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Abstract—This paper proposes a multi-objective trajectory
optimization method to be used in the planning of environmen-
tally efficient commercial aircraft trajectories. The problem of
finding environmentally efficient trajectories is treated as an
optimal control problem that is solved by applying a direct
method of trajectory optimisation. The method involves an
inverse trajectory parameterisation technique, methods for the
calculation of environmental objectives, and the use of a multi-
objective version of the Differential Evolution algorithm. The
principal benefit of the method relative to previous work is that
it allows the fast generation of Pareto optimal fronts between
several competing objectives. This allows the decision maker
to make informed decisions about potential trade-offs between
different environmental goals.

I. INTRODUCTION

Over the last decade global passenger air traffic has
increased by more than 45%, with similar levels of growth
projected for the coming decade [1]. It has long been
recognised that aviation benefits society, as a generator of
wealth, and as an enabler to the exchange of ideas and culture
between nations. However, increasing levels of air traffic will
continue to impact the environment, with rising levels of
aircraft emissions and higher numbers of people exposed to
significant levels of aircraft noise [2].

The Advisory Council for Aviation Research in Europe
(ACARE) is a group of representatives from the European
commission, member states, industry and academia tasked
with influencing the direction of European aviation research
and development. The council, recognising the impact of avi-
ation on the environment, has proposed to meet the challenges
of sustainable aviation through the application of research and
technology. To achieve this, it has created a strategic agenda
for European aviation research with associated goals to be
achieved by the year 2020. The environmental targets proposed
by ACARE are (from a 2000 baseline) [3]
• Reduce fuel consumption and carbon dioxide (CO2)

emissions by 50% per passenger kilometre.
• Reduce NOx emissions by 80%.
• Reduce perceived noise by 50% .
Of the targets, ACARE has proposed in its roadmap that

5-10% of the CO2 reduction be achieved through improved
aircraft operations and air traffic management. This target is

in line with the Single European Sky Air Traffic Management
Research (SESAR) programme goal of reducing Air Traffic
Management (ATM) related CO2 emissions by 10% per flight
(from a 2005 baseline) [4]. Although no quantitative targets
have been set for ATM related noise reduction, both initiatives
recognise the role that improving aircraft operations has to
play in reducing noise impact on communities around airports.

A particular focus of Air Traffic Management research
related to delivering the ACARE goals is the design and
delivery of trajectories that minimise environmental impact,
referred to as green trajectories. Green trajectories, in the
form of Continuous Descent Approaches (CDA), have
already shown promise in delivering emissions and noise
reductions to airport terminal areas [5]. The planning and
optimization of green trajectories has been the subject of a
number of theoretical studies. The Sourdine project, using
expert analysis, developed a series of recommended noise
abatement procedures for airport arrival and departures
[6]. The trajectories were optimized to reduce noise under
the flight-path for representative medium narrow-body and
large wide-body aircraft. Simulations subsequently showed
that large scale adoption of the Sourdine procedures could
lead to significant reductions in noise footprints relative
to conventional trajectories, although runway rates were
adversely affected [7], [8]. Visser et al [9], [10] posed the
problems of finding green arrival and departure trajectories
as optimal control problems. This work used the direct
collocation technique proposed by Hargreaves and Paris
[11] to calculate optimal trajectories in terms of fuel burn
and awakenings. Hebly et al [12] also used a collocation
method and a weighted-sum cost function based on fuel
burn and awakenings to optimise a Required Navigation
(RNAV) departure procedure. Prats et al [13], again using
a collocation method, recognised that the calculation of
green trajectories can require the consideration of several
conflicting optimisation criteria. To account for this, a
lexiographic method for multi-objective optimisation was
implemented. For the method, a hierarchy of importance for
the objectives was established prior to the simulation. In this
case, the method finds the minimum for the first objective
and then seeks reductions in subsequent objectives providing
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they do not increase the values of the objectives higher in the
hierarchy. What results is a single Pareto optimal point that
lies at the extreme of the first objective in the hierarchy.

