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Abstract—The injection stretch-blow Moulding (ISBM) process
is typically used to manufacture PET containers for the beverage
and consumer goods industry. The process is somehow complex
and users often have to heavily rely on trial and error methods
to setup and control it. In this paper, a novel identification
method based on a radial basis function (RBF) network model
and heuristic optimization methods, such as particle swarm
optimization (PSO), deferential evolution (DE), and extreme
learning machine (ELM) is proposed for the modelling and
control of bottle section weights. The main advantage of the
proposed method is that the non-linear parameters are optimized
in a continuous space while the hidden nodes are selected
one by one in a discrete space using a two-stage selection
algorithm. The computational complexity is significantly reduced
due to a recursive updating mechanism. Experimental results
on simulation data from ABAQUS are presented to confirm the
superiority of the proposed method.

I. INTRODUCTION

Over last few decades, the use of plastics has experienced
healthy growth due to its many high performances including
lightweight with high tensile/impact/tear strengths, high tem-
perature/chemical resistance, high clarity/modulus/plasticity
and low cost [1]. The injection stretch-blow moulding (ISBM)
process is a kind of blow-moulding process in making thin-
walled polyethylene terephthalate (PET) bottles for the carbon-
ated soft drink and mineral water industries. In such a process,
polymer granules is first extruded and injected into a hollow
tube to produce structurally amorphous preforms. The resultant
preforms are then loaded and conveyed in an infrared oven
for reheat. Finally, the heated preforms are simultaneously
stretched by a rod and blown with high pressure air to
produce to the finished article shape. This stretch blowing and
subsequent cooling takes around one second. Due to the fast
production rate, the ability to mould complex part and some
other attractive features, ISBM process has become one of the
most popular methods adopted in the polymer industry.

The quality of made bottles is usually indicated by the bottle
wall thickness distribution, top load, burst, and the section
weights. All these variables are correlated to the process
parameter settings, including preform temperature distribution,
blowing air pressure and the delay between rode stretching
and air blowing [2]. Unfortunately, the current ISBM process
is still an open-loop system where optimal process settings are

found by trial and error [3]. This is not only time consuming
but also leads to wasting of materials, and the process is
sensitive to both internal and external interruptions. Therefore,
the design of feedback control for ISBM process is extremely
urgent. The bottle wall thickness and its section weights are
clearly the best options for feedback signals, but they are
either difficult to measure in real-time or the cost is too
high. Alternatively, the ’soft-sensor’ method to infer these
parameters based on the mathematical process model becomes
an affordable and cost-effective approach.

In non-linear system identification, the radial basis function
networks are recognized as an universal approximation model
that has been widely applied in data mining, pattern recogni-
tion, signal processing, and system modelling and control [4].
The RBF network has a simple topological structure, and it
is easy to be trained compared to the multilayer perceptron
(MLP) neural network alternative. The construction of RBF
network model mainly involves two steps, the optimization
of basis function parameters and the estimation of output
layer weights. The latter can be easily achieved by least-
square estimation while the former is difficult to implement
as it involves non-linear optimization. The conventional way
to handle those non-linear parameter are either by exhaustive
search or gradient-based methods, which can be computa-
tionally expensive, and the global best solution cannot be
guaranteed [5].

Heuristic approaches, such as simulated annealing (SA)
[6], evolutionary algorithm (EA) [7], Tabu search (TS) [8],
particle swarm optimization (PSO) [9], differential evolution
(DE) [10], ant colony optimization (ACO) [11] and har-
mony search (HS) [12] have offered the alternatives for such
an optimization problem. Unlike conventional calculus-based
methods, heuristic approaches randomly generate some new
solutions from which the best one is selected. The employment
of heuristic methods in the RBF network construction can
be implemented at either the global or the local level. In
the former case all the non-linear and linear parameters are
optimized simultaneously while in the latter case only the non-
linear parameters of a single hidden node are regarded as one
solution, and the RBF model is built step by step through
subset selection algorithm [13]. Simultaneous optimization
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of the whole RBF network can archive the global optimal
solution. However, it can be computationally expensive, and
a large number of iterations are required in the optimization
process. By contrast, subset selection involves fewer param-
eters to be optimized at each step, thus it is more efficient.
The recently proposed two-stage subset selection algorithm
has also shown its ability in reaching the near global optimal
solution while retaining the computational efficiency of the
forward alternative [14, 15].

