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Abstract—This paper presents a novel decoupling method
for multivariable systems with disturbances. In this method,
the undesirable coupling parts in each loop are treated as the
output disturbances. These disturbances, as well as the external
disturbances, can be actively rejected by the equivalent-input-
disturbance (EID) approach. The parameters of the controller
in each loop can be designed independent of each other. A
typical example demonstrates the simplicity in parameters design
and good performance in decoupling control and disturbance
rejection.

Index Terms—Decoupling control, linear systems, disturbance
rejection, state observer, equivalent-input-disturbance, pole as-
signment

I. INTRODUCTION

Multiple-inputs and multiple-outputs (MIMO) processes are
often encountered in industry, such as chemical reactor, con-
tinuous stirred tank reactor, et. al. Because of the interaction
between each control loop, the controller design for MIMO
system becomes a complex problem and the common single-
input single-output (SISO) control theories are not effective
for MIMO systems. However, the practical control engineers
are always accustomed to deal with the MIMO system loop by
loop, which requires the common SISO control methods, such
as PID control, optimal control. To solve such a problem, one
of the control strategies is trying to eliminate the interactions
between control loops, which is known as decoupling control.

The decoupling control theory has been well developed and
established for several decades. To measure the interaction of
the MIMO systems, Bristol [1] introduced relative gain array
method for the input-output pairings and controller design. For
linear systems, an effective approach to the internal model de-
sign [2] is proposed for decoupling stable square multivariable
process with delays. A transfer function matrix decoupling
approach is presented for the MIMO Smith Scheme [3].
Although many significant results have been proposed, the
decoupling performance is still desired to be improved and
some key problems, such as robustness, disturbance rejection,
and other practical concerns [4] continue to pose serious
challenges.

It is well known that the disturbance is of a primary concern
for control system design, and is even the ultimate objective.
This problem, in conjunction with decoupling control, has

attracted many researchers. Feedback control [5] may be
effective for reducing the disturbance and making disturbance
rejection tuning independent of the controller design, if the
disturbance is measurable. Due to the difficulties in obtaining
exact model or disturbance, decoupling control schemes are of-
ten constructed to estimate the cross-couplings and disturbance
at the same time; and a number of observer-based methods
are making progress. Such as the disturbance observer based
method (DOB) [6], the perturbation observer approach (POB)
[7], disturbance decoupling control [8] based on the active
disturbance rejection control (ADRC) [9] and so on. However,
DOB requires the inverse dynamics model and POB needs
the accurate model of the plant. The ADRC based decoupling
method overcomes some drawbacks of the existing methods.
However, the parameters in the resulting controller are usually
very complicated.

In an MIMO system, the output of one loop is always
the sum of all inputs actions. The actions of other loops
are the resource of the interactions and bring bad effect
on the stability and performance, which is just like output
disturbances occurring in this loop. Intuitionally, we may
think that if such ”output disturbances” can be fully overcame
or compensated, the output of one loop is only determined
by the relevant input, and then the MIMO system can be
well decoupled. One of the novelties of this paper is that,
we treat the undesirable coupling parts of each loop as its
output disturbances, and compensate them together with the
external disturbance. The equivalent-input-disturbance (EID)
approach [10], [11] is a relatively new disturbance rejection
method. It can reject more than one disturbance simultaneously
and compensate any kind of disturbance effectively without
knowing prior information. These important features motivated
us to design the decoupling controller using the EID-based
method.

This paper first constructs a configuration of the decoupling
control based on the EID approach. Then, the controller
parameters for each loop are designed independently. Finally,
simulation results are shown for validating the proposed
method.
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II. CONFIGURATION OF THE DYNAMIC DECOUPLING
CONTROL

Consider a linear time-invariant MIMO system. Let ri

and ui, i = 1, 2, · · · , n denote the reference inputs and
the control inputs, respectively. Suppose that the open loop
transfer function matrix of the process is described by

G(s) = [gij(s)]n×n (1)

Then for the i-th loop, the output is given by

yi =
n∑

j=1

gij(s)uj , i = 1, 2, · · · , n (2)

We divide it into two parts:

yi = gii(s)ui +
n∑

j=1,j 6=i

gij(s)uj (3)

where gii(s) is regarded as the transfer function of the plant in
the i-th loop, the second term in the right hand side is treated
as a disturbance signal. So that it becomes an SISO system
with disturbances for each loop.

For clarity, we take a two-input two-output (TITO) system
as an example, as shown in Fig.1. For the plant g11, we only
need to design a controller c1 to reject the signal through g12,
as well as the disturbance d1. Similarly, one designs controller
c2. Due to this process, we can also notice that only the
diagonal elements of the transfer function are needed in the
compensation instead of the whole information.