When multiple conflicting objectives exist for an
optimization problem, a single Pareto optimal point, or
the minimum of a single objective, offer the Decision
Maker (DM) very little information about potential trade-
offs between the optimization objectives. In environmental
trajectory optimization, it is usually desirable to have multiple
Pareto optimal points, where the tradeoffs in objectives, such
as noise and fuel burn, can be assessed relative to each other.

The aim of this paper then is to solve the general multi-
objective trajectory optimization problem for several types of
environmental objectives, and to find the Pareto optimal set
between minimised objectives. To do this, it is proposed to
convert the optimal control problem to a Non Linear Pro-
gramming (NLP) problem using a direct method of trajectory
optimization that can be combined with aircraft emission and
noise methods for the calculation of objectives. It is then
proposed to solve the NLP problem for a Pareto optimal set
using a stochastic evolutionary algorithm as the NLP solver.
It is intended that the proposed method be useful to air traffic
route designers and to airline flight planners as an approach
that can be used to predict and optimize the environmental
impact of commercial aircraft trajectory operations.

II. PROBLEM

Stated generally, the multi-objective trajectory optimization
problem can be stated as the problem of minimising an array
of scalar objective functions

min
z,u

[f1(z,u), f2(z,u), . . . , fq(z,u)]T (1)

where, in this work, the aircraft states are z =
[x(t), y(t), h(t), v(t), γ(t), χ(t)]T , the aircraft position is r =
[x(t), y(t), h(t)]T , v(t) is the airspeed, γ(t) is the flight path
angle and where χ(t) is the heading angle. The aircraft
controls are then u = [T (t), n(t), φ(t)]T where T (t) is thrust,
n(t) is load factor and φ(t) is the bank angle. The individual
objectives of the array are then minimised subject to the
inequality constraints to be satisfied

ci(z,u) ≤ 0 (2)

When solving a multiobjective optimization problem, where n
is the number of objectives, the objective vector s∗ is Pareto
optimal, if there does not exist another objective vector s ∈ S
where si ≤ s∗i for all i = {1, . . . , n} and where s∗j < sj
for at least one index of j, j ∈ {1, . . . , n}. A Pareto front
is a set of Pareto optimal solutions. A set is Pareto optimal
if each solution in the set is Pareto optimal. For conflicting
objectives, the Pareto optimal set should identify the extremes
of the objectives, most fuel efficient and shortest path for
instance, and allow for tradeoffs between objectives to be
examined. This facilitates the search for solutions that offer
the best balance between objectives.

III. TRANSCRIPTION

To solve the general optimal control problem it may be
converted to a finite dimensional numerical optimization
problem. Methods for transcription to a numerical problem
are classified in Betts [14] as indirect and direct. Indirect
methods involve forming the Hamiltonian of the system,
estimating the costate variables, and finding a root of the
two point boundary value problem. Direct methods involve
discretising the optimal control problem and solving for
the states and controls at a series of dividing nodes. Direct
methods are preferred for this work because they do not
require the definition of costate variables or constrained arcs
and are therefore easier to apply to the problem.

Direct collocation methods use polynomials to parameterise
the states and controls of the aircraft. Hargreaves and Paris
[11] used piecewise cubic polynomials, while Fahroo et
al [15], [16] and Benson et al [17] have used orthogonal
polynomials with several different forms of collocation points.
A significant drawback of collocation methods however, is that
they can require large numbers of varied parameters. When
applied to problems with large numbers of Air Traffic Control
(ATC) constraints on aircraft position, speeds and rates
of climb/descent, collocation methods may be very slow to
evolve, first from infeasible to feasible solutions and then from
feasible to a point along the global Pareto front. Yakimenko
proposed an inverse method where the position states of
the aircraft and their derivatives are parameterised using 7th
degree polynomials [18]. Controls are then determined by
inverting the state equations. The method significantly reduces
the number of optimization variables required by analytically
determining the polynomial coefficients from the prescribed
states and controls at the boundaries (t = 0 and t = tf ).
Instead of parameterising by time, Yakimenko adopted
Taranenko’s method of parameterising the polynomials by τ ,
creating a virtual arc τ ∈ [0, τf ]. The relationship between
time t and τ is defined as λ = dτ/dt. The use of the
relationship parameter λ allows the definition of aircraft
velocity using a separate reference function, enabling the
creation of a virtual speed profile along the trajectory path
of the aircraft. The method, termed the Inverse Dynamics
in the Virtual Domain (IDVD) method, is a fast trajectory
optimization method and has been considered for real time
implementation [18], [19]. The IDVD method was adopted
for this work because the small number of varied parameters
allowed the Differential Evolution (DE) algorithm used in
this work to quickly evolve decision vectors through the
differential mutation and crossover mechanisms. The DE
algorithm was chosen because it had the potential, when
combined with the IDVD method, to efficiently converge on
detailed global Pareto fronts.