In this paper, heuristic optimization methods, such as the
Particle Swarm Optimization, Differential Evolution and the
recently developed Extreme Learning Machine [16, 17] are
effectively integrated with our two-stage selection (TSS) algo-
rithm, leading to a flexible and efficient construction scheme
for RBF neural modelling. Non-linear parameters in the hid-
den layer will be continuously optimized at each step while
the output layer weights are estimated by the least-squares.
The main advantages over the conventional subset selection
methods are that both the centre vector and width vector in a
RBF function are optimized separately for each hidden node.
Thus the model size can be significantly reduced, leading
to improved generalisation performance. The experimental
results on the simulation data illustrate the compactness and
performances of the obtained model. It also shows that the
PSO and DE have similar capabilities in non-linear parameter
optimization while the extreme learning machine provides an
efficient alternative with significantly reduced computational
effort.

The rest of this paper is organized as follows. Section II and
III give an overview of the ISBM process and the heuristic
methods employed. The new two-stage selection algorithm is
then introduced in Section IV with the experimental results
given in V. Finally, VI concludes the paper and provides with
suggested future work.

II. THE ISBM PROCESS

Practically, it is difficult to generate enough data for system
identification. Thus a commercial finite element (FE) package
known as ABAQUS is used to simulate the ISBM process.
Several conditions need to be pre-set before the simulation
process. These include the geometry of the preform, stretch
rod and mould, material model, pre-blow process conditions
(mass flow rate, pre-blow air pressure, preform temperature)
and final-blow process conditions (final-blow air pressure and
cooling time).

The pre-blow process conditions have a major influence
on the final thickness and mechanical properties distributions
in the ISBM process. At this stage, the simulations are only
focused on modelling wall thickness distribution at different
pre-blow process conditions. The preform reheating stage
and cooling stage are beyond the scope of this study. Four
parameters of the process were identified to be important,
namely mass flow rate, pressure, temperature, and timing. The
mass flow rate indicates the velocity of air blowing to the
pre-form while the pressure affects the total amount of air

TABLE I
DOE SETTINGS OF EACH PARAMETER IN ISBM SIMULATION

Mass flow rate(g/s) Pressure(MPa) Temperature(◦C) Timing(ms)
5 0.6 95 0

17 0.8 100 50
29 1 105 100
40 110

consumed. The pre-form temperature was assumed uniform
and equivalent to the setting value in the simulation, and the
timing reflects the delay between stretching and blowing. Each
of the four parameters were given different settings as shown
in table I, and totally 144 possible combinations were ob-
tained. Meanwhile the bottle wall volume is divided into three
parts: shoulder, side-wall and base. These volume distribution
indicators can generally represent the weight distribution. The
frictional force between mould and bottle was infinite during
the simulation.

III. REVIEW OF RBF NETWORK MODEL AND HEURISTIC
OPTIMIZATION METHODS

A. Radial Basis function network model

A general RBF neural model can be expressed as

y(t) =
n∑

k=1

θkϕk(x(t); ck; Σk) + ε(t) (1)

where y(t) is the actual output at sample time t, x(t) ∈ <p

is the input vector, ϕk(x(t); ck; Σk) denotes the nonlinear
activation function, ci = [ci1, ci2, · · · , cip]T is the centre
vector, and Σi is the associated norm matrix. Finally, θk
represents the output layer weight for each RBF node, and
ε(t) is the network error at sample time t. By using a set of
N data samples {x(t), y(t)}Nt=1 for model training, (1) can
then be re-written in a matrix form as

y = Φθ + e (2)

If the regression matrix Φ is of full column rank, the Least-
Squares estimate of the regression coefficients in (2) is given
by

θ̂ = (ΦTΦ)−1ΦTy (3)

where ΦTΦ is sometimes called the information matrix. The
associated minimal cost function is

Jn(θ̂n) = yT (I−Φn)(ΦT
nΦn)−1ΦT

ny (4)

B. Particle Swarm Optimization

PSO involves a number of particles which move through
the problem search space seeking an optimal or satisfactory
solution. The position of each particle is adjusted according
to its velocity and the difference between its current position,
the best one it has found so far, and the best position to date
found by its neighbours.

