stabilization of time-delay systems. In a
practical system, time-delay often deteriorates the perfor-
mance of the system and even causes instability. Especially,
in networked control systems, there exist time-delays in
both the forward channel and the feedback channel, which
poses a negative effect on the stability and performance of
the systems and makes the systems difficult to analyze and
synthesize [1], [2], [3], [4], [5].

Stability criteria for time-delay systems in the literature
can be roughly classified into two categories. One is delay-
independent and the other is delay-dependent. Generally
speaking, delay-dependent stability conditions are less con-
servative than delay-independent ones. So, many researchers
specialize in developing less conservative stability criteria
for time-delay systems and some important results have been
obtained [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16]. Based on some model transformations, some stability
conditions for time-delay systems have been obtained in
[17], [18]. A descriptor system method was proposed in
[19], [20], [21] where a time-delay system is presented in
the form of a descriptor system. Combining the descriptor
system method with Park’s inequality [22] or Moon et. al’s
inequality [23] can yield much less conservative results.
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In order to further reduce the conservatism of stability
criteria, a free-weighting matrices method was proposed by
He et. al [24], [25], [26]. Some free-weighting matrices
are introduced by Leibniz–Newton formula to estimate the
upper bound of the derivative of the Lyapunov-Krasovskii
functional. Numerical examples illustrated that this method
can yield less conservative results than the descriptor system
method. In order to reduce the decision variables in the
stability criteria, Jensen’s inequality [27] was used to derive
stability results for time-delay systems. It has been proved
that results obtained by Jensen’s inequality are generally
equivalent to those obtained by descriptor system method
or free-weighting matrices method [28]. For the systems
with time-varying delay, [29], [30] reported that some useful
terms are ignored when estimating the upper bound of the
derivative of the Lyapunov functional, which can introduce
significant conservatism. Inspired by this observation, some
less conservative results were proposed in [29], [30], [31] by
taking into these useful terms account.

In the literature, the time-varying delay is often assumed
belong to a given interval, that is,

0 < h1 6 d(t)6 h2 (1)

However, the information on the lower bound of the delay
is not sufficiently used in the Lyapunov functional. For ex-
ample,

∫ t
t−h2

xT (s)Qx(s)ds and
∫ t

t−d(t) xT (s)Rx(s)ds are often
used as a part of the Lyapunov functional. The integral
upper limits of these terms are all t but not t − h1, which
may cause some conservatism just as proved in our previous
work [32]. Similarly, some double integral terms such as∫ −h1
−h2

∫ t
t+θ ẋT(s)Zẋ(s)dsdθ are often used as a part of the

Lyapunov functional. The inner integral upper limit is t
but not t − h1 which may also introduce some additional
conservatism. Observing this fact, a new Lyapunov func-
tional is proposed in this paper where the information on
the lower bound of the delay is sufficiently used, that is,
some terms like

∫ −h1
−h2

∫ t−h1
t+θ ẋT(s)Zẋ(s)dsdθ are used in the

Lyapunov functional. Furthermore, it has been shown in
[32] that introducing some triple-integral terms in Lyaounov
functional can significantly reduce the conservatism of the
obtained results. In this paper, a triple integral term like∫ −h1
−h2

∫−h1
θ

∫ t−h1
t+λ ẋT(s)Rẋ(s)dsdλdθ is introduced in the Lya-

punov functional. It should be noted that the upper limits
of s, λ and θ are t − h1, −h1 and −h1, respectively. In
this paper, a novel Lyapunov-Krasovskii functional which
contains some new triple-integral terms and sufficiently uses
the information on the lower bound of the delay is proposed.
Some new delay-dependent stability criteria are obtained us-
ing some integral inequalities. Numerical examples illustrates
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that results in this paper are significant improvements over
existing ones.

