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Abstract—In this paper, the optimal bandwidth allocation
scheduling problem for two-layer networked learning control sys-
tems (NLCSs) is studied. In NLCS, multiple networked feedback
control loops share a common communication channel and they
compete to bid for available bandwidth. A non-cooperative game
fairness model is first formulated, which takes into consideration
of a number of factors, such as transmission data rate, control
sampling strategy and scheduling pattern. Then, a novel two-
layer hierarchical market competition algorithm (THMCA) is
proposed. Two hierarchical population individuals are defined in
the algorithm, namely the holding companies and the subsidiary
companies which altogether form conglomerates. Market compe-
titions among these conglomerates lead to the convergence to a
monopoly at the end, resulting in an optimal solution of the above
problem. The algorithm is shown to have a high convergence rate
and the comparison simulation results on a NLCS with up to 100
subsystems have demonstrated the effectiveness of the proposed
method.

I. INTRODUCTION

A networked control system (NCS) [1] is defined as a
feedback control system where the control loops are closed
via a communication network. Due to its various advantages
such as low cost installation, ease of maintenance and great
flexibility, NCSs have been widely applied in manufacturing,
aircraft and power systems etc. Most researches have focused
on the traditional single-layer NCSs in the last decade. How-
ever, there exist many complex plants that are composed of
a great number of subsystems and the traditional single-layer
NCS architecture may not be applicable. Recently, a two-layer
Networked Learning Control System (NLCS) architecture has
been proposed [2]. In this architecture, the bottom layer is
for real-time control, and local controllers communicate with
the sensors and actuators attached to the plant through shared
networks. The upper layer is used for complex learning and
scheduling tasks.

In a real-time NLCS, limited network bandwidth along
end-to-end paths [3] inevitably cause network-induced delays
[4] or packet dropout which further deteriorates the system
performance even causes instability. Therefore, an optimized
scheduling for bandwidth allocation among all network links
plays a key role in improving the quality of network service
(QoS) and the performance of control system (PoC). This can
be achieved generally through the following two steps. Firstly,

bandwidth scheduling is designed to allocate the available
bandwidth to control units to meet communication demand.
A non-cooperative game (NG) [5] theory based rational
competition mechanism can be employed, which emphasizes
individual rational defined by Nash equilibrium (NE) and can
simultaneously satisfy individual and collective requirements.
Secondly, the exact solution to the bandwidth scheduling
problem can be obtained by a complete enumeration.

This is however prohibitive due to its excessive computa-
tional time for real-time applications. To tackle this problem,
several intelligent optimization methods can be adopted, for
example genetic algorithm (GA) [6], particle swarm optimiza-
tion (PSO) [7], clone evolutionary algorithm [8], bacterial
foraging (BF) [9] and shuffled frog leaping algorithm (SFLA)
[10] etc. Evolutionary algorithms (EAs), such as GA and
PSO, are stochastic based search methods. GA is one of the
early proposed evolutionary algorithms which has found many
successful applications. However, it is computationally ex-
pensive, and the convergence cannot be guaranteed. Bacterial
foraging (BF) algorithm is a feature selection method based
on a heuristic search strategy with fast computing speed. But a
large storage capacity is required to complete the computation.
Shuffled frog leaping algorithm (SFLA) is a meta-heuristic
optimization method which is based on observing, imitating,
and modeling of the behavior of a group of frogs searching
for the location where maximum amount of food is available.
The SFLA combines the benefits of both the genetic-based
memetic algorithm and the social behavior-based PSO algo-
rithm. However SFLA suffers from the curse of dimensionality
problem.

