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Abstract—This paper proposes a new nonlinear optimization
algorithm for the construction of radial basis function (RBF)
networks in modelling nonlinear systems. The main objective is to
speed up the learning convergence of the conventional conjugate
gradient method. All the hidden layer parameters of RBF
networks are simultaneously optimized by the conjugate gradient
method while the output weights are adjusted accordingly using
the orthogonal least squares (OLS) method. The derivatives used
in the conjugate gradient algorithm are efficiently computed us-
ing a recursive sum squared error criterion. Numerical examples
show that the new method converges faster than the previously
proposed continuous forward algorithm (CFA).

I. INTRODUCTION

The Radial Basis Function (RBF) networks are well known
for strict interpolation for approximating scattered data in
multi-dimensions [1]. It has been proved that a RBF network
can approximate any multi-variate continuous function if a
sufficient number of RBF nodes are provided [2]. The RBF
networks have been successfully applied in nonlinear system
identification [3], signal processing [4] and fault diagnosis
[5]. A standard RBF network consists of a nonlinear hidden
layer and a linear output layer. The training of such RBF
networks involves the optimization of hidden layer parameters
(centers and widths) and linear output weights, with the aim
of minimizing the cost function like sum squared error (SSE)
or Akaike information criterion (AIC) [6].

A variety of methods for training RBF networks have been
proposed. Unsupervised clustering methods and the supervised
least squares based subset selection methods are widely used.
Though these methods, like k-means clustering [7], orthogonal
least squares (OLS) [8] and the fast recursive algorithm (FRA)
[9], are fast and powerful techniques, they may not build a
compact model. To address this problem, methods combining
the OLS with evolutionary algorithms [10], [11] have been
proposed. However, they are often computationally expensive
and suffer from slow convergence due to their random search
nature [12].

Alternative solutions are gradient based methods, like conju-
gate gradient and Newton algorithms [13]. However, they treat
all the hidden layer parameters and output weights separately
without the consideration of the correlation between these
two sets of parameters, therefore, they may converge slowly

or not at all if the initial guess is far from the minimum.
To speed up the convergence and simplify the computational
complexity, the continuous forward algorithm (CFA) [14] has
been proposed recently. This method employs the conjugate
gradient algorithm to optimize the hidden layer parameters
while the optimal output weights are transformed into a set
of dependant parameters based on the least squares method,
thus without explicit optimizing the output weights. The CFA
can be considered as a stepwise algorithm as it optimizes
one hidden node at a time. Its advantage is that the model
parameters and model size can be determined simultaneously
and the computational complexity is not high for each iteration
of optimization. The disadvantage is that the learning con-
vergency can be slow and the parameters are not necessarily
optimal as the previously obtained parameters are fixed and
become the constraints when optimizing the new hidden layer
nodes. In other words, it does not optimize all the hidden layer
parameters simultaneously.

In this paper, a conjugate gradient method combined with
OLS approach is introduced to construct RBF networks, in
which all the hidden layer parameters are optimized simul-
taneously by the conjugate gradient method while the output
weights are adjusted accordingly using the OLS method in the
continuous space, leading to an improved model performance
with fast learning convergence. This is achieved effectively us-
ing a recursive sum squared error (SSE) and all the derivatives
are updated recursively at each iteration. A numerical example
confirms that the new method could converge faster than the
CFA.

II. PROBLEM FORMULATION AND PRELIMINARIES

A RBF network for modelling a nonlinear system can be
formulated as [14]

y(t) =

m∑
i=1

pi(x(t), di, si)θi + ξ(t) (1)

where {x(t), y(t)} are the system input and output variables
at time instant t. x(t) is of assumed known dimension of q,
t = 1, 2, . . . , N , N being the size of the training data set.
pi(x(t), di, si) denotes the RBF network function of the ith
hidden node with the width di ∈ ℜ1 and centers si ∈ ℜq,
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here i = 1, 2, . . . ,m, m being the number of RBF nodes. θi
is the weight parameter. ξ(t) is a model residual sequence.
For a RBF network, all adjustable parameters are the hidden
layer parameters and output weights. More specifically, all the
hidden layer parameters can be expressed as

V =


v1

v2

...
vm

 =


d1 s11 s12 . . . s1q
d2 s21 s22 . . . s2q
...

