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Abstract—Self-optimizing control (SOC) is a powerful tool to
select controlled variables (CVs) so that when these variables are
maintained at constant set-points, the entire process operation is
automatically optimal or near optimal (self-optimizing) in spite
of the presence of various uncertainties. Over a decade devel-
opment, many SOC theories and methods have been developed
to select optimal CVs. However, all these methods are based on
local linearization of the process model at a nominally optimal
operating point, hence referred to as local methods.

Due to the nature of locality, existing SOC methods may cause
a large performance loss when the feasible operation region
is large and the process is highly nonlinear. In this paper, we
propose a global approach to select optimal CVs for nonlinear
processes so that the average loss over the entire feasible
operation region is minimized. Firstly, the globally average loss
minimization problem is formulated and a toy example is solved
analytically to explain the difference between the global approach
and other local methods. For more complex processes where
an analytical solution is not tractable, a numerical approach
is proposed to minimize the average loss globally. In the new
approach, optimal CV selection is found by solving a regression
problem to approximate the necessary conditions of optimality
of the objective function. A case study on an exothermic reactor
demonstrates the effectiveness of the new approach.

I. INTRODUCTION

Traditionally, CVs are selected from a list of available or
inferred measurements based on heuristic experiences and un-
derstanding of the whole process from an engineering perspec-
tive. For example, the variables related to safety regulations
and product qualities usually need to be actively controlled and
they are naturally chosen as CVs, thus consuming most of the
process degrees of freedom (DOF). In many cases, these active
constraints will dominate the process operation. However, for
processes with extra DOF more than active constraints, self-
optimizing control (SOC) [1] showed that the remain DOF
can be used for optimization purpose by selecting appro-
priate CVs. When the selected CVs are maintained at pre-
determined constant set-points, the entire process operation
is automatically optimal or near optimal (self-optimizing) in
spite of the presence of various uncertainties, disturbances and
measurement errors.

Over a decade development, many SOC theories and meth-
ods have been developed to select optimal CVs. Halvorsen
et al. [2] derived simple singular value rule and local exact
method for CV selection. Recent works have been engaged

in finding proper combination matrix H of measurements as
CVs to reduce the economic cost. Kariwala [3] minimized
the local worst-case loss via singular value and eigenvalue
decompositions. Later Kariwala et al. [4] derived optimal H
with average loss minimization. Alstad and Skogestad [5]
presented a null space method to minimize the loss caused by
disturbances. Furthermore, Alstad et al. [6] extended null space
method using extra measurements to minimize the loss caused
by implementation error. Hori and Skogestad [7] compared
maximum gain rule and local exact method and found the
former one should be used with care for ill-conditioned plants.
All these SOC methods were derived based on linearization of
the process model around a normally optimal operating point,
hence are referred to as local methods. This means the CVs
selected by using these methods may only be optimal in a
small neighborhood around the nominal point.

To address the locality issue, this paper aims to select CVs
for nonlinear processes to be globally optimal by minimizing
the average loss across the entire operation region. The re-
maining of this paper is organized as follows: Section II briefly
reviews the local SOC methods, and Section III presents the
formulation of globally average loss minimization problem
for CV selection, together with a toy example to explain
the difference between the global approach and existing local
approaches. In Section IV, a CV selection procedure through
regression for more general processes is proposed. The effec-
tiveness of proposed solution is further demonstrated through
an exothermic reactor case study in Section V. Finally, Section
VI concludes the work together with some suggestions for
future works.

II. A BRIEF REVIEW OF LOCAL METHODS BASED
SELF-OPTIMIZING CONTROL

Consider a generalized static optimization problem for con-
tinuous processes, which is given as

min
u

J(u, d) (1)

s.t. g(u, d) ≤ 0

with available measurements

y = f(u, d) (2)
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where J is the scalar objective function; u ∈ Rnu , d ∈ Rnd

and y ∈ Rny are manipulated, disturbance and measurement
variables, respectively; g : Rnu×nd ⇒ Rng and f : Rnu×nd ⇒
Rny are the operational constraints and measurement equa-
tions, respectively.