For the IDVD method, the flat earth Cartesian coordinates
rj(j = 1, 2, 3) and their derivatives are parameterised from
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the reference function (3) and its derivatives,

r(τ)j =
7∑
k=0

ajkτ
k

max(1, k(k − 1))
(3)

The coefficients of the polynomials are determined ana-
lytically from the coordinates and their derivatives at the
boundaries (τ = 0 and τ = τf ) by making the coefficients
the subjects of the following set of linear equations:
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(4)

To modify the polynomials, the variables iterated by the solver
are then Ξ = [x′′′0,f , y

′′′
0,f , h

′′′
0,f , v

′′
0,f , τf ]. To transform the

polynomials to the system dynamics, a point mass model
is used. Therefore the state and controls are determined by
inverting the following equations:

ẋ = v cos γ cosχ, v̇ =
T −D
m

− g sin γ

ẏ = v sinχ cos γ, χ̇ =
gn sinφ

v cos γ
(5)

ḣ = v sin γ, γ̇ =
g

v
(ncosφ− cos γ)

The drag D is modelled with the aid of the BADA drag polars
[20], aircraft mass is m, g is gravitational acceleration and n
is the load factor. Conversions between the virtual and time
domain are achieved by:

ṙ = λr′; r̈ = λ(r′′λ+ r′λ′)
...
r = λ3r′′′ + 3λ2λ′r′′ + (λ2 + λλ′2)r′

(6)

Once the state and control histories are determined from τo to
τf , the following constraints are applied to ensure that they lie
between defined limits determined with the aid of the BADA
database [20]:

T ∈ [Tmin, Tmax] n ∈ [nmin, nmax] |φ| ≤ |φmax|
v ∈ [1.2vstall, vmax] v̇ ∈ [v̇min, v̇max] γ ∈ [γmin, γmax]

For the BADA parameters, Eurocontrol compensate for
inaccuracies in the parameter estimation process by defining
limits for both aircraft thrust and acceleration.

IV. WAYPOINT CONSTRAINTS

For commercial aircraft trajectory optimization, constraints
imposed by the operating environment must be considered.
Calculated trajectories must be able to adhere to ATC
constraints imposed by airspace sectorization, procedures and
traffic flow corridors. Typically, operating environment and

procedural restrictions manifest as constraints on the height,
speed or path of the flight, or some combination of the three.
Therefore a simple five dimensional constraints model is
developed.

Waypoint fixes are defined by the user in 2 dimensions
as Wr = [Wx,Wy]. The aircraft’s trajectory path can then
be constrained to fly over the 2D fix. For each waypoint
fix, the minimum distance between the trajectory path and
the fix position is calculated as a 2D distance dmin, with a
corresponding minimum time tdmin

,

dmin := min
t∈[t0,tf ]

d(t) where d(t) = ‖r2D(t)−Wr‖

tdmin
:= min t s.t. d(t) = dmin

The aircraft is then constrained to fly within a distance radius
of the centre point of the fix, where d̂ is the upper constraint
on dmin,

c1(dmin) = dmin − d̂

The aircraft can also be constrained to cross the fix at a
specified height, speed and arrival time. The cross above con-
straints, h, v, t, and cross below constraints, h, v, t, constrain
the minimum and maximum heights, speeds and time of the
aircraft crossing the waypoint. The minimum and maximum
can be constrained simultaneously to create height,speed and
time windows at the waypoint.