...
...

...
...

dm sm1 sm2 . . . smq

 (2)

where the vector vi includes the ith hidden layer node
parameters. di and the set {si1, ..siq} are the width and centers
of the ith hidden layer node, respectively. For simplicity,
vi = [d1, si1, . . . , viq] can be denoted as vi = [vi1, . . . , vir]
where r = q + 1.

Equation (1) can be expressed in the matrix form as

y = PΘ+Ξ (3)

where y = [y(1), . . . , y(N)]T is the output vector,
Θ = [θ1, . . . , θm]T is the unknown parameter vec-
tor, Ξ = [ξ(1), . . . , ξ(N)]T is the residual vector, and
P = [p1, . . . ,pm] is a N -by-m matrix with pj =
[pj(x(1),vj), . . . , pj(x(N),vj)]

T . The RBF network model-
ing aims to minimize the sum squared error (SSE)

ΞTΞ = (y −PΘ)T (y −PΘ) (4)

by optimizing di’s, si’s and θi’s.
If all the hidden layer parameters are determined, the output

weights can then be obtained by least squares methods. The
orthogonal least squares (OLS) is the most popular algorithm
for determining both the linear parameters and model structure.
It computes the output weights using the orthogonal decom-
position given by [15]

P = WA (5)

where A is a m-by-m triangular matrix,

A =


1 α12 . . . α1m

0 1 . . . α2m

...
...

...
...

0 0 0 1

 (6)

and W = [w1, ...,wm] is a N -by-m matrix with orthogonal
columns wi,

W =


w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

...
...

wN1 wN2 . . . wNm

 (7)

which satisfies

WTW = diag{wT
1 w1, . . . ,w

T
mwm}. (8)

The orthogonal decomposition involved in OLS can be carried
out by the classic Gram-Schimdt (CGS) method. This com-
putes one column of A at a time and factorizes P as follows:

w1 = p1

αik =
< wi,pk >

< wi,wi >
, 1 ≤ i < k

wk = pk −
k−1∑
i=1

αikwi

 k = 2, . . . ,m


(9)

The model (3) can thus be expressed as

y = (PA−1)(AΘ) +Ξ = Wg +Ξ (10)

where g = [g1, g2, . . . , gm]T = AΘ is the orthogonal weight
vector. The original model weight vector g can then be
calculated by [8]

g = (WTW)−1WTy − (WTW)−1WTΞ. (11)

and the sum squares of y is given by

yTy = gTWTWg +ΞTΞ+ gTWTΞ+ΞTWg (12)

If Ξ is a zero mean white sequence and is uncorrelated with
P and all stochastic processes of interest are ergodic, then
WTΞ = 0 [8]. Hence (11) and (12) can be further simplified
to

g = (WTW)−1WTy, (13)

and

yTy = gTWTWg +ΞTΞ, (14)

respectively. Finally, the weight θi can be computed using
backward elimination

θm = gm

θi = gi −
m∑

k=i+1

αikθk, i = m− 1, . . . , 1

 (15)

Substituting g in (10) and (14) using (13), we get

Ξ = y −W(WTW)−1WTy. (16)

and

ΞTΞ = yTy − yTW(WTW)−1WTy. (17)

Using the property in (8), the (17) is converted into a recursive
form given by

ΞTΞ = yTy − yT {
m∑
j=1

wjw
T
j

wT
j wj

}y

= yTy − yTRy

(18)

where R =
∑m

j=1

wjw
T
j

wT
j wj

is a recursive matrix.
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III. THE PROPOSED METHOD

To address the problem of slow convergence in the con-
ventional conjugate gradient method, the CFA [14] considers
the coupling relationship between V and Θ. It converts Θ

and the estimation error sequence Ξ into (PTP)
−1

PTy and
y−P(PTP)

−1
PTy using least-squares method respectively,

and then computes the derivatives of the estimated error se-
quence with respect to V. After the updated V are determined
using derivative information, the output weights Θ are re-
calculated by the least squares methods. However, It optimizes
each vector parameter vi, i = 1, ...,M at a time while other
parameters vj , j = 1, ...,M, j ̸= i being fixed and become
the constraints, hence the resultant model may be not optimal,
though the computational complexity is significantly reduced
in each iteration..