Let c represent the CVs with set-points at cs. SOC [1]
demonstrated that if c are properly selected, then when these
variables are perfectly maintained at their optimal values,
cs = copt(d) in the presence of disturbance, d, manipulated
variables, u will approach to their optimal values uopt(d)
through feedback control without re-optimizing cs. To select
CV properly, let measurements y at the nominal point be
linearized as

y = Gyu+GydWdd+Wnn (3)

where Gy and Gyd are the steady state gain matrices of y with
respect to u and d, respectively; n is the implementation error
due to measurement noise and/or control errors associated with
individual measurement; Wd and Wn are diagonal matrices
representing magnitudes of d and n respectively.

The selected CVs as linear combinations of full measure-
ments set y can be represented as

c = Hy (4)

where H is the combination matrix with full row rank of nu
to square the control system. Especially, zero columns in H
imply a subset of full y is unused. The worst case loss [2] and
the average loss [4] in objective function due to maintaining
CVs at constant set-points for uniformly distributed d and n
are given in (5) and (6), respectively.

Lwc =
1

2
σ2
max(M) (5)

Lav =
1

6(nd + ny)
‖M‖2F (6)

where σmax(·) and ‖ · ‖F are the maximum singular
value and Frobenius norm of a matrix respectively; M =[
J
1/2
uu

(
J−1uu Jud −G−1Gd

)
Wd J

1/2
uu G−1HWn

]
with G =

HGy and Gd = HGyd. Here, Juu = ∂2J/∂u2 and Jud =
∂2J/(∂u∂d) are the diagonal and off-diagonal Hessian matri-
ces of J evaluated at the nominal point.

CV selection is then characterized as minimizing (5) or (6)
with respect to H . Recently, several explicit expressions for
H have been reported [5], [3], [4], [6]. For example, if ny =
nu + nd, the combination matrix H according to null space
method proposed by Alstad and coworkers [5], [6] can be
selected as

H =
[
J
1/2
uu J

−1/2
uu Jud

] [
Gy Gyd

]−1
(7)

III. SELECTION OF GLOBALLY OPTIMAL CONTROLLED
VARIABLES

A. Formulation

In the existing SOC theory, the CV selection problem is
solved by assuming measurements in (2) are linearized in (3).
This assumption restricts the solution to be local. To avoid

this locality, the linear model assumption is discarded in the
new global formulation to be presented below. Furthermore, in
general, CVs can be either linear (as shown in (4)) or nonlinear
combinations of all or a subset of available measurements.
Therefore, in this work, the CVs are parameterized by w ∈
Rnw as follows.

c = φ(y, w) (8)

For simplicity but without loss of generality, it is assumed that
cs = 0.

Let the entire operating range defined by the disturbance
d ∈ D and all possible measurement noise represented by
n ∈ N . It is assumed that d and n are statistically independent.
The minimum cost of the optimization problem in (1) is a
function of d, Jopt(d), while the actual cost when c = 0 is a
function of d and n denoted as Jw(d, n). Then, the operation
loss in terms of the cost function for c = 0 with specific d
and n is Lw(d, n) = Jw(d, n) − Jopt(d), whilst the average
loss across the entire operation range is a function of design
parameters, w as follows.

Lgav(w) = E[Lw(d, n)] (9)

=

∫
n∈N ,d∈D

ρ(d)ρ(n)Lw(d, n)dndd (10)

where E[·] and ρ(·) represent the expected value and the
probability density of a random variable, respectively.

Then, the globally optimal CVs can be selected by designing
w to solve the following optimization problem

min
w

Lgav(w) (11)

s.t. y = f(u, d) + n

0 = φ(w, y)

d ∈ D
n ∈ N

The optimization problem in (11) is generally suitable for
various D, N and nonlinear combination, φ.

