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Abstract—For selection of controlled variables (CVs) in self-
optimizing control, various criteria have been proposed in the
literature. These criteria are derived based on local linearization
of the process model and the necessary conditions of optimality
(NCO) at a nominally optimal operating point. Recently, a novel
CV selection framework has been proposed by Ye et al. [1] by
converting the CV selection problem into a regression problem to
approximate the NCO globally over the entire operation region.
In this approach, linear combinations of a subset of available
measurements are used as CVs. The subset selection problem is
combinatorial in nature redering the application of the globally
optimal CV selection method to large-scale processes difficult.
In this work, an efficient branch and bound (BAB) algorithm
is developed to handle the computational complexity associated
with the selection of globally optimal CVs. The proposed BAB
algorithm identifies the best measurement subset such that the
regression error in approximating NCO is minimized. This
algorithm is applicable to the general regression problem. The
efficiency and effectiveness of the proposed BAB algorithm is
demonstrated through a binary disdillation column case study.

I. INTRODUCTION

The selection of controlled variables (CVs) from available
measurements is an important task during the design of control
systems. For CV selection, several methods have been pro-
posed in the literature. Skogestad [2] introduced the concept of
self-optimizing control for selection of CVs based on process
economics. In this approach, CVs are selected such that in
presence of disturbances, the loss incurred in implementing
the operational policy by holding the selected CVs at constant
setpoints is minimal, as compared to the use of an online
optimizer. The advantages of self-optimizing control approach
for CV selection has been demonstrated through several case
studies; see e.g. [3] for an overview.

The choice of CVs based on the general non-linear for-
mulation of self-optimizing control requires solving large-
dimensional non-convex optimization problems [2]. To quickly
pre-screen alternatives, exact local methods with worst-
case [4] and average loss minimization [5] have been proposed.
These local methods are useful for selecting a subset or linear
combinations of available measurements as CVs, where the
latter approach provides lower losses. Recently, explicit solu-
tions to the problem of finding locally optimal measurement
combinations have been proposed [6], [5], [7]. Hu et al. [8]
have proposed a local method to explicitly handle the input

and output constraints during CV selection.
The available CV selection criteria are derived based on

local linearization of the process model. Recently, a globally
optimal CV selection framework has been proposed by Ye et
al. [1], [9]. In this framework, the CV synthesis problem is
converted into a regression problem using CVs as measure-
ment combinations to approximate the Necessary Conditions
of Optimality (NCO) globally over the entire operation region.
It has been proven that the average loss is globally minimized
when the regression error is minimal over the entire operation
region and the measurement combinations as CVs are perfectly
controlled at zero. A number of linear and nonlinear regression
models have been proposed to approximate the NCO. Case
studies showed that all these models are able to significantly
reduce the loss, as compared to using CVs designed by using
existing local methods.

In general, CV selection is a combinatorial problem. For
selection of individual measurements as CVs, a number of
efficient branch and bound (BAB) approaches, called bidi-
rectional BAB (B3), have been developed for various local
criteria to address the combinatorial issue [18], [10], [11].
These BAB algorithms are not required for the selection of
individual measurements as globally optimal CVs, as the se-
lection is not combinatorial any more because approximations
of individual gradients are not correlated and can be solved
separately. However, to select measurement combinations, the
combinatorial difficulty still exists for the global CV selection
problem.

It is known that the use of combinations of a few measure-
ments as CVs often provide similar loss as the case where
combinations of all available measurements are used [6], [5],
[7], [9]. Though the former approach results in control struc-
tures with lower complexity, it gives rise to a combinatorial
optimization problem involving selection of measurements,
whose combinations can be used as CVs. For local self-
optimizing control methods, partially bidirectional BAB (PB3)
methods have been proposed to solve this combinatorial prob-
lem efficienctly [10], [11]. In this work, the framework is
further extended to measurement subset selection for synthesis
of globally optimal CVs chosen as linear combinations of
measurements. It is proven that the selection criterion is
equivalent to a quadratic problem, for which a standard BAB
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algorithm [12] exists. The standard algorithm is improved into
a downwards BAB algorithm. The efficiency and effectiveness
of the proposed BAB algorithm is demonstrated through a
distillation case study [13].

