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Abstract—Event-based sampling allows saving energy in the
sensor transmitter by avoiding unnecessary messages. One im-
portant application is room temperature control with wireless
sensors. Optimizing the controller parameters of a PI controller
for this application is a difficult task, because usually no process
model is available and challenging issues like actuator saturation
have to be taken into account. Adaptive controllers offer the
possibility to tune themselves automatically. In this paper, an
adaptive PI controller based on pattern recognition is proposed,
designed for room temperature control, sensor energy efficiency,
and level-crossing sampling. The implementation is much easier
than that of most other adaptive controllers and robustness to
disturbances and noise is high. The focus of this paper lies
rather on the basic idea, simulations and practical issues than
on theoretical investigations.

I. INTRODUCTION

Room temperature control loops using wireless sensor net-
works allow high quality control with lower costs than using
wired sensors, especially if the building automation system
is not installed in the construction phase of the building.
Reduction of the energy consumption of the nodes is one of
the most investigated research issues in that field. Much energy
can be saved by reducing the message count because sending
messages requires much more energy than computing [1]. It
has been shown that level-crossing sampling (also called send-
on-delta, deadband, or Lebesgue sampling) allows a reduction
of messages compared to periodic sampling while assuring the
same control quality [2]. Therefore, level-crossing sampling
can be used in common commercial building automation
system technologies, e. g. LonWorks and EnOcean. The main
idea of level-crossing sampling is that a new message from the
sensor to the controller is only sent if the controlled (measured)
signal has changed from the last sent value at least by a
threshold Δlc:

|ym(tn)− ym(tn−1)| ≥ Δlc (1)

where ym(t) is the measured signal, and tn and tn−1 are two
subsequent time instances at which a message is sent. Usually
the sensor wakes up periodically, measures then the current
value of the controlled variable (here: room temperature) and
decides according to (1) whether a message has to be sent [2].

Adaptive control allows near-optimal control without man-
ual process identification because the controller sets its pa-
rameters itself based on available information from past con-
trol actions. Additionally, adaptive controllers change their

parameters automatically if the process changes. This allows
to install an untuned controller in each room of a building, and
after start-up each controller optimizes itself according to the
room it has to control. This allows cost reductions compared
to manual tuning and higher control performance than using
always-working, safe, but conservative settings.

Possible reasons for differences between the rooms are the
varying room size, wall material, window area, leaking doors
or windows, heating and cooling equipment, duct architecture,
sensor/actuator location and sensor inertia. Reasons for process
changes are variations of the flow temperature from the central
heat generator, larger changes of furniture (energy storages),
refurbishments (e. g. new windows, new façade insulation),
sensor/actuator replacement, variations of the air flow, and
changes in the HVAC (heating, ventilation and air condition-
ing) system.

The main contribution of this paper is an adaptive control
algorithm for usage with level-crossing sampling and special
emphasis on typical problems of room temperature control,
i. e. actuator saturation, typical disturbances, and processes of
unknown order. The goal of the adaptation is good control
performance in combination with energy efficiency of the
sensor. The focus of this paper is the basic idea, practical
problems and simulation results; a more theoretical investiga-
tion is currently done by the authors.

This article is structured as follows. Section II gives
an overview on possibilities for adaptive control based on
nonuniformly sampled signals. Section III defines precisely
the objective of the adaptive controller. Improvements over
an older tuning rule are presented in section IV. The new
adaptive controller is explained in section V. The approach is
verified using simulations in section VI. While the algorithm is
based on reference step responses, in section VII disturbance
compensation is briefly discussed. Finally, section VIII draws
the conclusions.

II. OVERVIEW: POSSIBILITIES FOR ADAPTIVE CONTROL
WITH LEVEL-CROSSING SAMPLING

To the authors’ knowledge, there are only few works to-
wards adaptive control with nonuniform sampling. Pawlowski
et al. used a gain-scheduling controller based on outside
temperature and outside wind speed together with several
event-based sampling schemes for controlling the temperature
in a greenhouse [3]. Dormido et al. published an autotuner
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based on a relay test with level-crossing sampling [4]. But, it
cannot be used without interrupting the usual control action.
Wang and Hovakimyan presented an L1 Adaptive Controller
for an event-based, but not level-crossing sampling scheme [5].