In this paper, a new integer-coded two-layer hierarchical
market competition algorithm (THMCA) is proposed to
efficiently solve the bandwidth scheduling problem in the
NLCS applications. The rest of the paper is organized as
follows. Section 2 introduces NLCS and the non-cooperative
game scheduling scheme. A new two-layer hierarchical
market competition algorithm (THMCA) is proposed in
Section 3. Section 4 presents the comparative simulation
results. Finally, a brief conclusion is given in Section 5.
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Fig. 1. A two-layer networked learning control system (NLCS)

II. BANDWIDTH NON-COOPERATIVE GAME MODEL FOR A
NETWORKED LEARNING CONTROL SYSTEM

A. System Architecture

The two-layer networked learning control system architec-
ture [2] is shown in Fig.1, where Ci, Si and Ai represent
the i-th controller, sensor and actuator respectively. Local
controllers are connected to the sensors and actuators, attached
to the complex plant via the bottom layer communication
network, typically some fieldbus dedicated to real-time control.
Local controllers also communicate with the computer system,
which functions as a learning and scheduling agent through
the upper layer communication network. This network can
be local area network (LAN), wide area network (WAN), or
possibly the internet. Control and learning signals at two levels
share the available network bandwidth with other consumers.
This general architecture can be adopted in many industrial
applications with distributed plants and units, such as the
power systems.

B. Bandwidth non-cooperative game model

Suppose the set of subsystems is denoted as L = {`i|1 ≤
i ≤ n}, where n is the total number of subsystems in a NLCS.
The network can only provide limited available bandwidth.
Each subsystem aims to improve its own bandwidth utilization
instead of the overall network performance. Therefore, all the
subsystems in a NLCS form a non-cooperative game (NG).
The NG model is a triple, namely G(L, S, ui), where S is
the set of strategies including transmission data rate, allotted
bandwidth and sampling period for each subsystem, that is,
S = {si|si = (bi, δi, ti), i ∈ L}, bi ∈ [δmini , Ud] is the pre-
allocated data rate to the subsystem li, and ti is the sampling
period. Data rate set available for all subsystems in NLCS
is given as D = {δi|1 ≤ i ≤ n}, δi ∈ [δmini , δmaxi ]. The
minimum data rate δmini is to guarantee the most basic work.
Maximum bandwidth of the network is Ud and δmaxi ≤ Ud.

ui is the utility function of subsystem li which maps S to
real numbers u : S → R. If and only if ui(s∗i ) > ui(si), the
quality of s∗i is better than si for subsystem li.

The available data rate δi satisfies the probability distribu-
tion di(δi) defined as follows [11].

di(δi) =

 0 δi < δmini

(∆/∆i)
c δmini ≤ δi ≤ δmaxi

1 δi > δmaxi

(1)

where ∆ = δi− δmini , ∆i = δmaxi − δmini and c ≥ 1 works
as an empirical constant which can be adjusted for a specific
subsystem.

Given the above definition, the mean value of occupied
bandwidth for a subsystem is thus given as

Edi(δi) = (cδmaxi + δmini )/(c+ 1) (2)

The utility function is defined as follows:

ui(si) =



[‖ei‖2−(δi−Edi)2−γiti](
bi
Edi

e)µ

e
µ
bi
Edi ‖ei‖3

if 0 ≤ bi < Edi

[1− ( bi−Edi
Edi−δmaxi

)ν ]‖ei‖
2−(δi−Edi)2−γiti

‖ei‖3

if Edi ≤ bi ≤ δmaxi

(3)

Here, the rights law is used, including compounding data
rate δi and sample period ti, and γi is the weight coefficient for
trade-off. ‖ei‖ is the maximum expectation deviation between
optional data rate and the distribution of each subsystem,
that is ‖ei‖ = max(|δmini − Edi|, |δmaxi − Edi|). µ, ν are
the empirical constants for specific subsystems to adjust the
change rate of utility functions.

III. TWO-LAYER HIERARCHICAL MARKET COMPETITION
ALGORITHM (THMCA)

The two-layer hierarchical market competition algorithm
(THMCA) is inspired by competitions among enterprises in
economic activities. The THMCA begins with an initial popu-
lation called perfect competition companies. Some of the best
companies that have the best objective fitness function values
are selected to be the holding companies. The rest become
the subsidiary companies which are then divided among the
holding companies based on their power. The power of a
holding company is positively proportional to its fitness value.
The holding companies and their subsidiary companies form
different conglomerates. Then subsidiary companies move
toward their relevant holding companies and the position of
the holding companies will be updated if necessary. In the next
step, the market competition among the conglomerates begins,
and the weak conglomerates are eliminated. This is called
monopolistic competition procedure. Then the oligopoly pro-
cedure begins. The market competition will gradually lead to
an increase in the power of strong conglomerates (oligopolies)
and a decrease in the power of weaker ones. Finally the weak
conglomerates which could not to improve their performance
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will collapse. These competitions among the conglomerates
will cause all the companies to converge to a state called
monopoly where only one conglomerate exits in the market
and all the other companies become subsidiary companies of
this holding company.