II. LOCAL METHODS FOR SELF-OPTIMIZING CONTROL

Consider that the steady-state economics of the plant is
characterized by the scalar objective function J(u, d), where
u ∈ Rnu and d ∈ Rnd are inputs and disturbances, respec-
tively. The optimal operation policy is to update u according
to d, which usually requires the use of an online optimizer.
For this case, let the optimal value of the objective function
be denoted as Jopt(d). A simpler strategy involves indirect
adjustment of u using a feedback controller. In this case, the
feedback controller manipulates u to hold the CVs c close
to their specified setpoints. Here, in addition to d, J is also
affected by the error e in implementing the constant setpoint
policy, which results due to uncertainty and measurement
noise. The suboptimal objective functional value under the
second strategy is denoted as Jc(e, d). Then, the worst-case
and average losses due to the use of the suboptimal strategy
are given as

Worst-case loss = max
e∈E

max
d∈D

(Jopt(d)− Jc(e, d)) (1)

Average loss = E[Jopt(d)− Jc(e, d)] (2)
(3)

where D and E represent the sets of allowable disturbances and
implementation errors, respectively, and E is the expectation
operator. Self-optimizing control is said to occur, when we can
achieve an acceptable loss by holding the CVs close to their
setpoints without the need to reoptimize when disturbances
occur [2]. Based on this concept, the appropriate CVs can be
selected by comparing the losses for different alternatives.

As mentioned earlier, the use of nonlinear formulation of
self-optimizing control is difficult. Hence, some local methods
were developed to estimate the losses defined in (1) and (2)
by linearising the process model around the normally optimal
operating point as follows:

y = Gy u+GydWd d+We e (4)

where y ∈ Rny denotes the process measurements and e ∈
Rny denotes the implementation error, which results due to
measurement and control errors. Here, the diagonal matrices
Wd and We contain the expected magnitudes of disturbances
and implementation error, respectively. The CVs c ∈ Rnu are
given as

c = H y = Gu+GdWd d+HWe e (5)

where H is a selection or combination matrix and

G = H Gy, Gd = H Gyd (6)

It is assumed that G ∈ Rnu×nu is invertible. This as-
sumption is necessary for integral control. When d and e are
assumed to be uniformly distributed over the set∥∥∥[ dT eT

]T∥∥∥
2
≤ 1 (7)

the local worst-case and average losses are given as [4], [5]:

Lworst(H) = 0.5σ̄2
(
J1/2
uu (H Gy)−1H Y

)
(8)

Laverage(H) =
1

6(ny + nd)

∥∥∥J1/2
uu (H Gy)−1H Y

∥∥∥2
F

(9)

where σ̄ and ‖ · ‖F denote the maximum singular value and
Frobenius norm, respectively, and

Y =
[

(Gy J−1uu Jud −G
y
d)Wd We

]
(10)

with Juu = ∂2J
∂u2 and Jud = ∂2J

∂u∂d , evaluated at the nominal
operating point. In comparison with worst-case loss, the selec-
tion of CVs is preferred through minimization of average loss,
as the worst-case may not occur frequently in practice [5].

When individual measurements are selected as CVs, H
can be considered to be a selection matrix. Instead of using
individual measurements, it is possible to use combinations
of measurements as CVs. For this case, Alstad et al. [7]
has recently proposed an explicit expression for H , which
minimizes the Laverage in (9) and is given as

HT = (Y Y T )−1Gy((Gy)T (Y Y T )−1Gy)−1J1/2
uu (11)

As shown by Kariwala et al. [5], the H in (11) also
minimizes Lworst in (8). The locally optimal combinations
of all the available measurements, which can be used as CVs
can be found using (11).