The proposed algorithm not only considers the coupling
relationship between V and Θ and but also computes all
the hidden layer parameters V simultaneously. The proposed
algorithm first optimizes all the hidden layer parameters in (2)
using conjugate gradient algorithm and then adjusts the output
weights Θ by the OLS method.

The conjugate gradient involves computing the first deriva-
tive of the SSE with respective to the hidden layer parameters
V, which is given by [16]

∇(ΞTΞ) = 2

(
∂Ξ

∂V

)T

Ξ (19)

where the first order derivative of the error sequence ∂Ξ
∂V is

also called the Jacobian matrix, given by

J =
∂Ξ

∂V
= −

[
∂R

∂v1
y, ...,

∂R

∂vm
y

]
∂R

∂vk
=

[
∂R

∂vk1
, ...,

∂R

∂vkr

]
, k = 1, ...,m

∂R

∂vki
=

m∑
j=1

∂

{
wjw

T
j

wT
j wj

}
∂vki

, i = 1, ..., r


(20)

where vk = {vk1, ...,vkr}.
The key step for the conjugate gradient algorithm is the

computation of the Jacobian matrix. For each element in the
Jacobian matrix shown in (20), the derivative of wk with
respect to vki, k = 1, ...,m, i = 1, ..., r needs to be computed.
The mapping between wk and vki can be obtained from
the relations among vki, pk and wk. Each RBF term pk

is determined by a vector vk = [vk1, ..., vkr]. Further, (9)
indicates wk is dependant on p1, ...,pk and independent of
pk+1, ...,pm, hence,

∂wk

∂vij
=


0, k < i, j = 1, ..., r

∂wk

∂vij
, k ≥ i, j = 1, ..., r

(21)

and thus, the element in (20) is simplified as

∂R

∂vki
=

m∑
j=1

∂

{
wjw

T
j

wT
j wj

}
∂vki

=

m∑
j=k

∂

{
wjw

T
j

wT
j wj

}
∂vki

, i = 1, .., r (22)

while k = m, (22) becomes

∂R

∂vmi
=

∂
{

wmwT
m

wT
mwm

}
∂vmi

, i = 1, .., r (23)

Compare (22) and (23), and it is clear that to compute
the derivative with respect to the last term parameters vm =
[vm1, ..., vmi] only ∂wm

∂wmi
, i = 1, ..., r, is needed while for other

derivatives, say vk = [vk1, ..., vki], only ∂wk

∂vki
, ..., ∂wm

∂wki
, i =

1, ..., r, need to be computed. To simplify the computational
complexity for derivatives, each term except the last one is
moved to the last position and its derivatives is then computed
as proposed in [12]. If any term position is changed, the
orthogonal decomposition procedure needs to be repeated.
Suppose pk, k = 1, ...,m − 1, is to be moved to the last
position. This leads to shifting the columns pk+1, ...,pm, left
by one place. This is given by

{p1, ...,pk, ...,pm} → {p1, ...,pk−1,pk+1, ...pm,pk} (24)

and consequently their corresponding orthogonal basis is
changed. If k = 1, then all the orthogonal terms [w

′

1, ...,w
′

m]
need to be computed using (9). If k > 1, the terms
[w1, ...,wk−1] are left unchanged and only [w

′

k, ...,w
′

m] need
to alter. In details, shift the position by

p
′

j = pj+1, k ≤ j < m

p
′

m = pk

}
(25)

and then re-decompose p
′

k, ...,p
′

m by

α
′

nj =
< wn,p

′

k >

< wn,wn >
, 1 ≤ n < k

α
′

nj =
< w

′

n,p
′

k >

< w′
n,w

′
n >

, k ≤ n < j

w
′

j = p
′

j −
k−1∑
n=1

α
′

njwn −
j−1∑
n=k

α
′

njw
′

n


j = k, ...,m. (26)