It was shown in [8] that local SOC methods essentially
capture necessary conditions of optimality (NCO) locally at
the nominal point with a straight line as CV. The aim of
this work is to search other curves as CVs, which have better
average performance across the whole region. The differences
of these methods are illustrated in Figure 1, where cloc is the
CV obtained by local SOC method, cgav is the globally optimal
CV. As shown in Figure 1(a), the vertical axis is the NCO value
when c = 0, where the desired value is 0. The curve of NCO
for cloc can only be maintained at the nominal point, d = d?,
whereas the deviation goes large as the operation point drifts
far away from the nominal point. The curve of NCO for cgav
approaches the zero line more closely in an average sense to
minimize the overall loss, which can be quantified by the area
surrounded by the curve of L and d axis in the disturbance
range [d, d̄], as shown in Figure 1(b).

From Figure 1, it is clear that the price to gain better average
performance across the entire region is the slightly increased
loss around the nominal operating point. To help understanding
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of the general formulation, a toy example is to be solved as
follows.

d
d*

cloc

cgav

Ju

d d
0

(a)

dd*

cloc

cgav

L

d d
0

(b)

Fig. 1. Comparison of local SOC and globally optimal CV: (a) NCO against
d; (b) Loss function L against d

B. A toy example
To illustrate the proposed new framework for globally

optimal CVs selection, consider a problem to minimize the
objective function

J =
1

2
(u− d)2 (12)

where both u and d are scalars. Two measurements are
available as follows.

y1 = u (13)

y2 =
1

4
u2 + d (14)

The nominal disturbance is d∗ = 0. Correspondingly, the
optimal point is then defined by u∗ = 0, where J∗ = 0,
y∗1 = 0 and y∗2 = 0. The possible variation of d is uniformly
distributed between −1 and 1, i.e. d ∈

[
−1 1

]
.

It is clear that uopt(d) = d and correspondingly, Jopt(d) =
0. Therefore, for a non-optimal input, u, the loss, L(u, d) =
J(u, d)− Jopt(d) = J(u, d).

Firstly, the local SOC approach of null space method
proposed in [5], [6] is applied to the problem. Since, Juu = 1,
Jud = −1, Gy =

[
1 0

]T
and Gyd =

[
0 1

]T
, the local

optimal CV is then obtained using (7), which also minimizes
the average loss locally for this problem[4]

clav = y1 − y2 (15)

To maintain clav = 0 through feedback, the corresponding
input has two solutions. The one satisfies the nominal operat-
ing condition, u∗ = 0 is

ulav = 2− 2
√

1− d (16)

Accordingly, the loss is then

Llav(d) =
1

2
(2− 2

√
1− d− d)2

Hence, the expectation of the loss over the entire range is

E[Llav(d)] =
1

2

∫ 1

−1

1

2

[
8(1− d) + d2 − 4(2− d)

√
1− d

]
dd

= 0.0183

Next, the global CV selection problem in (11) is to be solved
for the toy example. For simplicity, consider the CV to be a
linear combination of measurements. It can be parameterized
as

cgav = φ(w, y) = y1 + w1y2 + w2 (17)

When cgav = 0, the corresponding input, which is most close
to u∗ = 0 is

ugav =
2

w1

(
−1 +

√
1− w1(w2 + dw1)

)
(18)

Inserting (18) into (10) and solve it for optimization problem
(11), we obtain the following results using Matlab Symbolic
Math and Optimization Toolboxes:

w1 = −0.9231

w2 = 0.0705

with the minimized average loss

min
w
Lgav(w) = 0.00278 (19)

The result shows that the minimum global loss is much less
than the local counterpart even though CVs of both methods
are linear with the same number of parameters. The globally
optimal linear CV is

cgav = y1 − 0.9231y2 + 0.0705 (20)

which minimizes the average loss over the entire disturbance
space.

IV. A REGRESSION APPROACH FOR GLOBALLY OPTIMAL
CV SELECTION

The toy example is solved analytically through finding
the relationships between the loss expectation E[L] and the
CV parameters, w. However, finding analytical solution may
not be tractable for general self-optimizing control problems.
Therefore, it is necessary to develop a numerically effective
approach to solve the globally optimal CV selection problem.
In the following, we propose a regression approach to approx-
imate the NCO of the optimization problem using CVs so that
when these CVs are perfectly controlled at zero, the loss is
proportional to the regression error. More specifically, let uw
the control input corresponding to cw = φ(w, y, n) = 0. Then,
the cost function J(u, d) at a specific d can be represented as
the Taylor expansion around uw,

J(u, d) = Jw + ηTw∆u+ 0.5∆uTSw∆u (21)

where ∆u = u− uw, Jw = J(uw, d),

ηw =
∂J(u, d)

∂u

∣∣∣∣
u=uw

(22)
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and
Sw =

∂η(u, d)

∂u

∣∣∣∣
u=uw

(23)

The gradient function can also be expanded similarly.