III. GLOBALLY OPTIMAL METHOD

The local methods [4], [5] are based on linearization around
the nominally optimal operating point. Therefore, the identi-
fied CVs are only locally optimal. To derive globally optimal
solution CVs, it is assumed that the NCO is approximated
by CVs and the CVs are perfectly controlled at zero. Then,
the loss, L(d) for a particular disturbances d, due to the
approximation error, ε(d) can be expressed as [1], [9]:

L(d) = 0.5ε(d)TH(d)−1ε(d) (12)

where H(d) is the reduced Hessian of the cost function
evaluated at point where the CV, c(d) is perfectly controlled
corresponding to particular disturbance, d, whilst ε(d) =
g(d) − c(d), where g(d) is the reduced gradient evaluated at
the same point.

The average loss over the entire operation region, D can be
represented as,

L̄ = Ed∈DL(d) ≈ 1

2N

N∑
i=1

ε(di)
TH(di)

−1ε(di) (13)

where di ∈ D, i = 1, . . . , N are N samples of disturbances
in D and E is the expectation operator.

According to (13), the loss minimization is equivalent to
a least squares regression problem to minimize the weighted
residual, H−1/2ε. However, due to the difficulty and reliability
to evaluate the reduced Hessian for every di ∈ D, H(di) can
be replaced by a constant matrix, e.g. the identity matrix or H
evaluated at nominal value of d. Then the regression problem
can be set up as discussed next.
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Let the entire operation region be sampled by N points
for independent variables (input and disturbance), u =[
u1 · · · uN

]
and d =

[
d1 · · · dN

]
. The corresponding

measurement values and the reduced gradient values are
y =

[
y1 · · · yN

]
and g =

[
g1 · · · gN

]
, respectively.

The CV is parameterized by θ at each sampling point as:

ci = fθ(yi), i = 1, . . . , N (14)

where fθ(·) is the parameterized regression function of mea-
surements, which can be either linear or nonlinear, such as
polynomial or Gaussian. Then the optimal CV, c∗ = fθ∗(y)
is determined by adjusting θ to minimize the regression error
ε = fθ(yi)− gi as follows:

min
θ

1

2N

N∑
i=1

(fθ(yi)− gi)TH−1(fθ(yi)− gi) (15)

For linear regression, fθ(y) = θy, i.e. g = θy+ ε. Then the
regression problem in (15) can be solved analytically; see Sec-
tion IV-B for details. In principle, it is possible to parametrize
the CVs in terms of all the available measurements. Control
systems with lower complexity can be obtained by using a
subset of available measurements to parametrize the CVs,
which often provides similar loss as the case where CVs are
chosen to be functions of all the available measurements [6],
[5], [7], [9]. The selection of the subset of measurements
is a combinatorial optimization problem, which makes the
application of this method difficult to large-scale processes.
The BAB framework used to overcome this difficulty is
presented in the next section.

IV. BRANCH AND BOUND METHOD

A. General principle

Let Xr = {xi|i = 1, 2, · · · , r}, be an r-element set. A
subset selection problem with the selection criterion φ involves
finding the optimal solution, X∗n, such that

φ(X∗n) = max
Xn⊂Xr

φ(Xn) (16)

For this problem, the number of alternatives is Cnr =
r!

(r−n)!n! , which grows very quickly with r and n rendering
exhaustive search unviable. A BAB approach can provide
globally optimal solution for the subset selection problem in
(16) without exhaustive search. In this approach, the origi-
nal problem (node) is divided (branched) into several non-
overlapping subproblems (sub-nodes). If any of the n-element
solution of a sub-problem cannot lead to the optimal solution,
the sub-problem is not evaluated further (pruned), else it is
branched again. The pruning of sub-problems allows the BAB
approach to gain efficiency in comparison with exhaustive
search.

