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Abstract—This paper proposes a new variable gain controller
for a class of uncertain linear systems. The proposed variable gain
controller is based on optimal control for the nominal system
and consists of the optimal feedback gain and a time-varying
adjustable parameter which is designed so as to reduce the
effect of uncertainties, i.e. the proposed variable gain controller
can achieve good transient performance which is close to LQ
optimal control for the nominal system. In this paper, we show
sufficient conditions for the existence of the proposed variable
gain controller for uncertain linear systems. Finally, numerical
examples are presented.

I. INTRODUCTION

Robustness of control systems to uncertainties has always
been the central issue in feedback control and therefore for
linear systems with unknown parameters, a large number of
design methods of robust controllers have been presented
(e.g. [1] and references therein). For a system with structured
uncertainties, several quadratic stabilizing control laws have
also been suggested and a connection between quadratic
stabilization and H∞ control has been established[2]. It is well
known that for robust control for linear dynamical systems
with uncertainties, the concept of quadratic stabilization via
fixed quadratic Lyapunov functions plays an important role in
dealing with the controller design.

By the way in most practical situations, it is desirable to
design robust control systems which achieve not only robust
stability but also an adequate level of performance. Therefore
robust controllers achieving some robust performances such
as quadratic cost function, mixed H∞/H2 control, robust H2

control and so on have been suggested (e.g.[3], [4], [5]). Addi-
tionally, synthesis problems of robust controllers with variable
gain have also been tackled (e.g. [6], [7]). Yamamoto and
Yamauchi[6] proposed a design method of a robust controller
with the ability to adjust control performances adaptively.
In [7], an adaptive robust controller with adaptation mecha-
nism has been presented and the adaptive robust controller
is tuned on-line based on the information about parameter
uncertainties. Besides, we have proposed robust controllers
with adaptive compensation inputs[8], [9]. Although the robust
controllers in [8] and [9] can achieve not only asymptotical
stability but also satisfactory transient behavior, these robust
controllers include the additional dynamics of the nominal
system. Namely, these robust controllers are dynamic one and
their structure is more complex.

From these viewpoints, we propose a variable gain robust
controller based on optimal control for a class of uncer-
tain linear systems. The proposed variable gain controller
consists of optimal feedback gain designed by using the
nominal system and an adjustable time-varying parameter.
The adjustable parameter is designed so as to reduce the
effect of uncertainties. The proposed variable gain controller
can achieve good transient performance which is close to
the desirable trajectory generated by the nominal closed-
loop system. This paper is organized as follows. In Sec. II,
notation and useful lemmas which are used in this paper are
shown, and in Sec. III, we introduce the class of uncertain
linear systems under consideration. Sec. IV contains the main
results. Finally, numerical examples are included to illustrate
the results developed in this paper.

II. PRELIMINARIES

In this section, we show notations and useful and well-
known lemmas which are used in this paper.

In the sequel, we use the following notation. For a matrix
A, The transpose of matrix A and the inverse of one are
denoted by AT and A−1 respectively and rank {A} represents
the rank of the matrix A. Also, He{A} means A + AT and
In represents n-dimensional identity matrix and the notation
diag (A1, · · · ,AN ) denotes a block diagonal matrix composed
of matrices Ai for i = 1, · · · , N . For real symmetric matrices
A and B, A > B (resp. A ≥ B) means that A−B is positive
(resp. nonnegative) definite matrix. For a vector α ∈ �n,
||α|| denotes standard Euclidian norm and for a matrix A,

||A|| represents a its induced norm. The symbols “
�
=” and “�”

means equality by definition and symmetric blocks in matrix
inequalities, respectively.

Furthermore, the following well-known lemmas are used in
this paper.

Lemma 1: For arbitrary vectors λ and ξ and the matrices
G and H which have appropriate dimensions, the following
relation holds.

He

{
λTGΔ(t)Hξ

} ≤ 2
∥∥GT λ

∥∥ ∥∥Hξ
∥∥

where Δ(t) ∈ R
p×q is a time-varying unknown matrix

satisfying
∥∥Δ(t)

∥∥ ≤ 1.

Proof: The above relation is easily obtained by Schwartz’s
inequality[10].
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( −Q− (1 + τ1)PBR−1BTP + (δτ1 + τ2) In Ξ (P)
� −τ2Σ

−1
σ

)
< 0 (9)

Lemma 2: (S-procedure) Let F(x) and G(x) be two arbi-
trary quadratic forms over R

n. Then F(x) < 0 for ∀x ∈ R
n

satisfying G(x) ≤ 0 if and only if there exist a nonnegative
scalar τ such that

F(x) − τG(x) ≤ 0 for ∀x ∈ R
n

Proof: See Boyd et al.[11]
Lemma 3: (Schur complement) For a given constant real

symmetric matrix Ξ, the following arguments are equivalent.