Suppose xi denotes the ith particle in the swarm, vi

represents its velocity, pi is its best position to date, while
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pg denotes the best position from the entire swarm. In inertia-
weighted PSO, v(i+1) and x(i+1) are updated as:

v(i+1) ← w0vi + c1r1(pi − xi) + c2r2(pg − xi) (5)
x(i+1) ← xi + vi (6)

where w0 is the inertia weight used to scale the previous
velocity term, c1 and c2 are acceleration coefficients, and r1
and r2 are two uniform random number generated between 0
and 1. The acceleration coefficients c1 and c2 can be fixed or
varied during the iterative procedure. In order to ensure that
each updated particle is still inside the search space, it is also
necessary to define a value range, and check both the position
and velocity for each particle at the end of an iteration.

C. Deferential Evolution

As a population based optimization technique, DE [10] also
starts with some initial points which are randomly generated in
the search space, and then pushes the populations toward the
global optimum point through repeated operations of mutation,
crossover and selection. New populations are obtained by
adding the weighted difference of two vectors to a third one,
where the vectors are mutually different random points from
the last generation.

Suppose x
(l)
i (i = 1, 2, · · · , p) is the solution vector in

generation l, the operations in the classic DE method can be
summarised as follows:

• Mutation: A mutant vector is generated by:

v
(l+1)
i = x

(l)
r1 + F (x

(l)
r2 − x

(l)
r3 ) (7)

where r1, r2, r3 are random indices from [1, 2, · · · , p]
and F ∈ [0, 2] is a real constant which controls the
amplification of the added differential variation. Larger
values for F lead to higher diversity in new populations,
while lower values cause faster convergence.

• Crossover: This operation is implemented to increase the
diversity of the population. A trial vector is defined as

u
(l+1)
i = [u

(l+1)
i1 , u

(l+1)
i2 , · · · , u(l+1)

ip ]T (8)

with elements given by

u
(l+1)
ij =

{
v
(l+1)
ij randi(0, 1) ≤ Cr or i = br

x
(l)
ij otherwise

(9)

where p is the vector dimension, Cr ∈ [0, 1] is the prede-
fined crossover constant, randi(0, 1) uniformly generates
a scaler from [0, 1] at the ith evaluation, and br is a
random index chosen from [1, 2, · · · , p] so that u

(l+1)
i

contains at least one parameter from v
(l+1)
i .

• Selection: The last step is to compare all the trial vectors
u
(l+1)
i with the target ones x

(l)
i using a criterion, such

as their contribution to a loss function, and then decide
which one becomes a member of the next generation.

The above procedure continues until a pre-set number of
iterations is reached or the desired accuracy is obtained.

D. Extreme Learning Machine

The Extreme Learning Machine (ELM) was first introduced
for the training of Single-hidden Layer Feedforward neural
Network (SLFN). It builds the SLFN model by randomly
assigning non-linear parameters for each hidden node instead
of iterative training. The target is then simply a linear com-
bination of the hidden nodes, and the output layer weights
can be easily estimated by Least-Squares. As a result, the
learning speed in ELM can be several orders of magnitude
faster than traditional learning. Using incremental methods, it
has been proven that the ELM can be regarded as a universal
approximator [18].