The available BAB methods for subset selection can be
classified as downwards [12], [14], [15], [16], [17] and up-
wards [18], [10], [11] BAB methods based on the search
direction. For the regression problem associated with glob-
ally optimal CV selection, the downwards BAB approach is

applicable and is discussed next. The reader is referred to [12],
[14], [17] for details on downwards BAB method.

In a downwards BAB approach, each node is represented
by Xs = Ff ∪ Cc, where s = f + c and, Ff and Cc denote
the fixed and candidate sets, respectively. Here, the subscript
denote the size of the set. The relationship between the fixed
and candidate sets of a node and its ith sub-node (branching
rule) is given as follows:

F ifi = Ff ∪ {x1, · · · , xi−1}; Cici = Cc \ {x1, · · · , xi} (17)

where F ifi and Cici denote the fixed and candidate sets of the
ith sub-node and i = 1, 2, · · · , n− f + 1. An example of the
solution tree obtained by recursively applying the branching
rule in (17) is shown in Figure 1. For the root node in this
solution tree, we have Ff = ∅ and Cc = Xr. The label of
the nodes denote the element being removed from Xs. The
solution tree has Crn terminal nodes, which represent different
n-element subsets of Xr.

To describe the pruning principle, let X denote the ensemble
of all n-element subsets, which can be obtained using (17),
i.e.

X = {Ff ∪ Cc/Xf+c−n|Xf+c−n ∈ Cc} (18)

and φ(Ff ∪ Cc) be the upper bound on φ computed over all
elements of X , i.e.

φ(Ff ∪ Cc) = max
Xn∈X

φ(Xn) (19)

Assume that B is a lower bound of the globally optimal
criterion, i.e. B ≤ φ(X∗n). Then,

φ(Xn) < φ(X∗n) ∀Xn ∈ X , if φ(Ff ∪ Cc) < B (20)

Hence, any Xn ∈ X cannot be optimal and can be pruned
without further evaluation, if φ(Ff ∪ Cc) < B.

Although pruning of nodes using (20) results in an efficient
BAB algorithm, further efficiency can be gained by perform-
ing pruning on the sub-nodes directly. This happens as the
lower bounds for different sub-nodes are related and can be
computed together from φ(Ff∪Cc) resulting in computational
efficiency. For xi ∈ Cc, the ith sub-node can be pruned if

φ(Ff ∪ Cc/xi) < B (21)

For a BAB method involving pruning of sub-nodes, branch-
ing needs to be carried on sub-node level as well, which
requires choosing a decision element to branch upon. Here,
the decision element is selected as the element with largest
φ(Ff ∪ Cc/xi) among all xi ∈ Cc (best-first search).

B. Application to CV Selection using Regression

The linear regression model is given as:

b = Aθ + ε (22)

where b are the observations or measurements, matrix A
contains the regressors, θ are the unknown parameters and
ε is the noise. Under the assumption that ε is independently
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Fig. 1. Solution tree for selecting 2 out of 6 elements

and identically distributed (i.i.d.), it is well known that the
unbiased estimate of θ is given as; see e.g. [19],

θ̂ =
(
ATA

)−1
AT b (23)

With the estimate of θ given in (23), the predicted values
of observations are b̂ = Aθ̂ = A

(
ATA

)−1
AT b and the

prediction error e is given as

e = b− b̂ = Pb (24)

where P =
(
I −A

(
ATA

)−1
AT
)

. Then, sums of squares of
errors (SSE) can be computed as

SSE = eT e = bTPTPb = bTPb (25)

where the last identity follows as P is an idempotent ma-
trix [19]. The SSE can be further expressed as

SSE = bT b− bTA
(
ATA

)−1
AT b (26)

As the first term in (26) is constant, the variables can
be selected by minimizing SSE or equivalently maximizing
bTA

(
ATA

)−1
AT b. Let us define y = AT b and C = ATA.

Now, the subset selection can be performed by solving the
following optimization problem:

max
Xn⊂Xr

φ(Xn) = yTXn
(CXn,Xn)−1yXn (27)

where Xr = {1, 2, · · · , r}, yXn
denotes the elements of

y with indices in Xn and CXn,Xn
represents the principal

submatrix of C with rows and columns indexed by Xn.
Note that a similar combinatorial optimization problem is
considered in [20], where the objective function instead needs
to be minimized.