Notations: Throughout this paper, the superscripts ‘-1’
and ‘T’ stand for the inverse and transpose of a matrix,
respectively; Rn denotes an n-dimensional Euclidean space;
Rm×nis the set of all m×n real matrices; P> 0 means that the
matrix P is symmetric positive definite; I is an appropriately
dimensional identity matrix.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following linear system with time-varying
interval delay:

ẋ(t) = Ax(t)+A1x(t − τ(t)), t > 0
x(t) = ϕ(t), t ∈ [−τ2, 0] (2)

where x(t)∈Rn is the state vector; A∈Rn×n and A1 ∈Rn×n

are constant system matrices with appropriate dimensions;
The initial condition ϕ(t) is a continuously differentiable
vector-valued function; τ(t) is a time-varying differentiable
function and satisfies

0 < τ1 6 τ(t)6 τ2 (3)
τ̇(t)6 µ (4)

where 0 < τ1 < τ2, and 0 6 µ are constants.
Before moving on, the following integral inequalities are

introduced.
Lemma 1: [27], [32] For any constant matrix Z > 0 and

scalars τ2 > τ1 > 0 such that the following integrations are
well defined, then

(1)

−
∫ t−τ1

t−τ2

xT(s)Zx(s)ds

6−τ−1
12

∫ t−τ1

t−τ2

xT(s)dsZ
∫ t−τ1

t−τ2

x(s)ds

(2)

−
∫ −τ1

−τ2

∫ t−τ1

t+θ
xT(s)Zx(s)dsdθ

6−2τ−2
12

∫ −τ1

−τ2

∫ t−τ1

t+θ
xT(s)dsdθ Z

∫ −τ1

−τ2

∫ t−τ1

t+θ
x(s)dsdθ

where τ12 = τ2 − τ1.
The objective of this paper is to derive less conservative

delay-dependent stability conditions for system (2). Using
the obtained results, one can obtain a larger maximum upper
bound of the delay for a given lower bound of the delay.

III. MAIN RESULTS

In this section, some less conservative stability criteria
are developed. Before presenting the main results, we define
ξ (t) = col{x(t),x(t−τ(t)),x(t−τ1),x(t−τ2), ẋ(t−τ1), ẋ(t−
τ2),

∫ t
t−τ1

x(s)ds,
∫ t−τ1

t−τ(t) x(s)ds,
∫ t−τ(t)

t−τ2
x(s)ds}, and ei (i =

1,2, · · · ,9) are block entry matrices. For example, eT
7 =

[0 0 0 0 0 0 I 0 0].

Theorem 1: Given scalars 0 < τ1 < τ2, and 0 6 µ , if
there exist matrices P = [Pi j]5×5 > 0, Q = [Qi j]2×2 > 0, X =
[Xi j]2×2 > 0, S > 0, Z j > 0, j = 1, · · · ,4, R1 > 0, and R2 > 0
with appropriate dimensions such that the following LMIs
hold, then system (2) with a time-varying delay satisfying
(3) and (4) is asymptotically stable.

Θ1 = ΦPϒT +ϒPΦT +Λ+ΓTY Γ+ΓTQT
12eT

1

+ e1Q12Γ−
[

e4 e6
]

X
[

eT
4

eT
6

]
+
[

e3 e5
]
(X −Q)

[
eT

3
eT

5

]
− (e1 − e3)Z1(eT

1 − eT
3 )

−2(e2 − e4)Z2(eT
2 − eT

4 )− (e3 − e2)Z2(eT
3 − eT

2 )

− e8Z4eT
8 −2e9Z4eT

9 − (τ1e1 − e7)R1(τ1eT
1 − eT

7 )

− (τ12e3 − e8 − e9)R2(τ12eT
3 − eT

8 − eT
9 )< 0 (5)

Θ2 = ΦPϒT +ϒPΦT +Λ+ΓTY Γ+ΓTQT
12eT

1

+ e1Q12Γ−
[

e4 e6
]

X
[

eT
4

eT
6

]
+
[

e3 e5
]
(X −Q)