The SLFN has a similar structure to a RBF network. For a
multi-input, multi-output (MIMO) system, it can be expressed
as

y(t) =
n∑

k=1

θkϕk(wk · x(t) + bk) (10)

where x(t) = [x1(t), x2(t), · · · , xp(t)] and y(t) =
[y1(t), y2(t), · · · , ym(t)] is the system input and output vector;
wk = [wk1, wk2, · · · , wkp] is the weight vector between the
p inputs and the kth hidden node; bk is the threshold of the
kth hidden node; (·) denotes the inner product, and ϕ is the
activation function. Finally θk = [θk1, θk2, · · · , θkm] is the
output layer weight vector between the kth hidden node and
m outputs.

In ELM, the non-linear parameters wk and bk in (10) are
assigned randomly, and it has been proven that the the required
number of hidden nodes n ≤ N if the activation function ϕ
is infinitely differentiable [16].

According to the above theorem, the ELM is also valid
for the RBF network in (1). The construction process can be
summarised in two steps:

1) Randomly assign the hidden nodes parameters, including
the number of hidden nodes n, and non-linear parame-
ters ci and σi for i = 1, 2, · · · , n;

2) Form the regression matrix Φ, and estimate the output
layer weights using (3);

The main issue in using ELM is that the sparsity of the
constructed model cannot be guaranteed due to its stochastic
characteristics. Fortunately, subset selection methods can be
easily integrated to solve this problem, and better generaliza-
tion performance can be achieved.

IV. TWO-STAGE SELECTION BASED ON HEURISTIC
OPTIMIZATION

The two-stage selection algorithm includes a forward model
construction stage and a backward model refinement stage.
At its first stage, one RBF centre is selected and added
to the model at each step. The significance of each centre
is measured by its contribution to the cost function. This
process continues until some pre-defined modelling criteria
are met (such as Akaike’s information criterion or a pre-
defined number of hidden nodes is reached), the algorithm
then moves to the second stage where the importance of
previously selected centres are reviewed, and any insignificant
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ones are replaced. The computational efficiency involved in
such process is achieved by defining a residual matrix Rk

which can be updated recursively. Moreover, PSO and DE are
used to find the best centre at each step while ELM is used
to form the centre pool before the selection process.

A. First stage - forward selection

Refer to (4), a recursive matrix Mk and a residual matrix
Rk are defined to simplify the computation.

Mk , PT
k Pk k = 1, · · · , n (11)

Rk , I−PkM−1
k PT

k R0 , I (12)

where PT
k ∈ <N×k contains the first k columns of the

regression matrix Φ in (2).
By substituting (12) into (4), the cost function becomes

J(Pk) = yTRky (13)

At this forward stage, the RBF centres are optimized one
at a time, and given by the best solution from the entire
population of the heuristic methods after several iterations.
Suppose at the kth step, one more centre pk+1 is to be added.
The net contribution of pk+1 to the cost function can then be
calculated as [14]:

∆Jk+1(Pk,pk+1) =
(yTp

(k)
k+1)2

pT
k+1p

(k)
k+1

(14)

where p
(k)
k+1 , Rkpk+1. According to [14], an auxiliary

matrix A ∈ <n×n and a vector b ∈ <n×1 need to be defined
to reduce the computational complexity. Their elements are
given by:

ai,j , (p
(i−1)
i )Tpj , 1 ≤ i ≤ j (15)

bj , (p
(j−1)
j )Ty, 1 ≤ j ≤ n (16)

where (p
(0)
j = pj). The efficiency of the this forward stage

then follows from updating these terms recursively as:

ai,j = pT
i pj −

i−1∑
l=1

al,ial,j/al,l (17)

bj = pT
j y −

j−1∑
l=1

(al,jbl)/al,l (18)

By substituting (15) and (16) into (14), the net contribution
of a new RBF centre pk+1 to the cost function can then be
expressed as:

∆Jk+1(pk+1) =
b2k+1

ak+1,k+1
(19)

In heuristic methods, (19) provides the formula to evaluate
each solution in the population. For instance, the selection of
local best and global best particles in PSO or the selection
between trial vector and target vector in DE.
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Fig. 1. Effect of mass flow rate on the section volumes (The other three
parameters were kept constant, and set as Pressure = 10bar, Temperature =
100◦C, Timing = 50ms