The use of BAB for solving the optimization problem
in (27) requires an upper bound on the selection criteria,
calculated over the ensemble X in (18). This upper bound
is derived in the next proposition.

Proposition 1: Consider a node with fixed set Ff and
candidate set Cc. For X in (18),

φ(Ff ∪ Cc) ≥ max
Xn∈X

φ(Xn) (28)

Proposition 1 implies that the non-optimal nodes can be
pruned using φ(Ff ∪Cc) as the upper bound. To gain further

efficiency by pruning the sub-nodes directly, we relate the
selection criteria of a node with its sub-nodes in the next
proposition.

Proposition 2: Consider a node with fixed set Ff and can-
didate set Cc. Let S = Ff ∪Cc. For xi ∈ Cc, i = 1, 2, · · · , c,

φ(S \ xi) = φ(S)− α2
i /δi (29)

where

αi = zTi yS (30)

whilst zTi and δi are the ith row and (i, i)th element of C−1S,S
respectively.

The evaluation of (29) requires inversion of only one matrix
CS,S , which is the same for all xi ∈ Cc. Thus, the use of
(29) to obtain the selection criteria for all sub-nodes together
is computationally more efficient than directly evaluating the
selection criteria for every node. In summary, the following
BAB algorithm can be used for subset selection for regression.

Algorithm 1: Initialize f = 0, Ff = ∅, Cc = Xr, φ(Ff ) =
0 and B = 0. Call the following recursive algorithm:

1) If φ(Ff ∪ Cc) > B, prune the current node and return,
else perform the following steps.

2) Calculate αi in (30) ∀i ∈ Cc. Prune the subsets with
φ(Ff ∪ Cc)− α2

i < B.
3) If f = n or f + c = n, go to next step. Otherwise,

generate the c sub-nodes according to the branching rule
in (17) and call the recursive algorithm in Step 1 for each
sub-node. Return to the caller after the execution of the
loop finishes.

4) Find Jmax = φ(Ff ∪ Cc)−maxi∈Cc
α2
i . If Jmax > B,

update B = Jmax. Return to the caller.

V. BINARY DISTILLATION COLUMN CASE STUDY

To evaluate the efficiency of proposed BAB algorithm for
selecting globally optimal CVs, we test the performance of
BAB algorithm on a binary distillation column [13]. All tests
are conducted on a PC running Windows 7 SP1 with Intel
Core i3-2100 3.10GHz processor, 8GB RAM using Matlab
R2011a.
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The objective is to minimize the relative steady-state devia-
tions of the distillate (zLtop) and bottoms (zHbtm) compositions
from their nominal values, i.e.

J =

(
zHtop − zHtop,s

zHtop,s

)2

+

(
zLbtm − zLbtm,s

zLbtm,s

)2

(31)

where the superscripts L and H refer to the light and heavy
components and the nominal steady-state values are zHtop,s =
zLbtm,s = 0.01 (99% purity). The distillation column has 4
manipulated variables: reflux flow rate (L), vapor boilup (V ),
distillate flow rate (D) and bottoms flow rate (B). Because
the levels of top condenser and bottom reboiler need to be
stabilized, which consumes two degrees of freedom. We select
D and B to control the levels, which is also referred as LV
configuration for distillation column control, therefore, two
degrees of freedom are remained for composition control. The
main disturbances are feed flow rate (F ), feed composition
(zF ) and vapor fraction of feed (qF ), which are allowed to
vary between 1 ± 0.2, 0.5 ± 0.1 and 1 ± 0.1, respectively.
The top and bottom compositions are not measured online and
thus two CV’s needs to be identified for indirect control of the
compositions. It is considered that the temperatures on 41 trays
(y1, . . . , y41, counting from bottom to top) are measured with
an accuracy of ±0.5◦C, whose combinations can be used as
CVs for implementation of self-optimizing control strategy.