A usual adaptive controller consists of one component
identifying the process and another component for tuning the
controller based on this process model [6]. In combination
with level-crossing sampling the task can be split in the
process identification for nonuniformly sampled signals and
a separate PI controller tuning rule based on the identified
model. A tuning rule for the latter point has been given by the
authors [7].

In literature, there exist three basic approaches for process
identification using nonuniformly sampled signals:

1) Resampling/interpolation followed by the application of
methods for uniformly sampled signals.

2) Approximate Fourier transform and application of meth-
ods based on the frequency spectrum.

3) Identification of continuous-time ARMA (auto-
regressive moving average) models.

All these possibilities are quite complex and computationally
expensive [8]–[10]. Besides, the usual adaptation methods for
periodically sampled signals have strong disadvantages [6],
[11], e. g. if the time delay or process order is not known
in advance or if there are larger disturbances. Unfortunately,
these issues are unavoidable in room temperature control. Even
critical effects like bursting [12] or instability are possible. In
addition to the methods above, there are many well known
simple graphical approaches based on the open-loop step
response, but these cannot be applied in closed loop what is
necessary for an adaptive controller.

However, there are some approaches for adaptive control
which do not need a detailed model and are thus also inde-
pendent of the sampling scheme: Model free adaptive control
and pattern recognition based adaptive control.

In Model-free adaptive control a sensitivity function is
estimated from measured data and the controller output is
computed using a simple learning algorithm [13]–[15] or an
artificial neural network [16], [17]. Tuning the parameters
of these methods (e. g. special learning parameters of the
prevailing method, or security parameters for avoiding division
by zero) is difficult, especially without a process model,
because the optimal learning parameter settings depend on the
controlled process while the final adapted parameters depend
on the learning parameters. The meaning and magnitude of
these parameters is not comprehensible for non-experts.

Pattern recognition based adaptive control imitates the
procedure which a skilled control engineer would perform if
there would be the task to improve a running but insufficiently
tuned control loop without building a model of the process.
The common part of these algorithms is that the first step is
to extract special features from the measured signals. Pattern
recognition based adaptive controllers usually update the con-
troller parameters not permanently but only after significant
events like set-point changes or larger disturbances. Some

authors avoid therefore the name “adaptive” and use “auto-
tuning” instead [18]. However, the problem with the term
“auto-tuning” is that most commercially available auto-tuning
controllers update their parameters not regularly but only when
the user starts a procedure, mostly an open-loop experiment.

Note that the term “pattern recognition” is more known
for classification and grouping of patterns [19] what is not
done in any of the algorithms itemized below. However, as
most authors of such control algorithms use the term “pattern
recognition” [18], [20]–[24], that is also done in this paper.

The first one who made pattern based adaptive control
popular was Bristol in 1977 [20]. This controller ignores the
dynamics of the process and is thus relatively slow.

Seif modeled the transients by a set of elementary patterns
without giving details about the adaptation rules [21].

Seem proposed a control algorithm where the changes of
the PI controller parameters are described as functions of
two features of the closed-loop set-point or disturbance step
response [22], [23]. Some details of Seem’s algorithm need
periodic information of the current process output and are
therefore not suitable for nonuniform sampling, but the basic
idea can be transferred to level-crossing sampling. Seem’s
algorithm is optimized to minimize IAE (integral of absolute
error) instead of considering also sensor energy efficiency.
Seem spent much attention on reaching robustness for many
practically important special cases of HVAC control. The
algorithm has been used successfully in more than 500,000
controllers [23].