(i) Ξ =
(

Ξ11 Ξ12

ΞT
12 Ξ22

)
> 0

(ii) Ξ11 > 0 and Ξ22 − ΞT
12Ξ

−1
11 Ξ12 > 0

(iii) Ξ22 > 0 and Ξ11 − Ξ12Ξ−1
22 ΞT

12 > 0
Proof: See Boyd et al.[11]

III. PROBLEM FORMULATION

Consider the uncertain linear system described by the fol-
lowing state equation (see Remark 1).

d

dt
x(t) =

(
A +

N∑
k=1

θk(t)Dk

)
x(t) + Bu(t) (1)

where x(t) ∈ �n and u(t) ∈ �m are the vectors of the state
(assumed to be available for feedback) and the control input,
respectively. In (1), the matrices A and B denote the nominal
values of the uncertain system of (1). The matrices Dk (k =
1, · · · , N) which have appropriate dimensions represent the
structure of uncertainties and the time-varying parameter vec-
tor θ(t) ∈ �N (θ(t) = (θ1(t), · · · , θN (t))T ) shows unknown
parameters which belong to the N -dimensional ellipsoidal set
expressed as

Δ
�
=
{
θ ∈ �N | θT (t)Σ−1θ(t) ≤ 1

}
Σ = diag

(
σ2

1 , · · · , σ2
N
)

.

(2)

where Σ ∈ �N×N represents the size of the ellipsoid. Beside
the nominal system, ignoring the unknown parameters in (1),
is given by

d

dt
x(t) = Ax(t) + Bu(t). (3)

In this paper first of all, we consider the standard linear
quadratic control problem for the nominal system of (3)
in order to generate the desired response for the uncertain
system of (1) systematically. Namely we define the following
quadratic cost function for the nominal system of (3).

J =
∫ ∞

0

(
xT (t)Qx(t) + uTRu(t)

)
dt (4)

where the matrices Q ∈ �n×n and R ∈ �m×m are posi-
tive definite. It is well-known that the optimal control input
minimizing the quadratic cost function of (4) is given by

u(t) = −Kx(t), where K ∈ �m×n represent the optimal
control gain matrix. Note that the closed-loop system matrix

AK
�
=A−BK is stable and the optimal feedback gain matrix

K ∈ �m×n is derived as K = R−1BTP where P ∈ �n×n

is unique solution of the algebraic Riccati equation

He

{
ATP}− PBR−1BTP + Q = 0. (5)

Now by using the optimal feedback gain matrix K ∈ �m×n

for the nominal system of (3), we consider the following
control input.

u(t)
�
= γ(x, t)Kx(t) (6)

where γ(x, t) ∈ �1 is a time-varying adjustable parameter so
as to compensate the effect of unknown parameters.

From eqs.(1) and (6), we have the closed-loop system

d

dt
x(t) = Ax(t) + Γ (x, t)θ(t) + γ(x, t)Kx(t). (7)

In (7), Γ (x, t) is a matrix expressed as

Γ (x, t) =
( D1x(t),D2x(t), · · · ,DNx(t)

)
. (8)

From the above discussion, our control objective in this
paper is to design the robust stabilizing controller which
achieves good transient performance for the uncertain closed-
loop system of (7). That is to design the time-varying ad-
justable parameter γ(x, t) ∈ �1 such that the closed-loop
system of (7) is robustly stable and achieves satisfactory
transient performance close to LQ optimal control for the
nominal system of (3).

Remark 1: In this paper, we consider the uncertain dy-
namical system of (1) which has uncertainties in the state
matrix only. The proposed design scheme of the variable
controller derived in next section can also be applied to the
case that the uncertainties are included in both the system
matrix and the input matrix. By introducing additional actuator
dynamics and constituting an augmented system, uncertainties
in the input matrix are embedded in the system matrix of the
augmented system[12]. Therefore the same design procedure
can be applied.

IV. MAIN RESULTS

In this section, we show a design method of the proposed
variable gain controller such that the uncertain system of (1)
is asymptotically stable.

The following theorem gives sufficient conditions for the
existence of the proposed controller.

Theorem 1: Consider the uncertain linear system of (1)
and the control input of (6).