B. Second stage - backward network refinement

The model from the first stage is not optimal due to the
correlations between selected terms, that is the prior selected
centres introduced a constraint on the latter selections. This
second stage is therefore adopted to eliminate such constraint
and replace any insignificant centres by new one generated
from the population. Clearly, the last selected centre in the
forward construction has always been maximally optimized for
the whole network, the backward refinement can be divided
into two main steps: Firstly, a selected centre pk, k =
1, · · · , n − 1 is shifted to the nth position as if it were the
last selected one; then the optimization is implemented to
find an alternative centre at the nth position based on the
re-ordered n− 1 centres. If the shifted one is less significant
than the new centre from the population it will be replaced,
leading to a reduced training error and potential improvement
in the generalisation capability. This review is repeated until
a pre-defined number of check loops is reached. The detailed
algorithm and its computational analysis can be found in [13].

V. EXPERIMENTAL RESULTS

According to table I, a total number of 144 experiments
need to be carried out to generate the required data. However,
running these experiments and measuring the section weights
are practically difficult. Therefore, a manufacturing simulation
software, known as ABAQUS/standard version 6.10 [2], was
adopted as a substitute of the real process. Each simulation
lasted around 20 minutes, and when all finished, four experi-
ments were regarded as failure with their associated results
being removed from the final data set. For the remaining
140 data points, 100 were used for RBF model training, and
another 40 were reserved for model validation. The effect
of mass flow rate is illustrated in Fig. 1 while other three
parameters were kept constant.

The two-stage selection algorithm integrated with PSO, DE,
and ELM was then applied on the training data. For heuristic
optimization methods, their algorithm parameter settings are
shown in table II. From the implementation, it is found that
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TABLE II
PARAMETER SETTINGS FOR THE HEURISTIC APPROACHES (THE INITIAL

CENTRE VECTORS WERE RANDOMLY SELECTED FROM THE TRAINING
DATA)

Method Parameter Value Description

PSO

xi [ci;σi] ith particle in the swarm
σi ∈ [0.1, 4] Range of the width of ith RBF

centre
S 20 Number of particles
G 30 Number of updating cycles
w0 0.8 Inertia weight in velocity updating

DE

xi [ci;σi] ith solution vector in the popula-
tion

σi ∈ [0.1, 4] Width of ith RBF centre randomly
generated from the specified range;
if σi < 0 in the mutation step, |σi|
is used

S 10 Population size
G 20 Maximum number of generations
F 0.8 Weight of vector difference
Cr 0.6 Crossover constant

ELM σi ∈ [0.1, 4] Width of ith RBF centre randomly
generated from the specific range;

TABLE III
COMPARISON OF BOTTLE SHOULDER VOLUME MODELLING

PERFORMANCES (RMSE)

Algorithm Model size Training error Test error
PSO+FRA 4 0.2395 0.2770
PSO+TSS 4 0.1687 0.1998
DE+TSS 4 0.1780 0.1869
ELM+TSS 4 0.2531 0.2784

PSO+FRA 5 0.2333 0.2319
PSO+TSS 5 0.1441 0.1575
DE+TSS 5 0.1448 0.1216
ELM+TSS 5 0.2354 0.2408

PSO+FRA 6 0.1791 0.1972
PSO+TSS 6 0.1297 0.1272
DE+TSS 6 0.1089 0.1293
ELM+TSS 6 0.1896 0.2261

the increase of swarm size normally affects the performance
more than the increase of updating cycles in PSO, while in
differential evolution, these two control parameters have the
similar effects.

The resultant RBF models are usually evaluated by the Root
Mean Squared Error (RMSE) on validation data, table III - V
illustrate such performances under different algorithms. Due
to the stochastic characteristics in heuristic optimization, the
best results from five runs are chosen for comparison. The fast
recursive algorithm (first stage of TSS) usually gives worse
results than the TSS alternative, so it was only tested in the
modelling of bottle shoulder volume. The results also indicate
that DE works better than PSO in the shoulder volume mod-
elling. However, PSO outperforms DE in the other two section
volume modelling. Extreme learning machine is definitely the
most efficient methods which runs much faster than PSO or
DE, however the corresponding model performances are less
favourable. The prediction of bottle base volume is also shown
in Fig. 2, while the associated RBF model parameters are given
in table VI.