[
eT

3
eT

5

]
− (e1 − e3)Z1(eT

1 − eT
3 )

− (e2 − e4)Z2(eT
2 − eT

4 )−2(e3 − e2)Z2(eT
3 − eT

2 )

−2e8Z4eT
8 − e9Z4eT

9 − (τ1e1 − e7)R1(τ1eT
1 − eT

7 )

− (τ12e3 − e8 − e9)R2(τ12eT
3 − eT

8 − eT
9 )< 0 (6)

where

Φ = [e1 e3 e4 e7 e8 + e9]

ϒ =
[
ΓT e5 e6 e1 − e3 e3 − e4

]
Λ = diag{Q11 + τ1Z3, − (1−µ)S, +S+ τ2

12Z4, 0

τ2
12Z2 +

τ4
12
4

R2, 0, −Z3, 0, 0}

Γ = [A A1 0 0 0 0 0 0 0]

Y = Q4 + τ2
1 Z1 +

τ4
1
4

R1

Proof: Choose a Lyapunov functional as follows:

V (xt) = ρT(t)Pρ(t)+
∫ t

t−τ1

ζ T(s)Qζ (s)ds

+
∫ t−τ1

t−τ2

ζ T(s)Xζ (s)ds

+
∫ t−τ1

t−τ(t)
xT(s)Sx(s)ds

+
∫ 0

−τ1

∫ t

t+θ
τ1ẋT(s)Z1ẋ(s)dsdθ

+
∫ −τ1

−τ2

∫ t−τ1

t+θ
τ12ẋT(s)Z2ẋ(s)dsdθ

+
∫ 0

−τ1

∫ t

t+θ
τ1xT(s)Z3x(s)dsdθ

+
∫ −τ1

−τ2

∫ t−τ1

t+θ
τ12xT(s)Z4x(s)dsdθ
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+
∫ 0

−τ1

∫ 0

θ

∫ t

t+λ

τ2
1
2

ẋT(s)R1ẋ(s)dsdλdθ

+
∫ −τ1

−τ2

∫ −τ1

θ

∫ t−τ1

t+λ

τ2
12
2

ẋT(s)R2ẋ(s)dsdλdθ (7)

where ρ(t) = col{x(t), x(t − τ1),x(t − τ2),
∫ t

t−τ1
x(s)ds,∫ t−τ1

t−τ2
x(s)ds}, ζ (s) = col{x(s), ẋ(s)}.

Taking the derivative of V (xt) along the trajectory of system
(2) yields

V̇ (xt) = 2ρT(t)Pρ̇(t)
+ζ T(t)Qζ (t)−ζ T(t − τ1)Qζ (t − τ1)

+ζ T(t − τ1)Xζ (t − τ1)−ζ T(t − τ2)Xζ (t − τ2)

+ xT(t − τ1)Sx(t − τ1)

− (1−µ)xT(t − τ(t))Sx(t − τ(t))

+ τ2
1 ẋT(t)Z1ẋ(t)− τ1

∫ t

t−τ1

ẋT(s)Z1ẋ(s)ds

+ τ2
12ẋT(t − τ1)Z2ẋ(t − τ1)

− τ12

∫ t−τ1

t−τ2

ẋT(s)Z2ẋ(s)ds

+ τ2
1 xT(t)Z1x(t)− τ1

∫ t

t−τ1

xT(s)Z3x(s)ds

+ τ2
12xT(t − τ1)Z4x(t − τ1)

− τ12

∫ t−τ1

t−τ2

xT(s)Z4x(s)ds

+
τ4

1
4

ẋT(t)R1ẋ(t)

− τ2
1
2

∫ 0

−τ1

∫ t

t+θ
ẋT(s)R1ẋ(s)dsdθ

+
τ4

12
4

ẋT(t − τ1)R2ẋ(t − τ1)

− τ2
12
2

∫ −τ1

−τ2

∫ t−τ1

t+θ
ẋT(s)R2ẋ(s)dsdθ (8)