Morilla et al. published a multi-step approach for PID
controllers [18]. The results are good, but unfortunately some
practically important aspects like disturbances and actuator
saturation have not been considered. Some of their used
features of the step-responses (e. g. decay ratio and oscillation
period) are practically not measurable with level-crossing
sampling and sensitive to disturbances and measurement noise.

INTUNE is a commercial adaptive controller using pat-
tern recognition for updating the parameters of a PID con-
troller [25]. To the authors’ knowledge, the details of the
adaptation rules have not been published.

Segovia et al. proposed a simple iterative pattern based PID
controller scheme [24] roughly based on the Ziegler/Nichols
tuning rule, but they gave only a tuning rule for oscillatory
step responses. Furthermore, they did not write anything about
actuator saturation or disturbances.

III. ASSUMPTIONS AND OBJECTIVE

This paper deals with the control loop shown in Fig. 1 where
ym(t) is the signal measured by the sensor (process output
yp(t) with disturbance d(t)) and yc(t) the signal which is
sent to the controller. w(t) is the set-point or reference signal,
ec(t) = w(t) − yc(t) the control error and uc(t) the control
signal (manipulated variable) which is sent to the actuator. The
actuator uses a zero-order hold and its output is called up(t).
For ease of notation, a distinction between continuous-time
and discrete-time signals has been avoided here.
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Fig. 1. Control loop with battery-powered sensor device.

In contrast to this control loop, some other authors integrate
sensor and controller in one device and transmit the control
signal to the actuator using level-crossing sampling [26]. The
advantage of separating the sensor from the controller is that
the sensor does not need a receiver or display (for editing the
current set-point, weekly schedules or controller parameters)
and can therefore save much energy. The actuator usually
needs far more energy anyhow as well as it must power a
receiver for getting the sensor messages and so the energy
consumption of the controller and display is less critical.

For describing the algorithm, the process is assumed to be
a FOLPD (first order lag plus time delay) process

G(s) =
Yp(s)

Up(s)
=

Km

1 + sTm
e−sτ (2)

with proportional action coefficient Km, time constant Tm,
and time delay (deadtime) τ . The ratio

η :=
τ

Tm
(3)

is called degree of difficulty [27]. Practical ranges of these
parameters for room temperature processes can be found e. g.
in [27] where one should keep in mind that variations could
be larger, especially for Km caused by variations of flow
(supply) temperature. Nevertheless, the proposed algorithm is
not limited to this process type because it does not need to
know or identify any time constant directly. The physics of
rooms (room airflow) is such complex that it theoretically
cannot be modeled adequately by a transfer function (or a
differential equation) [28]. The proposed controller has to deal
with these issues.

PI and PID controllers are the by far mostly used controllers
in industry [29], [30]. The basic continuous-time PI controller
is given by

R(s) =
Uc(s)

Ec(s)
= KP

(
1 +

1

TIs

)
(4)

with proportional action coefficient KP and reset time TI .
PI(D) controllers have also been used successfully in an

event-based fashion [2], [7], [31]. The PI algorithm which is
used in this paper is taken from [7], only enhanced by anti-
reset windup. Derivative action has not been used. This will
be explained later using results of the presented investigations.
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TI,max
TI,opt=TI,min

Fig. 2. Minimum (optimal) and maximum value of TI as a function of
Ko for avoiding oscillations for the example of Tm = 1 and τ = 0.2, with
continuous-time control.

A cost function which helps to design the adaptive controller
is the product

JProd := Nsc · JISE (5)

of the number Nsc of messages from the sensor to the con-
troller and the control quality measured as Integral of Squared
Error (ISE) JISE . The adaptation should reach small values of
JProd as this is a hint for a good trade-off between message
number and control performance. More detailed reasons for
this choice are discussed in [7].