TABLE IV
COMPARISON OF BOTTLE SIDE WALL VOLUME MODELLING

PERFORMANCES (RMSE)

Algorithm Model size Training error Test error
PSO+TSS 4 0.4084 0.4023
DE+TSS 4 0.4201 0.4531
ELM+TSS 4 0.4506 0.5505

PSO+TSS 5 0.3761 0.3761
DE+TSS 5 0.3481 0.3935
ELM+TSS 5 0.4194 0.4996

PSO+TSS 6 0.3523 0.4926
DE+TSS 6 0.3379 0.4049
ELM+TSS 6 0.4156 0.4425

TABLE V
COMPARISON OF BOTTLE BASE VOLUME MODELLING PERFORMANCES

(RMSE)

Algorithm Model size Training error Test error
PSO+TSS 4 0.1300 0.1281
DE+TSS 4 0.1518 0.1508
ELM+TSS 4 0.2500 0.2959

PSO+TSS 5 0.1148 0.1021
DE+TSS 5 0.1363 0.1260
ELM+TSS 5 0.1907 0.2215

PSO+TSS 6 0.0898 0.0938
DE+TSS 6 0.1054 0.0990
ELM+TSS 6 0.1834 0.2104

TABLE VI
OPTIMIZED PARAMETERS OF RBF MODEL FOR THE BOTTLE BASE

VOLUME PREDICTION (REFER TO (1))

Parameters Optimized values
θ1 1.5419
θ2 -2.6327
θ3 2.5896
θ4 -3.0357
θ1 3.0150
c1 [-0.051, 0.244, 1.635, 1.499]
σ1 [0.100, 4.000, 4.000, 0.100]
c2 [-1.605, 1.475, -0.112, 1.499]
σ1 [0.244, 4.000, 4.000, 4.000]
c3 [1.575, 1.475, 1.635, 0.451]
σ3 [0.487, 4.000, 2.986, 0.276]
c4 [0.946, -1.475, -1.574, 1.499]
σ4 [4.000, 4.000, 2.008, 4.000]
c5 [1.185, 0.632, -0.332, 1.499]
σ5 [2.966, 4.000, 2.454, 1.030]

VI. CONCLUSION AND FUTURE WORK

Injection stretch-blow moulding is a typical process to
produce plastic bottles in the industry. The process is usually
controlled by several adjustable parameters, such as the mass
flow rate, blow pressure and preform temperature. The quality
of resultant bottles can be measured by its top loads, or
the section weights distribution. Due to the lack of closed-
loop control, large variations can be observed on the quality
indicators.

Section weights are found to be the most prospective
variable for feed-back control, but cannot be measured directly
in a typical process. Thus, a soft-sensor approach based on
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Fig. 2. The bottle base volume model prediction by TSS+PSO (5 hidden
nodes were used, the first 100 samples show the training performance while
the rest 40 points are model prediction)

an inferential mathematical model becomes an affordable
alternative for control implementation. This paper uses a radial
basis function network model to predict the bottle section
weights. The main issue involved in RBF model construction is
the determination of non-liner parameters in the hidden nodes.
As the gradient-based approaches require large computational
effort, heuristic optimization methods, such as particle swarm
optimization, deferential evolution, and extreme learning ma-
chine become appropriate alternatives. In this paper, these
heuristic optimization methods are effectively integrated with
our recently proposed two-stage subset selection algorithm,
leading to an efficient RBF model construction algorithm. Ex-
perimental results on simulation data has successfully verified
the effectiveness of the proposed method. Future work will
use practical data to build the models and implement iterative
learning control for the ISBM process based on the soft-
sensors.
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