To begin with, an initial population called perfect com-
petition companies is created. In a D-dimensional problem,
the position of the i-th company is defined as Companyi =
[xi,1, xi,2, · · · , xi,D], i = 1, 2, · · · , Nc, where Nc is total
number of competition companies.

The fitness function of the i-th company is defined as:

fiti(Companyi) = fiti(xi,1, xi,2, · · · , xi,D) (4)

Then, the cost function of the i-th company can be defined
as:

fi =
1

fiti(xi,1, xi,2, · · · , xi,D)
(5)

Nholding of the most powerful competition companies are
selected as the holding companies, which form different con-
glomerates. The remaining Nsub are the subsidiary companies
of these holding companies. At the next step, the subsidiary
companies must be divided among the holding companies
based on their power. The initial number of subsidiary com-
panies of a conglomerate is directly proportional to its power.
Theoretically, the normalized cost of the n-th holding company
can be defined as:

Fholdingn = max
i
{fholdingi } − fholdingn (6)

where fholdingn is the cost of the n-th holding company.
The normalized power of each holding company is defined

as:

Pholdingn = ‖Fholdingn /

Nholding∑
n=1

Fholdingn ‖ (7)

Then the initial number of subsidiary companies of a
conglomerate becomes

Nsub
n = round{Pholdingn ×Nsub, 0} (8)

where Nsub
n is the initial number of subsidiary companies

of the n-th conglomerate. For each holding company, Nsub
n of

the subsidiary companies are randomly selected and allocated.
These subsidiary companies along with their holding company
form the conglomerate.

Then the subsidiary companies start to move toward their
relevant holding companies. The positions of the subsidiary
companies of the n-th conglomerate are updated as follows:

SUBn,i = subn,i +
rand()× ω(holdingn − subn,i)

cos θ
(9)

where subn,i is the position of the i-th subsidiary company
of the n-th holding company, rand() is a random number
between 0 and 1, ω is a weight factor, and holdingn is the po-
sition of the n-th holding company. To search different points
around the holding company, a random amount of deviation
is added to the direction of movement. The movement of a
subsidiary company toward its relevant holding company at
its new direction θ is a random angle between −ε and ε,
where ε > 0 is the parameter that adjusts the deviation from
the original direction.

However, a subsidiary company in a conglomerate may
reach a position with higher fitness (or lower cost) than its
holding company. In such case, the positions of the holding
company will be replaced by the higher one. The rest will
move toward the new position of the holding company.

The total power of a conglomerate depends on both the
power of the holding company and the power of its subsidiary
companies. But the holding company has larger weights. This
total power is defined by the weighted cost of two hierarchical
companies:

powercongn =
1

pcongn
=

1

fholdingn + τfsubn,i

(10)

where pcongn is the total cost of the n-th conglomerate and
0 < τ < 1. Cost fsubn,i is the geometry mean of i-th subsidiary
company in n-th conglomerate. In fact, τ represents the role
of the subsidiary companies in determining the total power of
a conglomerate.

The market competition among conglomerates begins and
all the conglomerates try to take possession of the subsidiary
companies of other conglomerates. This competition is mod-
eled by picking some of the weakest subsidiary companies
of the weakest conglomerates and making a competition a-
mong all conglomerates to possess these subsidiary companies.
Each of the conglomerates will have a likelihood of taking
possession of these subsidiary companies based on its total
power; therefore, powerful conglomerates have greater chance
to possess subsidiary companies. The possession probability
of each conglomerate must be found. The normalized total
cost of each conglomerate is calculated as:

P congn = max
i
{pcongi } − pcongn (11)

where P congn is the normalized total cost of the n-th
conglomerate.