Data samples for NCO regression are generated as follows:
each independent variable is evenly divided into 5 parts within
its variation range. The variation range for disturbances are
defined earlier. Variation range for reflux flow rate L is chosen
as 1±10% at its nominal value and vapor boilup V is bounded
within (L−(1−qF )F,L+qFF ) in order to let 0 < B,D < F .
For each scenario, temperatures at each tray are calculated
and the two NCO components JL and JV , which refer to
the gradient of J with respect to L and V , respectively,
are also obtained using finite difference method. Therefore,
65 = 7776 samples are collected for regression. Because the
number of candidate measurements for regression is large, we
apply proposed BAB algorithm to choose an appropriate subset
and determine globally optimal CVs. Similar computation
performances are observed for regressing JL and JV , as
summarized in Figure 2.

Figure 2 (a) and (b) show that using full set of measurements
as predictors for NCOs is not necessary. When n > 5, the
SSE can only be slightly reduced. A trade-off between SSE,
which is directly related to the overall economic loss, and the
number of measurements used has to be made. Therefore, we
can choose n = 6 and get CV models for self-optimizing
control of this column. Figure 2 (c), (d), (e) and (f) show
the computation time and number of node evaluations and
demonstrate the usefulness and effectiveness of proposed BAB
algorithm. Brute force cannot handle such a large problem,
whereas proposed BAB algorithm solves it successfully. It
takes about 1260s to complete all the selection tasks, which is
reasonable for off-line computing. Largest computation time is
seen for n = 15, which takes about 100s for selecting 15 out

of 41 measurements. Overall, proposed algorithm is practically
appealing, as the algorithm makes it possible to reduce the
overall operation cost and meanwhile, reduces the investment
for hardware sensors (e.g. temperature sensors for the column).

Furthermore, the economic losses associated with the CVs
obtained by using the proposed BAB algorithm are evaluated
and compared with those associated with CVs obtained in
previous work [11] through local self-optimizing control. It
is found that n = 6 results in a good trade-off between self-
optimizing performance and investment cost of sensors, where
both CVs are designed using 6 measurements.

The self-optimizing method using local average criterion [5]
is adopted for comparison. To derive the CVs, linear model
and Hessian matrices at the nominal point are obtained through
finite difference. We also choose n = 6 and apply the PB3

algorithm [11], [22] to get the best measurement subset.
A Monte Carlo experiment with 100 sets of randomly gen-

erated disturbances within their allowable ranges is used. The
feedback control actions are implemented to maintain CVs at 0
and objective function J is calculated, whose optimal value is
expected to be 0. The average and maximal objective costs for
regression method are 2.222 and 82.766, respectively, while
the average and maximal objective costs for local method
are 170.411 and 1577.474, respectively. This is because that
the distillation process is strongly nonlinear, therefore, local
method fails to characterize the process in wider operation
range, whereas the regression method is advantageous in
this respect resulting in significantly enhanced self-optimizing
performance.

VI. CONCLUSIONS

In the context of self-optimizing control, a novel branch
and bound (BAB) algorithm is proposed for selecting glob-
ally optimal controlled variables (CVs) based on the method
of regression for necessary conditions of optimality. The
BAB algorithm aims to identify the best measurement set
to minimize the sums of squares of errors (SSE) and use
the set to construct the optimal CVs. Numerical tests using
a practical binary distillation column case study show the
efciency and effectiveness of this algorithm. It is pointed out
that the proposed algorithm is applicable to the general linear
regression problem as well as other statistical problems. The
proposed downwards algorithm is efficient for problems where
a few among many candidate variables need to be discarded.
However, for problems where a few variables needs to be
selected from many candidate variables, the computational
expense incurred by the algorithm is still large. To this end,
upwards and bidirectional BAB algorithms are currently being
developed and will be presented in an extended paper.
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