For convenience, the processes are formulated in state-space
forms. Then the plant in the i-th loop is given by

{
ẋi(t) = Aixi(t) + Biui(t) + Didi(t)
yi(t) = Cixi(t) + Φiϕi(t)

(4)

where Ai, Bi and Ci are matrices obtained by the transfer
function gii(s), i = 1, 2, · · · , n, Φiϕi(t) denotes the signal

n∑
j=1,j 6=i

gij(s)uj , which need not to be known exactly, and

Didi(t) is the external disturbance.
Now, a transformation is required. For the output yi(t), there

must exist a matrix Ψi such that

yi(t) = Ci[xi(t) + Ψiϕi(t)] (5)

Let
x̃i(t) = xi(t) + Ψiϕi(t) (6)

Combing (5) and (6), the state equation (4) is derived as
{ ˙̃xi(t) = Aix̃i(t) + Biui(t) + [Didi(t)−AiΨiϕi(t)]

yi(t) = Cix̃i(t)
(7)

where Didi(t)−AiΨiϕi(t) is regarded as whole disturbances
imposed on this loop.

An EID of the plant is defined to be a signal on the control
input channel that produces the same effect on the output as
disturbances do for all t ≥ 0. The EID of the disturbance must
exist under the condition that the plant does not have any zeros
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Fig. 1. Configuration of TITO decoupling control system
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Fig. 2. Configuration of the EID method

on the imaginary axis [10]. Suppose that a disturbance dei(t)
is imposed on the control input channel of the i-th plant, then
(7) can be described as the following equivalent model

{ ˙̃xi(t) = Aix̃i(t) + Bi[ui(t) + dei(t)]
yi(t) = Cix̃i(t)

(8)

Note that the same variable x̃i is used for both the state of
plant (7) and (8). This should not make confusion.

The configuration of the EID-based control system is shown
in Fig. 2. The controller ci in Fig. 1 is just designed using the
parts within the dashed line in Fig. 2. In this figure, the internal
model

˙̄xi(t) = Āix̄i(t) + B̄i[ri(t)− yi(t)] (9)
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is employed to improve the tracking precision, in which the
parameters are determined by the reference input ri(t). The
Luenberger observer

{ ˙̂xi(t) = Aix̂i(t) + Biũi(t) + Li(yi(t)− ŷi(t))
ŷi(t) = Cix̂i(t)

(10)

plays a key role in the disturbance estimation.
Let

∆xi(t) = x̃i(t)− x̂i(t). (11)

[10] gives us the expression of the estimation value

d̂i(t) = B+
i LiCi∆xi(t) + ui(t)− ũi(t) (12)

where B+
i = (BT

i Bi)−1BT
i .

Then, a low-pass filter is used to select the frequency band
of the signal, e.i.,

L [d̃i(t)] = F (s)L [d̂i(t)] (13)

where L (·) is the Laplace transform and Fi(s) satisfies

|Fi(jω)| ≈ 1 (14)

for all ω ∈ Ω, where Ω is the chosen frequency band. Note that
each loop becomes an SISO system in the design, a first-order
filter

Fi(s) = 1/(Tis + 1) (15)

can work well.
Thus, d̃i(t) is just the estimated compensation of the whole

disturbances in the i-th loop. So that the control law is given
by

ui(t) = ũi(t)− d̃i(t) (16)

where the state feedback control law is

ũi(t) = Hix̄i(t) + Kix̂i(t) (17)

III. STABILITY ANALYSIS AND PARAMETERS DESIGN

Since the plant we considered in each loop may be influ-
enced by any of the reference input, we set

ri(t) = 0, i = 1, 2, · · · , n, di(t) = 0 (18)

for the i-th loop to guarantee that all the external inputs be
zero.

Then combining (4), (10), (11) and (18) yields

∆ẋi(t) = −(Ai − LiCi)∆xi(t) + Bid̃i(t) (19)

and
d̂i(t) = B+

i LiCi∆xi(t) + d̃i(t) (20)

So the transfer function from d̃i(t) to d̂i(t) can be derived as

Gi(s) = B+
i (sI −Ai)[sI − (Ai − LiCi)]−1Bi (21)

In the EID-based control system, the state feedback design
does not influence the stability of the whole system. Therefore,
we have the following theorem.

Theorem 1: [10] For suitably designed Hi and Ki, the
control law (16) guarantees the stability of the i-th loop, if
Ai − LiCi is stable and

‖Gi(s)Fi(s)‖∞ < 1 (22)

where ||·||∞ denotes the upper bound of the maximum singular
value of the function.

Since the plant in each loop is controllable and observable,
the state feedback gains and the observer can be designed
independently [14]. This brings us great convenience for
parameters design.

As for the state feedback gains, the following augmented
system including the original plant and the internal model is
considered

δẋi(t) = Ãiδxi(t) + B̃iui(t) (23)

where

δxi(t) =
[

x̃i(t)
x̄i(t)

]
, Ãi =

[
Ai 0

−B̄iCi Āi

]
, B̃i =

[
Bi

0

]

(24)
Hi and Ki can be optimized by using a well-known linear
quadratic regulation (LQR) method [15]. The optimal state-
feedback control law is given by

u∗i (t) = −R−1
i B̃T

i Piδxi(t) (25)

where Pi =
[

Ki Hi

]
is a solution of the Riccati equation

PiÃi + ÃT
i Pi + Qi − PiB̃iR

−1
i B̃T

i Pi = 0 (26)

Qi > 0 and Ri > 0 are diagonal matrices to be determined
by the coefficient matrices of the augmented system.