IV. IMPROVED TUNING RULE

In [7] it has been shown that for minimzing JProd at step
responses, large oscillations should be avoided and—in an
ideal case (no actuator saturation, FOLPD process)—a suitable
tuning rule is

KP =
0.468

Km · η , (6a)

TI = Tm. (6b)

But, typical challenges in room temperature control are
actuator saturation, large time-variable (but not step-wise)
disturbances, and processes of unknown order. As stated in [7],
the tuning rule (6) is not optimal in these cases. Simulations
confirm that ignoring these problems leads to poorly tuned
control loops. This section thus presents some improvements
over tuning rule (6).

A. Oscillating step responses

As the goal is to avoid oscillating step responses, it is
interesting to know for which KP that is possible at all. If
the open-loop gain Ko, which is defined as

Ko := KP ·Km, (7)

is greater than a limit Ko,max(η), there are oscillations,
independent of the selection of the reset time TI , see an
example in Fig. 2. Fig. 3 shows the maximum Ko,max as
a function of η, found by simulations. The simulation uses
continuous-time control to reach idealized results, what is
similar to an infinitesimally small threshold Δlc. For numerical
reasons a deadband around the set-point should be defined in
which the control loop is allowed to oscillate for avoiding too
conservative results. This has been set to 1 % of the step width.
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Fig. 3. Ko,max as a function of η for a deadband of 1 % and the optimal
setting of TI , normalized to Tm. Also Ko,rule according to tuning rule (6)
is shown as well as the ratio of Ko,max and Ko,rule.

The conclusion for avoiding oscillating step responses is

KP

!≤ Ko,max(η)

Km
. (8)

KP according to (6a) lies near to the curve for a deadband of
1 % (see Fig. 3) and gives therefore nearly the fastest response
with no more than 1 % overshoot.

B. Actuator saturation

The immediate change of the controlled variable up(t)
caused by proportional action after a stepwise reference
change Δw can be calculated by

Δuprop = KP ·Δw. (9)

Since in real applications up(t) is bounded between 0 and 1
(valve fully closed to valve fully opened), it is useless to set
KP higher than 1/Δw because of actuator saturation. That
means

KP

!≤ 1

|Δw| . (10)

An illustrative example: Assumed that the reference change
for night setback is Δw = −5K. So, each KP > 0.2
would result in immediate actuator saturation. Of course,
increasing KP does not degrade control performance at step
responses (because it has little influence if the stability limit
is not exceeded), but high KP will lead to many messages in
“steady state” without improving control performance as will
be discussed in section VII.

Note that the fulfillment of (10) does not guarantee that
there is no actuator saturation, because that depends on the
value of up before the set-point change as well as on integral
action.

Besides, derivative action (a PID controller) increases actu-
ator action and hence also actuator saturation. Thus, it is at
step responses reasonable to do without derivative action.

C. New tuning rule

The proposed tuning rule for KP is the combination of (8)
and (10)

KP = min

(
1

|Δw| ,
Ko,max(η)

Km

)
(11)

As (6a) approximates Ko,max(η)/Km quite well, the rule can
be approximated by

KP ≈ min

(
1

|Δw| ,
0.468

Km · η
)
. (12)

No rule for setting TI is given here because iterative
optimization is used in the proposed adaptive controller.

V. PROPOSED ADAPTATION STRATEGY

This section presents the new adaptation strategy.

A. Used patterns

Only reference step responses are taken to analyze the pro-
cess behavior. In a typical office building, reference changes
occur twice a day: Once in the morning and once in the
evening because of night setback. In residential buildings,
there are often four reference changes because the set-point
is higher only in the morning and in the evening. So, there
are at least two step responses a day at which the controller
parameters can be optimized.

The precondition for benefiting from an adaptive controller
is that the process does not change faster than the adaptation
can follow. Faster changes are regarded as belonging to the
disturbances. However, the sources of process changes which
have been itemized in section I do not change significantly
during one day (or they change fast but only seldom, like
on refurbishment). Only considering the variation of the flow
temperature may be advantageous, what could be done via
gain scheduling [3], [32].

Some other authors used also step-wise disturbances for
updating the controller parameters [22], [24]. However, since
significant step-wise load changes do not often occur in
practical room temperature control, only set-point changes are
considered here.