Using Lemma 1, it can be obtained that

−τ1

∫ t

t−τ1

ẋT(s)Z1ẋ(s)ds

≤−ξ T(t)(e1 − e3)Z1(eT
1 − eT

3 )ξ (t) (9)

−τ1

∫ t

t−τ1

xT(s)Z3x(s)ds

≤−
∫ t

t−τ1

xT(s)dsZ3

∫ t

t−τ1

x(s)ds (10)

−τ2
1
2

∫ 0

−τ1

∫ t

t+θ
ẋT(s)R1ẋ(s)dsdθ

≤−ξ T(t)(τ1e1 − e7)R1(τ1eT
1 − eT

7 )ξ (t) (11)

−τ2
12
2

∫ −τ1

−τ2

∫ t−τ1

t+θ
ẋT(s)R2ẋ(s)dsdθ

≤−ξ T(t)(τ12e3 − e8 − e9)R2(τ12eT
3 − eT

8 − eT
9 )ξ (t)(12)

let α = (τ(t)−τ1)/τ12 and use the similar method as in [31]

−τ12

∫ t−τ1

t−τ2

ẋT(s)Z2ẋ(s)ds

=−τ12

∫ t−τ(t)

t−τ2

ẋT(s)Z2ẋ(s)ds

− τ12

∫ t−τ1

t−τ(t)
ẋT(s)Z2ẋ(s)ds

=−(τ2 − τ(t))
∫ t−τ(t)

t−τ2

ẋT(s)Z2ẋ(s)ds

− (τ(t)− τ1)
∫ t−τ(t)

t−τ2

ẋT(s)Z2ẋ(s)ds

− (τ(t)− τ1)
∫ t−τ1

t−τ(t)
ẋT(s)Z2ẋ(s)ds

− (τ2 − τ(t))
∫ t−τ1

t−τ(t)
ẋT(s)Z2ẋ(s)ds

≤−ξ T(t)(e2 − e4)Z2(eT
2 − eT

4 )ξ (t)
−ξ T(t)(e3 − e2)Z2(eT

3 − eT
2 )ξ (t)

−αξ T(t)(e2 − e4)Z2(eT
2 − eT

4 )ξ (t)
− (1−α)ξ T(t)(e3 − e2)Z2(eT

3 − eT
2 )ξ (t) (13)

Similarly,

−τ12

∫ t−τ1

t−τ2

xT(s)Z4x(s)ds

≤−ξ T(t)
[
eT

8 Z4e8 + eT
9 Z4e9

]
ξ (t)

−αξ T(t)eT
9 Z4e9ξ (t)

− (1−α)ξ T(t)eT
8 Z4e8ξ (t) (14)

From (8)-(14), one can obtain

V̇ (xt)6 ξ T(t) [αΘ1 +(1−α)Θ2]ξ (t) (15)

Since 0 ≤ α ≤ 1, αΘ1 +(1−α)Θ2 is a convex combination
of Θ1 and Θ2. Therefore, αΘ1+(1−α)Θ2 < 0 is equivalent
to Θ1 < 0 and Θ2 < 0. If (5)-(6) are satisfied, then system
(2) is asymptotically stable.

Remark 1: A new kind of augmented Lyapunov function-
al is proposed in this paper to develop new delay-interval-
dependent stability criteria. Being distinguished from exist-
ing Lyapunov functionals, the one in this paper contains
some triple-integral terms which has been proved able to
reduce the conservatism of the obtained results effective-
ly. Furthermore, the information on the lower bound of
the delay is sufficiently used in the Lyapunov functional
by including the terms

∫ −τ1
−τ2

∫ t−τ1
t+θ τ12ẋT(s)Z2ẋ(s)dsdθ and∫−τ1

−τ2

∫−τ1
θ

∫ t−τ1
t+λ

τ2
12
2 ẋT(s)R2ẋ(s)dsdλdθ . It can be seen that

the integral upper limits of these terms are t −τ1 or −τ1. To
the best knowledge of the authors’, this kind of Lyapunov
functional has been never used in the literature. Numerical
examples will be given in the next section to show that such
a kind of Lyapunov functional can yield less conservative
results.