c2(h,v, t, tdmin) =


h(tdmin

)− htmin

h tmin
− h(tdmin

)
v(tdmin)− vtmin

v tmin
− v(tdmin)

tdmin
− tmin

t
min
− tdmin



V. ENVIRONMENTAL MODELS

For the calculation of civil aircraft noise impact local to
airports, the most commonly used method in the field is the
Noise Power Distance (NPD) method [21]. The NPD method
utilises, for a number of noise metrics, tables of empirical
data that relate the noise level calculated on the ground to the
power utilised by the aircraft and the distance from the aircraft
to the noise assessment point. Specifically, the noise level at
a point is calculated as

noise level = fn(P (t), d(t),β), ∀t ∈ [to, tf ] (7)

where P (t) is power, d(t) is slant distance between the
aircraft and the assessment point, β is a set of segment
level correction terms, and to and tf are respectively the
start and end times of the trajectory. Power, in this instance,
is corrected net thrust. The noise model chosen for use in
this work is the Integrated Noise Model (INM). INM is a
model developed by the Federal Aviation Administration
(FAA) to assess the impact of civil aircraft noise on
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communities local to airports. INM version 7 [22] is fully
compatible with ECAC Doc 29, [21] guidance that provides
a standardized methodology for the computation of noise
contours around civil airports. INM is able to calculate
several types of aircraft noise impact metrics, including
the maximum A-weighted sound pressure level LAmax,
the single event exposure metrics Sound Exposure Level
(SEL) and The Effective Perceived Noise Level (EPNL).
INM also allows the calculation of noise metric contours that
can be used to calculate population exposures and awakenings.

For the calculation of aircraft emissions, the emissions CO2,
water vapor (H2O) and sulphur oxides (SOx) are calculated
using direct multipliers on fuel burn, such that their rate of
emissions is:

ė(t) = fe(F (t),α) (8)

where F (t) is the rate of fuel burn and α is a set of fuel burn
multipliers. For the work presented in this document, rate of
fuel burn is calculated using the BADA fuel flow model [20],
where F (t) is a function of thrust and the thrust specific fuel
consumption factor η such that:

F (t) = fF (P (t), η) (9)

The emissions for hydrocarbons (HC), carbon (CO), and
oxides of nitrogen (NOx) are calculated using the Boeing
Fuel Flow Methodology (BFFM) [23]. The ICAO emissions
databank contains empirical information for certified engines
that relate fuel burn to emissions indices at 4 different engine
thrust settings. The BFFM offers a procedure for correcting
the data for atmospheric conditions and for interpolating the
data to calculate emissions of HC, CO, and NOx from fuel
flow such that their rate of emissions is:

ė(t)BFFM = fBFFM (F (t),EI) (10)

where EI is a set of of emissions indices.

VI. STOCHASTIC SOLVER

NLP algorithms can be applied in the iterative solution of a
wide array of optimization problems. NLP algorithms can be
generally classified as direct search (no derivatives), gradient
search or stochastic. Derivative based gradient solvers require
the definition or estimation of the derivatives of the objective
function, while derivative free optimisers compare only the
objective function value. To reach a global optimum it helps
if gradient and derivative free optimisers are initialised where
the objectives and constraints are convex. Stochastic solvers
however tend to find it easier to escape local minima. Like
derivative free algorithms, stochastic algorithms compare
only objective values between iterations but use probability
functions in guiding the search for the optimum solution.
More details on stochastic optimization methods can be
found in [24]. Evolutionary algorithms are a popular type
of stochastic method and are well suited to solving multi
objective optimization problems. Evolutionary algorithms,
at each step of an optimization, maintain a population of

solutions. This, allows the algorithms to simultaneously
explore different parts of the solution space to identify
decision vectors that provide the minimum for each objective
and also the Pareto optimal points that form a front between
the minimums.