The derivative with respect to the last term pm in Jacobian
matrix is calculated by

∂pm

∂vmi
=

[
∂pm(x(1))

∂vmi
, ...,

∂pm(x(N))

∂vmi

]
∂wm

∂vmi
=

∂pm

∂vmi
−

j=m−1∑
j=1

wT
j

∂pm

∂vmi

wT
j wj

wj

Jmi = − ∂R

∂vmi
y

= −
∂wm

∂vmi
(wT

my) +wm(
∂wT

m

∂vmi
y)

wT
mwm

+ 2
wm(wT

my)(
∂wT

m

∂vmi
wm)

(wT
mwm)2



i = 1, ..., r (27)
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Other terms pk, k = 1, ...,m − 1, moved to the
last position also use the formula (27) where ∂p

′
m

∂v
′
mi

equals ∂pk

∂vki
. To compute ∂pk

∂vki
, the basis function pk =

[pk(x(1),vk), . . . , pk(x(N),vk)] should be given. In this pa-
per, the Gaussian function is considered

pk(x(t),vk) = pk(x(t), dk, sk) = exp(−η) (28)

where η =
∑i=q

i=1(
xi−ski

dk
)2, t = 1, . . . , N and k = 1, . . . ,m.

The first-order partial derivatives with respect to widths and
centers are

∂pk
∂dk

=
2

dk
ηexp(−η) (29)

and
∂pk
∂ski

=
2

d2k
(xi − ski)exp(−η) (30)

respectively.
The procedure of the new method is summarized as follows:
Step 1: Initialize all the hidden layer parameters V randomly

or using OLS based subset selection method [15], [17]. It
should be pointed out that to choose appropriate values could
speed up the model convergence.

Step 2: Compute Jacobian and Hessian matrices using (25)-
(27).

Step 3: Update the V = V + ∆V and construct the basis
functions terms P in the form of (28) using the new parameters
V, and then compute the SSE using (9) and (18).

Step 4: Repeat step 3 until the SSE is reduced to some
error target or the iteration number reaches a given number.
After the hidden layer parameters V are determined, the output
weights are calculated by back elimination (15).

IV. A NUMERICAL EXAMPLE

To verify the efficacy of the new method, a numerical
examples is used to test its convergence rate. The comparison
with CFA will be also discussed. All the tests were carried out
using MATLAB R2010a on a desktop Intel E8400 PC with
Windows XP system.

The following nonlinear system model [3]

y(t) =− 0.6377y(t− 1) + 0.07298y(t− 2)

+ 0.03597u(t− 1) + 0.06622u(t− 2)

+ 0.06568u(t− 1)y(t− 1) + 0.02357u2(t− 1)

+ 0.05939

(31)

Here t denotes the time series and u and y represent the
system input and output, respectively. A data sequence of
length 500 was generated for training, with input u being
uniformly distributed within [−1, 1].

For comparison, the CFA was also used to model the
nonlinear system. For a fair comparison, these two methods
used the same initialization procedure. The iteration stops
when the SSE reduction rate is less than 0.01. Fig. 1, Fig.
2 and Fig. 3 illustrate the training curves for the CFA and
new methods with model size of 5, 6 and 7 separately. These
results are averages over 100 different trials. It is shown that
the new method converges faster than the CFA.
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Fig. 1. Variation in training SSE for CFA and the new method with size 5
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Fig. 2. Variation in training SSE for CFA and the new method with size 6
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Fig. 3. Variation in training SSE for CFA and the new method with size 7

V. CONCLUSION

An improved conjugate gradient algorithm for constructing
RBF models has been proposed. Unlike previously proposed
CFA method which optimizes one hidden node parameters
at a time, the new method optimizes all the RBF parameters
simultaneously, leading to a faster convergence rate. A numer-
ical example has confirmed the effectiveness of the proposed
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method.
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