Remark 2: Using some integral inequalities and the idea
of the convex combination, new delay-interval-dependent
stability criteria are obtained without introducing any free-
weighting matrices. Therefore, the method proposed in this
paper may involve much less variables than the well-known
free-weighting matrices method and the descriptor system
method.
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In some circumstances, the information on the derivative
of the delay may not be always available or the delay is not
differentiable. For this case, the following corollary can be
derived from Theorem 1 by setting S = 0.

Corollary 1: Given scalars 0 < τ1 < τ2, and 0 6 µ , if
there exist matrices P = [Pi j]5×5 > 0, Q = [Qi j]2×2 > 0,
X = [Xi j]2×2 > 0, Z j > 0, j = 1, · · · ,4, R1 > 0, and R2 > 0
with appropriate dimensions such that the following LMIs
hold, then system (2) with a time-varying delay satisfying
(3) is asymptotically stable.

Θ̂1 = ΦPϒT +ϒPΦT + Λ̂+ΓTY Γ+ΓTQT
12eT

1

+ e1Q12Γ−
[

e4 e6
]

X
[

eT
4

eT
6

]
+
[

e3 e5
]
(X −Q)

[
eT

3
eT

5

]
− (e1 − e3)Z1(eT

1 − eT
3 )

−2(e2 − e4)Z2(eT
2 − eT

4 )− (e3 − e2)Z2(eT
3 − eT

2 )

− e8Z4eT
8 −2e9Z4eT

9 − (τ1e1 − e7)R1(τ1eT
1 − eT

7 )

− (τ12e3 − e8 − e9)R2(τ12eT
3 − eT

8 − eT
9 )< 0 (16)

Θ̂2 = ΦPϒT +ϒPΦT + Λ̂+ΓTY Γ+ΓTQT
12eT

1

+ e1Q12Γ−
[

e4 e6
]

X
[

eT
4

eT
6

]
+
[

e3 e5
]
(X −Q)

[
eT

3
eT

5

]
− (e1 − e3)Z1(eT

1 − eT
3 )

− (e2 − e4)Z2(eT
2 − eT

4 )−2(e3 − e2)Z2(eT
3 − eT

2 )

−2e8Z4eT
8 − e9Z4eT

9 − (τ1e1 − e7)R1(τ1eT
1 − eT

7 )

− (τ12e3 − e8 − e9)R2(τ12eT
3 − eT

8 − eT
9 )< 0 (17)

where Φ, ϒ, Y and Γ are the same as those defined in
Therom 1, and Λ̂ = diag{Q11 + τ1Z3, 0, τ2

12Z4, 0, τ2
12Z2 +

τ4
12
4 R2, 0, −Z3, 0, 0}.

Remark 3: When there are norm-bounded uncertainties in
system (2), Theorem 1 and Corollary 1 can be extended to
deal with this case following a similar method as in [9], [23].

IV. NUMERICAL EXAMPLES

In this section, some numerical examples are given to show
the effectiveness of the proposed method, that is, the method
in this paper can yield less conservative results than exiting
ones.

Example 1: Consider the following system [30], [31] with

A =

[
−2 0
0 −0.9

]
, A1 =

[
−1 0
−1 −1

]
.

For various µ and unknown µ , the maximum upper bounds
of the delay (MUBDs), τ2, for given lower bound, τ1, are
listed in Table I and II along with those obtained in [31],
[32]. It is easy to see from Table I and II that our method
can give less conservative results than those obtained in [31],
[32].