B. Proportional action coefficient KP

As
Km = G(0) =

Yp(0)

Up(0)
, (13)

and assuming a constant disturbance d, Km can be calculated
from two pairs (up[k], yp[k] + d) measured in “steady state”
with different values of up[k]. So, after each closed-loop step
response, when the process is again in “steady state”, Km is
estimated by

Km =
(yp(ts) + d)− (yp(t0) + d)

up(ts)− up(t0)
≈ yc(ts)− yc(t0)

uc(ts)− uc(t0)
(14)

where t0 is the step time (or shortly before) and ts is the time
when steady state is (assumed to be) reached after the step re-
sponse. This method is relatively robust to measurement noise
but in the case of slowly varying loads d(t) the estimation gets
inaccurate. If (ts − t0) is chosen too small, the “steady state”
may not yet have been reached, leading to more inaccurate
estimation of Km. Contrary, if (ts − t0) is chosen too large,
load changes can get more influence on the results. In the
simulations of section VI (ts − t0) has been set to one hour.
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After estimating Km, (12) is applied to compute KP .
Unfortunately, η depends on τ and Tm which are hard to
estimate in closed loop under noisy conditions with time-
variable load and significant threshold Δlc. Instead, an upper
limit ηmax can be used which is the greatest degree of
difficulty which is expected to occur. According to [27], for
room temperature control ηmax is 0.3. If η of the real process
is lower than ηmax, KP is lower than necessary, but the reset
time TI will be adjusted (reduced) to improve the control loop
performance, see section V-C. The authors are working on
more sophisticated solutions, but simulations show that this
simple solution works well, too.

C. Reset time TI

As announced in section IV-C, an iterative method is used
for updating TI , i. e. the reset time is updated after each set-
point change based on the measured overshoot. The overshoot
hr is a monotonically decreasing function of TI , see some
examples in Fig. 4(a). This is intuitively clear because the
higher the reset time TI , the slower is the response and the
less the set-point is exceeded before the controller can react
on the overshoot. The basic idea for adaptation is:

• If there is (too much) overshoot, increase the reset time.
• If there is no (or too little) overshoot, decrease the reset

time.
Because of (12) it is guaranteed that there is a setting of TI

without oscillations (in the case of an ideal FOLPD process,
continuous-time control and no disturbances).

The step width for updating TI must be defined. Simple
learning algorithms (similar to first order low-passes) could be
used, comparable to [13], [22], [24], but it is possible to apply
more specific algorithms. An initial attempt is given in the
following; more sophisticated solutions as well as theoretical
analysis are part of current research of the authors.

Let TI,opt define the smallest possible reset time without
overshoot. Fig. 4(a) shows some examples for the overshoot
hr as a function of TI/TI,opt using continuous-time control.
The qualitative curves of Fig. 4(b) substantiate the assumption
that the overshoot can be approximated by

hr ≈
{

γ ·
(

TI,opt

TI
− 1

)
, if TI < TI,opt

0, otherwise,
(15)

The proportionality constant γ is discussed later.
Equation (15) can be used to calculate TI,opt based on the

measured overshoot hr,old > 0 and the appropriate reset time
TI,old:

TI,new = TI,opt =

(
1 +

hr,old

γ

)
· TI,old. (16)

If there is no overshoot, it is only known that the reset time
should be reduced, but not how much. However, from (15) a
maximum step width can be calculated with the requirement
that the overshoot after the update must not exceed a given
limit hr,max. The important case is TI,old = TI,opt, because a
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Fig. 4. Overshoot hr as a function of reset time TI , normalized to TI,opt

(and inverse) for several η and Ko = 1.5.
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Fig. 5. γ as a function of η and Ko for idealized conditions: Continuous-time
control, FOLPD process, no disturbances, no actuator saturation.

reduction of TI will then result in the highest overshoot. The
rule for updating is

TI,new =
1

1 +
hr,max

γ

· TI,old. (17)

The greater hr,max is chosen, the faster the algorithm con-
verges to less conservative settings. hr,max can be reduced
after finding a rough estimation of TI,opt, e. g. after the first
step-response with overshoot happened.