η(u, d) = ηw + Sw∆u (24)

At the optimal point, uopt(d), the above expansion becomes

J(uopt, d) = Jw + ηTw∆uopt + 0.5∆uToptSw∆uopt (25)

where ∆uopt = uopt − uw. Equivalently,

Lw(d, n) = Jw − J(uopt, d) (26)

= −ηTw∆uopt − 0.5∆uToptSw∆uopt

Furthermore, at the optimal point, the NCO is

η(uopt, d) = ηw + Sw∆uopt = 0

Therefore,
∆uopt = −S−1w ηw (27)

This leads to
Lw(d, n) = 0.5ηTwS

−1
w ηw (28)

Note, a similar result on the loss has been derived in [9],
however, for local loss around the nominally optimal point,
whilst the result derived in (28) is globally valid.

Although loss derived in (28) can be directly used in (9) for
global CV selection, the requirement of Sw at each d and n is
prohibitive. However, if CVs are represented as a summation
of the NCO and an approximation error as follows,

cw = ηw − εw (29)

then the approximation error, εw = ηw because cw = 0 is
perfectly controlled. Therefore, an upper bound of the global
loss can be derived using the approximation error,

Lw(d, n) ≤ 0.5M‖εw‖22 (30)

where
M = max

d∈D,n∈N
λ̄(Sw) (31)

with λ̄(·) denoting the maximum eigenvalue of a matrix.
To simplify the optimization problem in (11) further, the

continuous operating region specified by D and N is dis-
cretized in N sampling points, di ∈ D and ni ∈ N for
i = 1, . . . , N . To avoid solving the perfect CV control
equation, φ(w, y) = 0, u is also sampled at N points within
a feasible range, u ≤ ui ≤ ū, accordingly. With these three
independent variable samples, the gradient, ηi = η(ui, di),
yi = y(ui, di) +ni can be calculated from the process model.
Then the following regression problem is to be solved in order
to determine the optimal CV parameters,

min
w

1

2
(φ(w, yi)− ηi)T (φ(w, yi)− ηi) (32)

This is a nonlinear least squares problem. The famous
Levenberg-Marquardt algorithm [10] is available to solve this
problem efficiently. Meanwhile, there are many nonlinear

model structures are available in the literature as well, which
can be adopted for φ(w, y), such as the polynomial and
Gaussian kernel models. For simplicity, only linear regression
is considered in the formulation bellow, for which an analytical
solution can be derived.

The general form of linear φ(w, y) is given as follows.

cw = Hy + b (33)

with the parameter vector, w =
[
vec(H)T bT

]T
, where

H ∈ Rnu×ny , b ∈ Rnu and vec(·) represents a matrix to
be arranged in a vector.

Using the linear combination CVs given in (33), nu CVs can
be calculated independently for each CV to approximate one
of elements in the gradient vector, η. Therefore, for simplicity,
in the following development, it is assumed that nu = 1.

Denote

η =
[
η1 · · · ηN

]T
(34)

Y =

[
y1 · · · yN
1 · · · 1

]T
(35)

w =
[
H b

]T
(36)

Then the regression problem (32) is equivalent to a linear
regression problem

ε = min
w

1

2
(Y w − η)T (Y w − η) (37)

The least squares solution to the problem can be analytically
obtained as

wopt = (Y TY )−1Y T η (38)

The corresponding minimum total regression cost is

ε =
1

2
ηT (I − Y (Y TY )−1Y T )η (39)

The corresponding global average loss by adopting this linear
combination CV can be bounded by Lgav ≤ Mε. Note
although above solution is derived for linear combinations as
CV, it can be easily extended to polynomial form by expanding
matrix Y with higher order terms, as illustrated in case studies
below.