If there exist the positive scalars τ1 and τ2 satisfying
the LMI of (9) then the adjustable time-varying parameter
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γ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
(

1 +

∥∥Σ1/2Γ T (x, t)Px(t)
∥∥∥∥R−1/2BTPx(t)

∥∥2

)
if xT (t)PBR−1BTPx(t) ≥ δxT (t)x(t)

−
(

1 +

∥∥Σ1/2Γ T (x, t)Px(t)
∥∥

δxT (t)x(t)

)
if xT (t)PBR−1BTPx(t) < δxT (t)x(t)

(10)

d

dt
V(x, t) = xT (t)

[
He

{
ATP}]x(t) + 2xT (t)Γ (x, t)θ(t) + 2γ(t)xT (t)PBKx(t) (13)

d

dt
V(x, t) = −xT (t)

(Q−PBR−1BTP)x(t) + 2xT (t)Γ (x, t)θ(t) + 2γ(t)xT (t)PBKx(t) (14)

d

dt
V(x, t) = −xT (t)

(Q−PBR−1BTP)x(t) + 2xT (t)Γ (x, t)Σ1/2Σ−1/2θ(t) + 2γ(t)xT (t)PBKx(t)

= −xT (t)
(Q−PBR−1BTP)x(t) + 2

∥∥Σ1/2Γ T (x, t)x(t)
∥∥+ 2γ(t)xT (t)PBR−1BTPx(t) (15)

d

dt
V(x, t) =

(
x(t)
ξ(t)

)T ( −Q + PBR−1BTP Ξ (P)
� 0

)(
x(t)
ξ(t)

)
+ 2γ(t)xT (t)PBR−1BTPx(t) (17)

(
x(t)
ξ(t)

)T ( −Q + PBR−1BTP Ξ (P)
� 0

)(
x(t)
ξ(t)

)
+ 2γ(t)xT (t)PBR−1BTPx(t) < 0

s.t. xT (t)PBR−1BTPx(t) < δxT (t)x(t) and ξT (t)Σ−1
σ ξ(t) ≤ xT (t)x(t) (20)( −Q−PBR−1BTP Ξ (P)

� 0

)
< 0 s.t. xT (t)PBR−1BTPx(t) < δxT (t)x(t) and ξT (t)Σ−1

σ ξ(t) ≤ xT (t)x(t) (22)

γ(t) ∈ R
1 is determined as (10). In (9), δ is a positive constant

selected by designers and Ξ (P) is a matrix given by

Ξ (P)
�
=
( PD1 PD2 · · · PDN

)
. (11)

Then the uncertain closed-loop system of (7) is robustly
stable.

Proof: By using the unique solution P ∈ R
n×n of the

algebraic Riccati equation of (5), we consider the following
quadratic function.

V(x, t)
�
=xT (t)Px(t) (12)

The time derivative of the quadratic function V(x, t) can be
written as (13). Additionally since the matrix P is the unique
solution of the algebraic Riccati equation of (5), The time
derivative of the quadratic function V(x, t) can be rewritten
as (14).

Now, we consider the case of xT (t)PBR−1BTPx(t) ≥
δxT (t)x(t). In this case using Lemma 1, we obtain (15). Here
we have used the relation of (2) and K = R−1BTP . Besides,
by using the adjustable time-varying parameter γ(t) of (10),
we find that the following relation holds.

d

dt
V(x, t) = − xT (t)

(Q + PBR−1BTP)x(t)

< 0 for ∀x(t) �= 0 (16)

Next, we consider the case of xT (t)PBR−1BTPx(t) <
δxT (t)x(t) and then the time derivative of the quadratic
function V(x, t) of (14) can be described as (17). In (17),
ξ(t) is a n ×N -dimensional vector given by

ξT (t) =
(

θ1(t)xT (t) θ2(t)xT (t) · · · θN (t)xT (t)
)
.

(18)

Note that from the relation of (2) the following inequality for
the vector ξ(t) ∈ R

n×N is satisfied.

ξT (t)Σ−1
σ ξ(t) ≤ xT (t)x(t) (19)

In (19), Σσ = diag
(
σ2

1In, σ2
2In, · · · , σ2

N In

)
. One can see that

if the condition of (20) holds, then the following inequality is
also satisfied.

d

dt
V(x, t) < 0 for ∀x(t) �= 0 (21)

Thus we consider the condition of (20). By using the ad-
justable time-varying parameter γ(t) of (10), we have (22)
which is a sufficient condition for the inequality of (20).
Namely, if the condition of (22) holds, then the inequality of
(20) is also satisfied. Applying Lemma 2 (S-procedure) to the
condition of (22) and some trivial manipulations give the LMI
of (9). Therefore for the case of xT (t)PBR−1BTPx(t) <
δxT (t)x(t), if the LMI of (9) is feasible then the relation of
(21) is satisfied.