The remaining task is to find the appropriate value of γ. This
parameter depends on η, Ko, Δlc, the real process order, and
actuator limits. Additionally, the measured overshoot hr,old

can be adulterated with disturbances and other effects, in
particular when using level-crossing sampling where the exact
overshoot cannot be measured. Similarly to [22] a low-pass
filter could be used for reducing influences of disturbances,
but filter design is difficult if the process parameters can
vary over a wide range, especially with nonuniform sampling.
Fortunately, it is not very important to know an exact value
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Fig. 6. Simulation over five days with level-crossing sampling and measurement noise.

of γ because of the iterative method—if γ is chosen too
high, only the convergence rate is degraded. Thus, a worst
case estimation is enough. Fig. 5 shows γ as a function of
Ko and η under the idealized assumptions of continuous-time
control, a FOLPD process, no disturbances and no actuator
saturation. According to this graphic and assuming that in
room temperature control η < 0.3 holds [27], the worst case
to be expected is γ ≈ 0.3. This value has also been found to
work well in simulations.

Step responses with too little overshoot and actuator sat-
uration must not be used for updating TI , because the too
little overshoot may result from actuator saturation and not
from sluggish tuning. This is no problem, since the controller
knows whether the actuator limits (0 or 1) have been reached
in the last step response.

This iterative method allows adaptation without estimating τ
and Tm what would be difficult with level-crossing sampling
and disturbances. It also improves the tuning results in the
case of unknown process order where (6) leads to suboptimal
results [7].

D. Initial settings

The initial settings of KP and TI should be based on the
most critical process to be expected. This is the maximum
of each parameter η, Km, and τ , i. e. for room temperature
control according to [27] η = 0.3, τ = 0.05 h, and Km =
10K. KP can then be set using (12) and (with regard to [7])
TI to Tm, i. e. TI = 0.5 h.

In result, the first step response is stable. In most cases (all
but the most critical case) the response will be too sluggish.
After each step response, KP is updated using (12) and (14)
as well as TI is reduced according to (16). The responses get
faster until overshoots occur. Then TI is increased using (17).

VI. SIMULATIONS

Fig. 6 presents a simulation over five days using a process
with Tm = 0.15 h, Km = 7K, and τ = 0.01 h. The
disturbances (this is the room temperature without heating,
i. e. up(t) ≡ 0) are based on measurements taken from
an office building which was built in 2005, having a heat
energy consumption of 34 kWh/m2a. By setting Δlc to 0.3 K
(see section VII) and applying night setback of 4 K, an
overshoot of 7.5 % (0.3K/4K) must be accepted because of
level-crossing sampling. The internal sampling period of the
sensor is 0.005 h.

As this is not the “most critical” of expectable processes,
the first step response is slower than necessary, shown detailed
in Fig. 7(a). Fighting against that, the adaptation algorithm
estimates Km, updates KP and reduces TI . The negative set-
point changes cannot be used for pattern recognition, because
actuator saturation without overshoot occurs (the valve is fully
closed). The second rising edge is significantly faster than
the first, Fig. 7(b). The third even has (too much) overshoot,
Fig. 7(c). So, the adaptation algorithm increases the reset time.
The fourth step response has less overshoot, Fig. 7(d), but due
to the inexact adaptation method, also this step response has
too much overshoot and the reset time is further increased.
The fifth set-point change is as desired.