The stochastic solver chosen for this work was Differential
Evolution [25]. The DE algorithm utilises the mechanism of
differential mutation. Differential mutation is a self adaptive
mechanism where 3 population vectors are randomly selected
from the parent generation and the scaled difference between
2 of the vectors is added to the third. The DE algorithm has
proved to be a simple yet effective method for handling global
optimization problems [26]. DE requires only 3 configuration
parameters for calibration and has shown promising results
when used with the inverse dynamics method chosen for use in
this research. Drury [27] tested the performance of the Inverse
Dynamics method with a number of popular Non Linear
Programming (NLP) algorithms. For 2000 different sets of
boundary values, the DE algorithm achieved a convergence of
99.8% with a relative optimality score of 94%, outperforming
all of the other NLP algorithms. A multiobjective variant of
DE is defined in [25] where Lampinen’s dominance based
method for constrained optimization [28] is used to drive
solutions towards a Pareto front. Madavan [29] subsequently
showed that multiobjective DE could be supplemented with
a nondominated sorting procedure and the crowding distance
metric developed by Deb et al [30] for the Nondominated
Sorting Genetic Algorithm (NSGAII). The result was a fast
and powerful method that combined the self organising mech-
anism of differential mutation with the elitism and the diversity
preservation of the NSGAII algorithm.

A. Main

The variant of DE chosen for this work was DE/rand/1/Bin
[25]. The algorithm initialises by generating a population
of random individuals between the user specified upper bU
and lower bL parameter bounds. For each individual in this
population, a candidate vector is created that is the algebraic
combination of 3 parent vectors, further modified by crossover
between the candidate and the target vectors. Each candidate
vector is placed in an offspring population. Once a candidate
population has been generated that is the same length as the
parent population, it is appended to the parent population. The
combined population is then sorted into fronts using nondomi-
nated sorting. For the production of the new population for the
next generation, the size of the combined population is reduced
to the initial population size by truncation. Each solution in
the solution set is sorted into fronts (F ) depending on the
number of other solutions in the set each is dominated by. All
fronts from the first nondominated front (F1) upwards , whose
combined length is less than or equal to the initial population
size are preserved for the next generation. The individuals in
the final front are sorted according to their crowding distance
value. Individuals with large crowding distance values are
moved toward the start of the front and the individuals with
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Algorithm 1 A fast, self-adaptive, elitist, diversity preserving, multi-objective evolutionary algorithm

G = 1 First generation
P = ∅ Initialise initial population
for i := 1 to NP Create NP real valued vectors

pi = ∅ Initialise population vector
for j := 1 to D Each population vector contains D real parameters

xj,i,G = rand(0, 1)(bj,U − bk,L) + bj,L Create parameters within bounds
pi = ∪{xj,i,G} Add the parameter to the population vector

end
P = ∪{pi} Add the population to the set of populations

end

while G < Gmax While current generation is less than final generation
Q = ∅ Initialise offspring population
for each pi,G ∈ PG For each population vector in the population
r1, r2, r3 ∈ {1, ..., NP} Select 3 random indexes
FS ∈ [0, 1] Scale factor
vi,G = pr1,G + FS(pr2,G − pr3,G) Create mutant population with Differential mutation
CR ∈ [0, 1] DE crossover parameter CR
k ∈ {1, ..., D} Random parameter index
qi = ∅ Initialise candidate vector
for each xj,G ∈ pi,G For each parameter in the vector

r = rand(0, 1)
if r <= CR ∨ j == k Crossover between parent and the mutant vectors

uj,G = vj,G
else

uj,G = xj,G
end
qi,G ∪ {uj,G} Add parameter to candidate vector

end
QG ∪ {qj,G} Add candidate vector to offspring population
end
RG = PG ∪ {QG} Combine parent and offspring population
F = fast nondominated sort(RG)
PG+1 = ∅ and l := 1 All nondominated fronts of RG

while |PG+1|+ |Fl| ≤ |PG| Until the new population PG+1 is filled
crowding distance assignment(Fl) Calculate the crowding distance in Fl

PG+1 = PG ∪ {Fl} Include the lth nondominated front in the new population
l = l + 1 Check the next front for inclusion

end
sort(Fl : Fend,≺) Sort final front in descending order using domination
PG+1 = PG+1 ∪ FL[1 : (N − |PG+1|)] Truncate final front if required
G = G+ 1 Increment generation counter

end

small crowding distance values are moved towards the rear.
If inclusion of the final front results on a population size
greater than the initial population size, then the final front
is truncated. This ensures that the solutions in the final front
with the greatest solution diversity are retained for the next
generation.