From the above discussion, the quadratic function V(x, t)
becomes a Lyapunov function and the uncertain linear system
of (1) is ensured to be stable. It follows that the result of the
theorem is true. The proof of Theorem 1 is completed.

Remark 2: In this paper, the quadratic function V(x, t) of
(12) is introduced and it becomes a Lyapunov function for
the uncertain system of (1). On the other hand, the quadratic
function V(x, t) of (12) is also a Lyapnov function for the
nominal closed-loop system, i.e. the standard LQ regulator.
Therefore, by selecting the design parameter δ ∈ R

1 the pro-
posed controller can achieve the good transient performance
and adjust the magnitude of the control input, because the
Lyapunov function for the uncertain system of (1) and one of
the nominal system of (3) have same level set.
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d

dt
x(t) =

( −3.0 1.0
0.0 1.0

)
x(t) + δ1(t)

(
1.0 1.0
0.0 0.0

)
x(t) + δ2(t)

(
0.0 0.0
0.0 1.0

)
x(t) +

(
0.0
1.0

)
u(t) (23)

• Case 1) : δ1(t) =
√

3.0 , δ2(t) = −√
2.0

• Case 2) : δ1(t) =
√

3.0 × sin(5πt) , δ2(t) = −√
2.0 × cos(5πt)

(27)
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V. ILLUSTRATIVE EXAMPLES

In order to demonstrate the efficiency of the proposed
control scheme, we have run a simple example. Consider the
linear system with unknown parameters of (23) and we assume
that the parameters σ1 and σ2 in the matrix Σ ∈ R

2×2 in (2)
are given by σ1 = 2.0 and σ2 = 5.0 × 10−1, respectively.

Firstly we select the weighting matrices Q and R such as
Q = 1.0 × I2 and R = 9.0 for the quadratic cost function
for the standard linear quadratic control problem, respectively.
Then solving the algebraic Riccati equation of (5), we obtain

K =
(

2.69892× 10−2 −4.17080
)

P =
(

1.66545× 10−1 2.69892× 10−2

� 4.17080

)
.

(24)

In this example, we consider the following two kinds of the
design parameters δ ∈ R

1 in (9) .

• Σ∗
1 : δ = 1.0 × 102, • Σ∗

2 : δ = 4.0 × 105 (25)
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1

For these design parameters, solving the LMI condition of (9),
we have

• Σ∗
1 : τ1 = 1.00121× 10−7 , τ2 = 3.32679× 101

• Σ∗
2 : τ1 = 1.0 × 10−7 , τ2 = 4.13381× 101

.
(26)

Now in this example, we consider the two cases for the
unknown parameters in (27). Furthermore, the initial value
for the uncertain system of (23) and its nominal system are
selected as x(0) = x(0) =

(
1.0 −2.0

)T
.

The results of the simulation of this example are depicted
in Figures 1 – 8. In these figures, “Case 1)” and “Case
2)” represent the time-histories of the state variables x1(t)
and x2(t), the control input u(t) and the Lyapunov function
V(x, t). Besides, “Desired” represents the desirable transient
behavior, the control input and the time-histories of the Lya-
punov function V(x, t) generated by the nominal system.

From Figures 1 – 4, we find that the proposed variable gain
controller (Σ∗

1 ) achieves good transient performance. However,
the proposed control input is excessive comparing with the
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nominal system. On the other hand, one can see from Figures
5 – 8 that although the error between the transient response
for the proposed controller (Σ ∗

2 ) and the one of the nominal
system is large, the control input in Σ ∗

2 is close to the desired
one. Namely, the proposed controller can adjust the transient
performance and the control input by means of selecting the
design parameter δ ∈ R

1 in (10). Therefore the effectiveness
of the proposed variable gain controller is shown.

VI. CONCLUSIONS

In this paper we have proposed a new variable gain
controller for a class of uncertain linear systems. Besides,
by numerical simulations, the effectiveness of the proposed
controller has been presented. One can see that the crucial
difference between the existing results[8], [9] and our new
one is that the structure of proposed controller is simple and
the proposed variable gain controller can adjust the transient
performance and the control input by means of selecting the
design parameter.

The future research subjects are an extension of the pro-
posed controller to such a broad class of systems as uncertain
large-scale systems, uncertain discrete-time systems, uncertain
time-delay systems and so on.
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