The possession probability of each conglomerate is given
by

ppcongn = ‖P congn /
Nholding∑
n=1

P congn ‖ (12)

where ppcongn is the possession probability of the n-th con-
glomerate. A vector is formed to divide the relevant subsidiary
companies among the conglomerates:
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Fig. 2. Flowchart of two-layer hierarchical market competition algorithm

PPcong = [ppcong1 , ppcong2 , · · · , ppcong
Nholding

] (13)

Then a random vector with the same size is generated:

RAND = [rand1, rand2, · · · , randNholding ] (14)

where rand1, rand2, · · · , randNholding are randomly gen-
erated numbers between 0 and 1.

Finally, vector Dif is formed by subtracting RAND from
PPcong:

Dif = PPcong −RAND

=


PP cong1 − rand1,
PP cong2 − rand2,

· · ·
PP cong

Nholding
− randNholding


T

(15)

The mentioned subsidiary companies will be given to an
conglomerate which has the maximum relevant index in Dif
vector.

The powerless conglomerates will collapse in the market
competition. Different criteria can be defined for collapse
mechanism. In this paper, a conglomerate is assumed to be
collapsed when it loses all of its subsidiary companies.

After the market competitions, all the conglomerates will
collapse except the most powerful one and all companies
under their possession become subsidiary companies of this
conglomerate. All the subsidiary companies also have the same
positions and the same fitness. In such case, the algorithm
stops. The flowchart of the procedure is illustrated in Fig.2.

In the integer coded THMCA, the company position consists
of a sequence of integer numbers, representing the sequence
of the bandwidth allocation cycle duration of each subsystem
during the scheduling horizon. A positive integer represents

TABLE I
RANGE OF THE OUTPUT DATA RATES OF SUBSYSTEMS FOR TWO

DISTRIBUTIONS

Data Rate DND SD
Subsystems δmin

i δmax
i δmin

i δmax
i

l1 20.58 75.51 32 51
l2 41.63 88.68 56 85
l3 53.45 97.20 19 31
l4 64.02 106.71 98 120
l5 76.84 111.69 28 42
l6 77.68 115.60 102 135
l7 65.97 108.10 49 76
l8 56.32 99.59 84 116
l9 46.24 90.73 156 196
l10 32.30 80.18 246 380

an increased bandwidth allocation, while a negative integer
represents the bandwidth decrease of the subsystem.

IV. SIMULATION STUDIES

To verify the effectiveness of the proposed bandwidth
scheduling method, numerical simulations were carried out us-
ing MATLAB on an Intel(R) Core(TM)-i5-3.10-GHZ desktop
personal computer (PC) with Windows 7 Enterprise.

The proposed THMCA was tested on NLCSs with Num
= 10, 20, 50 and 100 subsystems. The required data for ten
subsystems is given in table I, which shows the distributions
of sending data rates for the first ten subsystems. Two different
distributions, namely the Discrete Normal Distribution (DND)
and Stochastic Distribution (SD) are generated to cover general
cases. The simulation test system first has 10 subsystems.
Initially, the network bandwidth is Ud = 1000Kbps. For
NLCS with 20 subsystems, the data of the ten subsystems was
duplicated and the total bandwidth available was multiplied
by two. For the problem with more subsystems, the data was
scaled appropriately.

The optimal THMCA parameters for ten subsystems which
were chosen after several runs are given as Nholding = 10,
Nsub = 200, τ = 0.2, ω = 2. For NLCS with more
subsystems, the same parameters were utilized, except for
Nholding and Nsub which increase correspondingly. Another
parameter to be selected is θ ∈ (45◦, 90◦), which adjusts the
deviation from the original direction. These values were found
suitable to produce good solutions in terms of the processing
time and the quality of the solutions. The fitness function is
set to be the utility function of NG, that is, fiti = ui.

For the comparison purpose among the THMCA and other
optimization methods, all the simulation experiments used the
same basic parameter settings.

The convergence of the algorithm for ten subsystems in
NLCS with 50, 100, 150, 200, 250 and 300 initial competition
companies with discrete nomal distribution data rate is shown
in Fig.3. It is clear that the initial number of 200 competition
companies is notably the best on both convergence (mean
solution time) and the bandwidth consumption.