B. Nondominated Sorting

In general, for 2 feasible solutions where p,q ∈ S, p
dominates q (p ≺ q) if ∀k : fk(p) ≤ fk(q) ∧ ∃k : fk(p) <
fk(q) Nondominated sorting involves using domination to
rank each solution into fronts that are sets of solutions with
equal dominance ranking. Solutions that are not dominated by
any other solutions are assigned to the first front F1, Solutions
that are dominated by 1 other individual will appear on the
next front F2, and so on until all solutions are assigned to the
appropriate front.

C. Crowding Distance

The crowding distance metric is used to measure the dis-
tance along the same nondominated front from one solution
to the 2 adjacent solutions. For each objective function, the
greatest and smallest objective values are assigned an infinite
crowding value, preserving the boundary value individuals. For
each intermediate individual, its proximity to other individuals
is determined by taking the normalised difference between the
solutions either side of that solution. When this measure is
summed over all individual’s objective functions, a measure
of the closeness between solutions is reached.

D. Selection

Unlike many Evolutionary Algorithms, where parent and
child populations are compared to each other for fitness, for
the NSGA-II method, the parent and child populations are
appended to each other, and all selection occurs within the
same population. Fitter individuals as determined by their
nondomination rank and crowding distance are moved to the
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front of the population, while less fit individuals are moved to
the back of the population and may be subjected to truncation.
As shown in Algorithm 2, domination is determined by the
constraints, rank, and crowding distance of each individual. In
Algorithm 2, the solution i dominates the solution j if both are
feasible and i has either a lower nondominated rank (rank) or
has a greater crowding distance value (distance) at the same
nondominated rank. If i is feasible and j is infeasible then i
dominates. If both solutions are infeasible, then the individual
with the lowest overall constraint violation dominates.

Algorithm 2 Selection

ζ(i) =

m∑
k

max[0, gk(i)]

ζ(j) =

m∑
k

max[0, gk(j)]

i ≺ j if





ζ(i) ≤ 0 ∧ ζ(j) ≤ 0

∧
irank < jrank

∨
[irank = jrank] ∧ [idistance > jdistance]

∨
ζ(i) ≤ 0

∧
ζ(j) > 0

∨
ζ(i) > 0

∧
ζ(i) < ζ(j)

VII. RESULTS

A departing aircraft scenario was created to demonstrate the
multi objective trajectory optimization method. In the scenario,
a commercial aircraft is required to climb from an initial climb
point below 500ft at the west of a large population centre, to
an en-route connection point lying at 20,000ft on the far side
of the population centre. The commercial aircraft simulated
was the medium narrow-body Airbus A321 aircraft with twin
International Aero Engine V2530 engines. The population
was artificially created for the scenario, and consisted of
1.5 million people evenly distributed over an area of 45000
hectares. In addition to the constraints from Section III, the
bank angle φ and the minimum climb gradient below 1000ft
were constrained to 0(rad) and 12% respectively. For the
first scenario the objectives chosen were the greenhouse gas
Carbon Dioxide and the population enclosed within the 70
dB(A) Sound Equivalent Level footprint contour. SEL was
used here as it forms the basic ‘building block’ of the Lden
(Day-Evening-Night Average Sound Level) and Ldn (Day-
Night Average Sound Level) contour calculations used to asses
the community impact of aircraft noise.

Fig. 1 shows a Pareto front between the minimums of the two
objectives. It can be seen from the front that there is a trade-
off of approximately 900kg of CO2 between the most CO2
optimal trajectory and the most noise optimal trajectory. Sim-
ilarly there is a trade-off of approximately 300,000 exposed
people between the most noise optimal trajectory and the most
CO2 optimal trajectory. Fig. 2 shows the trajectories for the
two minimums. The aircraft trajectory for the minimum CO2
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Fig. 1. Pareto front between CO2 emissions and the population within the
70dB(A) footprint
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Fig. 2. Minimum noise and CO2 trajectories

objective, after climbing out to 1000ft takes a direct route over
the population area to the target end point, minimising excess
track miles, fuel burn and therefore CO2. The trajectory for
the minimum noise objective, initially progresses directly to
the east, avoiding over-flying the majority of the population
area and therefore minimising the population exposed to noise.
It can be seen from Fig. 2 and from Fig. 3 that the noise
optimised trajectory climbs to a height of 1500ft where it
reduces thrust and accelerates to zero flap speed while passing
over a population region near to the airport. On clearing the
population region, the aircraft is turned to the target end
point while thrust is increased gradually to maximum climb
thrust and the aircraft accelerates to en-route climb speed. The
trajectory produced mimics closely the Sourdine close-in noise
abatement procedure as both involve an initial climb at full
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thrust followed by acceleration at reduced thrust and a gradual
power increase.
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and CO2 trajectories