TABLE I
MUBDS WITH GIVEN τ1 FOR DIFFERENT µ FOR EXAMPLE 1

τ1 Methods µ = 0.3 µ = 0.5 µ = 0.9
[31] 2.6972 2.5048 2.5048

2 [32] 3.0129 2.5663 2.5663
Theorem 1 3.0168 2.6116 2.6116
[31] 3.2591 3.2591 3.2591

3 [32] 3.3408 3.3408 3.3408
Theorem 1 3.3932 3.3932 3.3932
[31] 4.0744 4.0744 4.0744

4 [32] 4.1690 4.1690 4.1690
Theorem 1 4.2054 4.2054 4.2054
[31] — — —

5 [32] 5.0275 5.0275 5.0275
Theorem 1 5.0440 5.0440 5.0440

TABLE II
MUBDS FOR VARIOUS τ1 AND UNKNOWN µ FOR EXAMPLE 1

Methods τ1 2 3 4 5
[31] τ2 2.5048 3.2591 4.0744 —
[32] τ2 2.5663 3.3408 4.1690 5.0275
Corollary 1 τ2 2.6116 3.3932 4.2054 5.0440

Example 2: Consider the following system [30], [31] with

A =

[
0 1
−1 −2

]
, A1 =

[
0 0
−1 1

]
.

Given different lower bounds, our objective is to calculate
MUBDs which keep the above system asymptotically stable.
Table III lists the results for µ = 0.6 and Table IV lists results
for unknown µ comparing those obtained in [31], [32]. It can
be seen that the results obtained in this paper are better than
those in [31], [32].

Example 3: Consider the following system [29] with

A =

[
−0.5 −2

1 −1

]
, A1 =

[
−0.5 −1

0 0.6

]
.

For various µ , the MUBDs for given lower bound, τ1, are
listed in Table V. In Table V results in [31], [32] are also
listed. It is easy to see that our results are less conservative
than those in [31], [32].

V. CONCLUSIONS

In this paper, the problem of the stability of linear systems
with time-varying interval delays has been investigated.
New delay-interval-dependent criteria have been developed
by introducing a new Lyapunov-Krasovskii functional and

TABLE III
MUBDS FOR VARIOUS τ1 AND µ = 0.6 FOR EXAMPLE 2

Methods τ1 0.3 0.5 0.8 1
[31] τ2 1.0715 1.2191 1.4539 1.6169
[32] τ2 1.0717 1.2198 1.4558 1.6198
Theorem 1 τ2 1.0948 1.2588 1.5135 1.6867

TABLE IV
MUBDS FOR VARIOUS τ1 AND UNKNOWN µ FOR EXAMPLE 2

Methods τ1 1 2 3 4 5
[31] τ2 1.6169 2.4798 3.3894 4.3250 5.2773
[32] τ2 1.6198 2.4884 3.4030 4.3424 5.2970
Corollary 1 τ2 1.6867 2.5750 3.4878 4.4193 5.3654
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TABLE V
MUBDS WITH GIVEN τ1 FOR DIFFERENT µ FOR EXAMPLE 3

τ1 Methods µ = 0.2 µ = 0.5 µ = 0.7
[31] 1.3831 1.1000 0.9513

0.3 [32] 1.7022 1.3043 1.0713
Theorem 1 1.7856 1.3261 1.1333
[31] 1.3843 1.1000 1.0289

0.5 [32] 1.8580 1.3940 1.1780
Theorem 1 1.9808 1.4216 1.2326
[31] 1.3863 1.1117 1.1115

0.7 [32] 2.0148 1.4665 1.2898
Theorem 1 2.1623 1.4933 1.3365
[31] 1.3918 1.2493 1.2493

1 [32] 2.2024 1.5214 1.4743
Theorem 1 2.3897 1.5709 1.5383

using the integral inequality technique and the idea of the
convex combination. Due to the new construction of the
introduced Lyapunov-Krasovskii functional and the sufficient
use of the information on the delay interval, our results are
less conservative than the existing ones. Some numerical
examples have illustrated that the method proposed in this
paper is efficient.
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