V. CASE STUDIES

A. Toy example continued

Applying proposed regression method above, the variation
ranges for u and d (u, d ∈

[
−1 1

]
) are both discretized into

10 parts equally resulting total N = 112 = 121 sample points.
At each sampling point, the measurements and gradient Ju
are calculated, then we obtained the matrix Y and vector η.
A linear LS regression is simply performed using (38), which
results in the following CV

cw1 = y1 − 0.9809y2 + 0.09809 (40)

To calculate the average loss, the control input for cw is found
to be

uw1 = 2.039− 2.0389
√

1.0962− 0.9621d (41)
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Inserting (41) into (12) and (10) to yield the expectation of
loss calculated as

E[Lw1(d)] = 0.00375 (42)

The average loss for cw1 has been significantly reduced as
compared with local method and is only slightly bigger than
optimal 0.00278, which is analytically searched in Section
III. The convenience of proposed regression method is that it
directly determines w via numerical approach, avoiding the
requirement of representing input u in terms of d and w,
which is inevitable and hard to access in analytical way. To
demonstrate the powerful usage of proposed method, a second
order polynomial regression is further performed by adding
terms y1y2, y21 and y22 into Y , the CV is found to be

cw2 = y1 − y2 + 0y1y2 + 0.25y21 + 0y22 + 0 (43)

The corresponding control input uw2 and the expected loss
are interestingly found to be uw2 = d and minw Lw2(d) = 0,
respectively. It means that the process can achieve perfect self-
optimizing control under any disturbance! Note, if we specify
a quadratic form of φ(y, w) in the first place and solve it
analytically, the solution process will be very complicated and
almost prohibitive.
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Fig. 2. Comparisons for different CVs for the toy example: (a) gradient
function ηw against d; (b) Loss function L against d

Figure 2 (a) and (b) show the loss performances of vari-
ous CVs when they are perfectly controlled at set-points 0.
Compared with clav, globally optimal cgav is able to steer
the gradient ηw closer to 0 and minimize the loss over the
entire disturbance range. cw1 is suboptimal but its shape is
approximately similar to cgav, hence the loss is only slightly
bigger. Moreover, cw2 achieves perfect self-optimizing control
and its curves overlap with desired 0 horizon line in the figures
(not shown in semi-logarithmic plot (b)). Although for this
problem cw2 can also be derived through arrangements for
model equations by eliminating u and d, this may be hardly
possible for other more complex problems, whereas regression
method provides a very simple and efficient alternative, as
illustrated in the reactor case study below.

B. Exothermic Reactor

Self-optimizing control for the exothermic reactor has been
previously studied by several researchers [3], [9], [11]. The
reactant A is fed into a continuous stirred-tank reactor (CSTR)
and undergoes a reversible exothermic reaction in the CSTR.
The inlet temperature, concentrations of A and product B in
the feed are denoted as Ti, CAi and CBi respectively, the outlet
temperature, concentrations of unreacted A and product B in
the outlet stream are denoted as T , CA and CB respectively.
The schematic of exothermic reactor process is shown in
Figure 3.

TiCAi

CBi

T CA

CB

A→B

Fig. 3. Exothermic reactor process

The first principle models are composed of differential
equations for mass and energy balances

dCA

dt
=

1

τ
(CAi − CA)− r (44)

dCB

dt
=

1

τ
(CBi − CB) + r (45)

dT

dt
=

1

τ
(T − Ti) + 5r (46)

where τ = 60s is the residence time, and r is the rate of
reaction which is dependent on process variables

r = 5000e−
10000
1.987T CA − 105e−

15000
1.987T CB (47)

The classifications for manipulated variable, available mea-
sured variables and disturbances are given as

u =
[
Ti
]

(48)

y =
[
CA CB T Ti

]T
(49)

d =
[
CAi CBi

]T
(50)

The anticipated noises for measured variables are ±0.01 mol/L
for concentrations CA and CB , ±0.5K for temperatures T
and Ti. The allowable sets for disturbances are considered as
0.5 ≤ CAi ≤ 1.5 and 0 ≤ CBi ≤ 0.5.