The Luenberger observer has an important function that
enables the coupling parts and disturbances to be compensated
for. It will achieve good performance and be easily operated
for a well designed gain Li. We use the well-known pole-
placement theory in this study instead of the perfect regulation
method in [10], no matter if the plant is stable. First, we need
to select a time parameter Ti that satisfies (14) for the low-pass
filter. Then Li can be obtained by the following procedure.

Observer gain design algorithm
Step 1: [14] For a prescribed ζ, 0 ≤ ζ ≤ 1, the expected

poles for the observer is chosen to be

λ1,2 = −ζσ ± j
√

1− ζ2σ,

λk = −akζσ, ak ≥ 5, k = 3, · · · ,m (27)

Step 2: Choose σ in (27) and calculate the transfer function
Gi(s) in (21), such that (22) holds.

Step 3: Calculate the observer gain Li such that

λk(Ai − LiCi) = λk, k = 1, · · · ,m (28)

Remark 1: Only if the plant is observable, the expected
poles of the observer can be arbitrarily placed by the feedback
matrix Li. It is well known that the performance of the
observer is determined by the dominant poles λ1,2. In addition,
the following part proves that there must exist a large enough
σ such that (22) holds.
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It follows from (21) that

1/ ‖Gi(s)‖∞ =
∥∥∥G̃i(s)

∥∥∥
∞

(29)

where

G̃i(s) = B+
i [sI − (Ai − LiCi)](sI −Ai)−1Bi

Since lim
σ→∞

|λi| = ∞ (i = 1, · · · ,m), from (28), we have
lim

σ→∞
‖Ai − LiCi‖∞ = ∞. For any fixed ω, the matrices jωI

and (jωI − Ai)−1 are constant matrices with finite norms,
respectively. So,

lim
σ→∞

∥∥∥G̃i

∥∥∥
∞

= ∞. (30)

Then, for a large enough σ, (22) holds. In view of the modeling
uncertainties, σ can be chosen a little large to handle the
uncertainties and guarantee the stability of the system.

Remark 2: In the design of the proposed method, the cou-
pling parts in each loop are treated as disturbances. In this case,
even if strong multivariable interactions occur, the stability of
the system will not be destroyed.

The controllers are designed loop by loop based on the
analysis above. Although every loop needs a controller as
discussed above, the parameters can be designed similarly
among all loops and be independent of each other.

IV. NUMERICAL EXAMPLE

The Wood-Berry model of a pilot-scale distillation column
[16] has been studied extensively. This section considers this
multivariable system with delay set to zero, which is shown
as


 y1(s)

y2(s)


 =




12.8
16.7s+1

−18.9
21s+1

6.6
10.9s+1

−19.4
14.4s+1





 u1(s)

u2(s)


 (31)

Let the reference inputs be r1 = 1 and r2 = 1, which
were imposed at t = 0 s and t = 20 s, respectively. Then
a disturbance d1(t) = 0.4 was imposed on the first plant at
t = 40 s.

The proposed method is applied to this model. Since the
reference inputs are step signals, the parameters of the internal
models are chosen to be

Ā1 = Ā2 = 0, B̄1 = B̄2 = 1 (32)

As for the time constant T1 and T2, 0.01 will be suitable for
both of the filters.

For the first loop, let

Q1 = diag
{

1 1
}

, R1 = 1 (33)

Using LQR method yields

K1 = −1.0, H1 = 1.8233 (34)

Set ζ = 1 in (27) and choose σ = 20 in Step 2 of the observer
gain design algorithm. So that they satisfy (22). Then

λ1 = −20 (35)
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Fig. 3. The output responses for loop 1
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Fig. 4. The output responses for loop 2

Calculating the observer gain according to (28), yields

L1 = 19.9401. (36)

Similarly, for the second loop, choosing

Q2 = diag
{

1 1
}

, R2 = 1 (37)

and
λ2 = −20 (38)

yields
K2 = 1.0, H2 = −1.5255 (39)

and
L2 = 19.9306. (40)

The simulation results are shown in Fig.3 and Fig.4, re-
spectively. In Fig.3, after the second step input and the
disturbance being imposed, the peak to peak value (PPV) of
the response in loop 1 is still less than 0.01. It occurs in
loop 2 similarly; even the PPV at the beginning is only less
than 0.01. It can be seen clearly that the proposed method
achieves satisfactory performance in both decoupling control
and disturbance rejection.

V. CONCLUSION

A dynamic decoupling control method has been presented
for MIMO systems with disturbances. The undesirable cou-
pling parts and external disturbances in each loop are treated as
”disturbances”, respectively. So that these disturbances can be
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effectively compensated by using the EID-based approach. The
decoupling control and disturbance rejection can be carried
out simultaneity without knowing the prior information of
all the treated disturbances. Although every loop needs a
controller, the parameters design is still very simple and can
be independent of each other. Simulation results demonstrated
the good performance of the proposed method.
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