From the results of 10 simulation runs, it is found that the
optimal solution can be obtained after 8-th to 10-th market
competition interactions. Fig.4 shows the convergence of the
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Fig. 3. Convergence characteristics of market competition algorithm with
different initial competition companies in 10-subsystem NLCS

Fig. 4. 10-runs convergence of market competition algorithm in 10-subsystem
NLCS

iteration for the 10-subsystem test system with stochastic
distribution data rate. This indeed verifies the high convergence
rate of the algorithm.

When the overall fitness value is stabilized, the nash equi-
librium point is reached. For discrete normal distribution, this
is: {b1, b2, · · · , b10} = {55.90, 68.12, 77.56, 93.37, 101.34,
105.82, 94.70, 84.18, 60.79, 56.84}. For stochastic distribu-
tion, this is {38, 78, 27,110, 36, 117, 62, 101, 107, 318}.

Figure 5 and 6 illustrate the proportion of statistical output
data rates with lower limit, the reserved data rate and output
data limit of the two distributions. It is evident that the game
model based method is able to produce a fair network resource
allocation in NLCS under different constraints. The overall
performance of the system remained stable by effectively
restricting large network resource utilization.

Figure 7 shows the ratio between the scheduled sampling
period of subsystems and the original sampling period t∗i /ti,
where the lower ratio means a better optimization scheme.
The optimization results of the sampling period after the

Fig. 5. Data rate percentage plot of DND in 10-subsystem NLCS

Fig. 6. Data rate percentage plot of SD in 10-subsystem NLCS

Fig. 7. t∗i /ti proportion plot in 10-subsystem NLCS

adjustment within the requirements of the two data rates
distributions is also shown. Further, when the discrete normal
distribution data rates was used, larger probability distribution
leads to better optimization results, indicating that this method
is adequate for meeting the requirements of most data rates.

The best bandwidth results obtained by THMCA are com-
pared with those obtained by the shuffled frog leaping algo-
rithm (SFLA) [11], BF [9], GA [6], hybrid quantum clone
evolutionary algorithm (HQCE) [8], and quantum inspired

17



TABLE II
COMPARISON OF TOTAL BANDWIDTH CONSUMPTION(KBPS) WITH

DIFFERENT NUMBER OF SUBSYSTEMS

Num GA HQCE Q-PSO BF SLFA THMCA
10 825 817 807 823 803 798
20 1643 1630 1611 1641 1601 1591
50 4105 4074 4026 4099 4002 3976

100 8209 8149 8053 8196 8005 7952

TABLE III
COMPARISON OF AVERAGE EXECUTION TIME(SEC) WITH DIFFERENT

NUMBER OF SUBSYSTEMS

Num GA HQCE Q-PSO BF SLFA THMCA
10 30 24 22 28 21 17
20 82 65 61 75 58 46
50 214 169 158 196 147 119

100 1504 1189 1112 1376 1076 836

PSO (Q-PSO) [7] for NLCS with up to 100 subsystems in
table II.

The execution time is also an important factor. Table III lists
the execution time with different size of subsystem obtained by
THMCA, SFLA, BF, GA, HQCE, and Q-PSO. It is obvious
that the execution time of THMCA increases linearly with
the size of the bandwidth scheduling problem. The overall
execution time obtained by THMCA is less than that of other
methods.

V. CONCLUSIONS

Resource allocation in a networked learning control system
is a constrained nonlinear optimization problem. A fair non-
cooperation game model has been proposed in this paper.
Then, the resource allocation problem is transformed into a
problem of settling the equilibrium point of the game model.
A new optimization algorithm namely two-layer hierarchical
market competition algorithm (THMCA) has been proposed to
solve the problem effectively. The proposed method has been
tested and compared with a few alternatives. Simulation results
show that the computational time and bandwidth consumptions
of THMCA are less than other algorithms such as SFLA, GA,
BF, quantum-inspired PSO, and hybrid quantum clone evolu-
tionary algorithm. However, the performance of the THMCA
also depends on certain parameters selected. Future research
includes developing more efficient algorithms and addressing
uncertainties in the proposed non-cooperation game model.
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