The operational objective of exothermic reactor process
is to maximize the economic profit, which is equivalent to
minimizing a cost function

J = −20090CB + (0.1657Ti)
2 (51)
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where the first term of J is the negative profit of product B
and the latter represents the cost of heating the input stream.
The nominal values for process variables are given in Table 1.
The operational degree of freedom for this case is 1, so only
1 CV is to be selected to square the control system.

TABLE I
PROCESS VARIABLES AND NOMINAL VALUES

Variable Physical description Nominal value Unit
CA Outlet A concentration 0.498 mol · L−1

CB Outlet B concentration 0.502 mol · L−1

T Outlet steam temperature 426.803 K
Ti Inlet steam temperature 424.292 K
CAi Inlet A concentration 1.0 mol · L−1

CBi Inlet B concentration 0 mol · L−1

J Economic objective −5149.3 $

For this example, an analytical CV solution to minimize
the globally overall loss is not available. Alternatively, the
regression approach is use to select the optimal CV. Samples
for regression are collected as follows: the possible variation
range of each independent variable ( CAi, CBi and Ti) is dis-
cretized equally into 10 parts, therefore, 113 points of data are
generated. Each point of data contains four measured variables
and dJ/du, which is calculated using input perturbations and
finite differences. The variation ranges for disturbances are de-
fined earlier, the range for Ti is considered as

[
380K 450K

]
,

which is determined from later observations that the majority
of optimum u falls into this interval.

Least square regression is performed straightforward to get
a combination model as CV with measurements as predictors.
A linear and second order polynomial regression result in the
following CVs,

c1 = −772.2− 184.3y1 + 152.0y2 − 7.4y3 + 9.3y4 (52)
c2 = 1131.0 + 324.3y1 − 1298.8y2 − 105.5y3 + 100.3y4

(53)
+ 12.0y1y2 − 44.7y1y3 + 43.3y1y4 + 15.6y2y3

− 12.0y2y4 + 81.2y21 − 30.5y22 + 3.4y24

with an R2 regression index of 0.9464 and 0.9997, respec-
tively. As a comparison, the methods proposed by Kariwala
et al. [4] to minimize average local loss and Alstad et al. [6]
using extended null space method are also applied to current
example. These CVs are

cKariwala = 0.76y1 − 0.65y2 − 6.58× 10−5y3 (54)
− 0.0051y4 + 2.15

cAlstad = −171.76y1 + 145.23y2 + 0.0083y3 (55)
+ 1.15y4 − 479.18

A Monte Carlo experiment for 100 set of randomly generated
disturbances within expected ranges is conducted and the
results are shown in Table 2. The results in Table 2 show that
self-optimizing performance can be significantly improved by
using proposed method. Compared to cKariwala and cAlstad, the
average losses (11.57 and 10.21) are furthermore effectively
reduced by c1 and c2 (3.07 and 0.0896) because proposed

method minimize the loss globally in the entire operation
region.

TABLE II
AVERAGE ECONOMIC LOSSES WITH DIFFERENT COMBINATION CV

CV Average loss Maximum loss Standard deviation
c1 3.07 15.39 3.26
c2 0.0896 0.97 0.15

cKariwala 11.57 52.78 12.11
cAlstad 10.21 71.33 14.76

VI. CONCLUSIONS

This paper presented a formulation for selecting CVs with
globally average loss minimization in the context of SOC.
A toy example is provided to illustrate the procedure of
selecting globally optimal CVs for self-optimizing control.
Compared with existing local SOC methods, which are only
accurate in small neighborhood around the nominal point, new
approach is advantageous that the global loss is minimized
in an average sense. To circumvent the difficulty for solving
the complicated and maybe non-convex optimization problem,
a numerical solution is proposed alternatively to find optimal
CVs, which is based on least squares regression to approximate
the NCOs. The usage and effectiveness of the numerical
method are demonstrated by the toy example and a more
realistic exothermic reactor case study. The later shows that
the loss over the entire operating range is significantly reduced
comparing with the results obtained before using local SOC
approaches.
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