A second scenario was created to examine the trade-offs
between minimising for noise near to the airport and min-
imising for noise farther away from the airport. Boundary
values remained as in the first scenario, however, all solution
trajectories were constrained via the constraints in Section IV
to lie along a common x, y ground path shown in Fig. 4.
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All improvements in objectives were therefore achieved
through changes to the vertical trajectory. A region of noise
monitoring points, shown in green in Fig. 4, were then placed
at 1000m intervals from a distance of 3000m to 30,000
metres from start of roll. The region of 3000m to 15000m
was defined as the close-in region and the region of 15,000 to
30,000 metres was defined as the far region. Two objectives
were then the subject of the optimization, Average EPNL
in the close-in region, and average EPNL in the far region.
Fig. 5 shows the Pareto front between the average EPNL in
the near region and average EPNL in the far region. It can
be seen that there is a 2-3 EPNdB average EPNL tradeoff
between optimising trajectories for the different regions.

It can be seen from Fig. 6 and from Fig. 7 that the near
region optimization causes the aircraft to cutback its thrust and
to assume a shallower flight path angle climb sooner than the
far region optimization. As can be seen in Fig. 8, this results in
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Fig. 5. Pareto front between close-in and far region average EPNL

a reduction in EPNL noise levels along the trajectory centreline
at distances running from 3000 to 11000 metres. By contrast
the far region optimization results in the aircraft climbing as
high as possible using maximum thrust and flight path angle
prior to the beginning of the far region. Once the far region
is reached, the aircraft reduces thrust and climb angle, but
the greater altitude attained allows the aircraft to fly higher
over the far region increasing the noise attenuation distance
and reducing noise levels on the ground. Once the far region
has been passed, thrust is increase to accelerate the aircraft to
enroute speed. Fig. 8, shows the corresponding higher close-
region noise levels and lower far region noise levels that result
from this trajectory.

 

 

Far

Close

Population

h
(m

)

y (km)

x (km)

0
10

20
30

40
50

0102030405060708090100

0

1000

2000

3000

4000

5000

6000

7000

Fig. 6. Minimum close-in noise and far region noise trajectories

 

 

Far

Close

γ
(r

a
d
ia

n
s)

Time (secs)

v
(m

/s
)

Time (secs)

T
h
ru

st
(k

N
)

Time (secs)

0 400 700

0 400 7000 400 700

0.02

0.08

0.14

80

160

220

80

140

180

Fig. 7. Thrust, speed and flight path angle histories for the minimum close-in
and far noise trajectories

134



 

 

Far

Close
E

P
N

L
(E

P
N

d
B

)

Distance/BR (km)

00 10 15 20 25 30
60

65

70

75

80

85

90

95

Fig. 8. Minimum close-in noise and far region noise trajectories

VIII. CONCLUSION

As can be seen from Section VII, under many circum-
stances, there is no one trajectory that minimises all envi-
ronmental costs. Therefore when planning environmentally
efficient trajectories, the trade-offs between the objectives
must be considered. This work has proposed a multi-objective
trajectory optimisation method that may be used to analyse the
trade-offs between environmental objectives that arise when
operating commercial aircraft in different ways. The work
assumes the availability of an advanced Flight Management
System (FMS) with auto-throttle capable of tracking the
detailed trajectory solutions. However, each trajectory may
be segmented into a smaller number of operational steps that
would be suitable for a pilot to execute. Further work will
involve the automated analysis of the Pareto fronts so that
certain solutions from the front can be recommended to the
user to aid their decision making. This is intended to be
especially useful when analysing Pareto fronts between more
than two objectives.
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