VII. DISTURBANCE COMPENSATION

The tuning rules (6) and (12) are exclusively based on step
responses. But, it is interesting how the parameters should
be chosen in “steady state” when only disturbances have to
be compensated. To the authors knowledge, until now only
limit cycles have been studied in several publications (e. g. [2],
[33]). Limit cycles are periodic movements of the controlled
variable between two or more sampling levels which often
occur in “steady state”, especially because of integral action,
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Fig. 7. The five first rising edge step responses with level-crossing sampling
and measurement noise. The dots are sampling instants, i. e. level crossings.

and that results in an unpleasant high message rate without im-
proving control performance. But, if disturbances lead to level
crossings (and therefore messages) anyhow, the importance of
avoiding limit cycles is reduced.

The disturbance is equal the room temperature without
heating or cooling, i. e. up(t) ≡ 0. The main reasons for
disturbances are time-varying heat flows to or from the outside
which depend on the outside temperature, sunlight, and room
utilization (how many persons and machines are creating heat).
These influences do not lead to any step-wise changes of
the room temperature. It is well known from experience and
measured in the office building considered in section VI that
without heating the room temperature is a slowly varying
signal, usually periodic with the minimum after midnight
and the maximum after noon. The amplitude depends on the

outside temperature, sunlight, and room utilization and does
thus change from day to day. In this section, for theoretical
investigations disturbances are assumed to be of the form

d(t) = A · sin
(

t

24 h

)
, (18)

that means a sinus curve with a period of one day and an
amplitude A.

Simulations show that the PI controller parameter settings
minimizing (5) depend on the ratio a of the disturbance
amplitude A and the threshold Δlc which is defined as

a :=
A

Δlc
. (19)

The practical bounds of a are of interest. Since humans usually
do not feel temperature changes smaller than 0.3 K there is no
need to set Δlc significantly smaller than this value—even if it
would allow a smaller value for the cost function (5) because
of smaller ISE, the occupants would not notice it while the
message rate (and therefore energy consumption) would be
unnecessarily high, and also the costs for a sensor measuring
such exactly would be high. Besides, the temperature varia-
tions inside one room because of stratification and bordering
spaces are significantly greater than 0.3 K [28]. The amplitude
A can be expected to be lower than 5 K (very old buildings
with poor insulation), for modern, well insulated buildings
lower than 1.5 K. So, a can be expected to be lower than
17 (5 K/0.3 K), often lower than 5 (1.5 K/0.3 K).

Simulations show that for such small values of a the cost
function (5) can be optimized by considerably reducing KP

compared to the value got by (6a) because reducing KP

increases the period of limit cycles and hence decreases the
message number and energy consumption. As the temperature
set-point trajectory correlates roughly with the disturbance (at
noon higher than at midnight) the necessary control action is
further reduced.

This fact can be used to improve the tuning rule in “steady
state” by simply adding a factor κ, getting

KP =
0.468 · κ
Km · η . (20)

Optimal values of κ as a function of a and η found by
simulations can be seen in Fig. 8. The optimal κ rises with a
because for higher a a higher KP can improve the ISE more
significantly than for lower values of a.

κ could be realized in the controller by using a second
degree of freedom (set-point weighting).

Note that using derivative action of a PID controller would
lead to stronger actuator action and faster oscillations (more
messages) without improving control performance.

Unfortunately, since a and η are neither known a priori nor
estimated on-line, the formula cannot be applied. Automat-
ically finding values of κ suitable for each controlled room
is another part of current research of the authors. Additional
sensors, e. g. for outdoor temperature, room occupancy, and
illumination, can help estimating a. Weather forecasts promise
even better results. However, these solutions are much more
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and disturbance to threshold ratio a. Simulation parameters are Tm = 0.3 h,
Km = 10, TI = Tm and Δlc = 0.3K. Minimum inter sample intervals [7]
and actuator saturation have not been taken into account.

expensive than a simple single-loop controller like the pro-
posed one.

VIII. CONCLUSION

A pattern-based adaptive controller designed for level-
crossing sampling and room temperature control has been
presented. Simulations show that the algorithm can deal with
typical problems of this kind of control loop. Also several
points for future research have been pointed out, including
practical improvements, theoretical analysis and less conser-
vative assumptions.
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