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Abstract. Model Predictive Control (MPC) is a well known and widely used advanced optimal

control technique. It is a common practice to use a process model to predict the future behavior

of the plant. The model/plant mismatch may have direct consequences on the quality of the

prediction, causing potential controller performance degradation. An approach to tackle this

problem may be to use closed loop system identification such that the model parameters are

estimated and updated online, while the feedback controller is running. This adaptation requires

that the plant input is persistently exciting, however a standard MPC controller is not able to

provide sufficient input frequency content to obtain reliable parameter estimates. In this article

a Persistently Exciting Model Predictive Control (PE-MPC) formulation is given. A Finite Im-

pulse Response (FIR) model is adopted for prediction, and Recursive Least Square (RLS) is used

for parameter estimation. Moreover, it is shown how to derive a persistently exciting constraint,

suitable for implementation with MPC. Finally, it is explained how to implement the optimiza-

tion problem such that, every sample time, only two Quadratic Programming (QP) problems are

solved, and the optimal solution is applied in a receding horizon fashion. In the final part of the

work, a simulation based example is given to show the effectiveness of the approach.

Keywords: Model Predictive Control, FIR model, Persistent Excitation Condition, Recursive

Least Square.

1 INTRODUCTION

It is well known that when closed loop system identification is performed, issues due to
the frequency content of the input and output plant signals arise. To obtain a reliable pa-
rameter estimation, those signals have to fulfill the persistent excitation condition defined
in Goodwin and Sin (1984). Due to the stabilizing nature of the controller very often the
closed loop signals do not satisfy the persistent excitation condition, then several method
are used to obtain persistently exciting signals. For example, a solution may be to add
some external signal, often called dithering signal Sotomayor et al. (2009). However, in a
MPC framework, an unfortunate choice of dithering signal may cause constraint violation.
For example, after the manipulated variable is calculated, if the magnitude of a dithering
signal is large enough a possible input or output constraint may be violated. Another
approach is to use the MPCI framework provided by Genceli and Nikolaou (1996) where
the input is forced to be persistently exciting by imposing a PE constraint. However,
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the MPCI has the drawback that due to the new constraint, the resulting optimization
problem is non-convex. In this work, a similar approach to Genceli and Nikolaou (1996) is
taken, however a particular PE constraint is imposed only on the first MPC manipulated
variable. Moreover, the PE constrain structure is such that, the resulting optimization
problem is equivalent to the solution of maximum two QP problems, without loss of con-
vexity. The model implemented in the PE-MPC is a FIR model, such as the one in Prasath
and Jorgensen (2008).

2 FIR MODEL PREDICTIVE CONTROL

The plant is assumed to be linear and represented in a state space form

xk+1 = Axk +Buk, (1a)

zk = Cxk, (1b)

yk = zk + vk, (1c)

with x as plant state, u as plant input or manipulated variable, z as plant output or con-
trolled variable, y as measured output, and v as Gaussian distributed white measurement
noise.
It is well know that stable processes can be represented by a FIR model, such as

zk =
n∑

i=1

θiuk−i, (2)

where {θi}ni=1 are the impulse coefficients or Markov parameters calculated as

θi = CAi−1B, i = 1, . . . , n, (3)

and {uk−i}ni=1 are the past n inputs to the process, finally n is the number of Markov
parameters.
By using the FIR model (2), a MPC regulation problem with input constraints may be
formulated as

min
u
Jk =

1

2

Np−1∑
j=0

‖ zj+1 ‖2Q + ‖ uj ‖2R, (4a)

s.t. zj =
n∑

i=1

θiuj−i, j = 1, . . . , Np, (4b)

umin ≤ uj ≤ umax, j = 0, . . . , Np − 1, (4c)

where Np is the prediction horizon, identical to the control horizon, in this formulation.
Finally, R and Q are input and output weights, respectively.
Clearly, the solution of (4) may be found converting the problem into an equivalent Qua-
dratic Programming (QP) problem. QP problems are known to be convex, and thus have
a unique unique global optimum. Moreover, efficient and reliable algorithms are available
to solve them. Standard manipulations may yield the QP formulation

min
U

1

2
U ′HU + g′U (5a)

s.t. Umin ≤ U ≤ Umax (5b)

where H is the Hessian, and g the gradient.
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As in any receding horizon control law, only the first element u∗0, of the optimal solution

vector U∗ =
[
u∗0, u

,
1 . . . , u

∗
Np−1∗

]
is implemented on the plant. At the subsequent sam-

ple time, the open loop optimization is reformulated, using new information due to new
measurements, and solved.

3 PARAMETER ESTIMATION

There is a large academic literature on parameter estimation, and many algorithms have
been adopted with success by the industry. An interesting and well known book on the
topic is Ljung (1998).
In this article the Recursive Least Square (RLS) algorithm is used to estimate parameters
in (2).

3.1. Recursive Least Square. Given

zk = Φ′k−1Θk, (6)

where Φk−1 is known as the regressor and Θk is known as the parameter vector. Given
also an initial parameter estimate Θ̂0, and its covariance matrix P0, the RLS algorithm is,
for k = 1, . . . ,∞

Lk =
λ−1Pk−1Φk

1 + λ−1Φ′kPk−1Φk

, (7a)

Θ̂k = Θ̂k−1 + Lk

(
zk − Φ′kΘ̂k−1

)
, (7b)

Pk = λ−1Pk−1 − λ−1LkΦ′kPk−1, (7c)

where λ is the forgetting factor, and P is a measure of the parameter estimation accuracy.
P ' 0 means that θ̂ converges to the actual parameter values. Reminding the reader to
Goodwin and Sin (1984), or Ljung (1998), for more details on the RLS algorithm, here we
recall that the parameter estimate converge to the real value if

lim
k→∞

λminP
−1
k−1 =∞ (8)

which is true if

lim
k→∞

λmin

k−1∑
i=0

ΦiΦ
′
i =∞. (9)

It is important to notice that (9) is a general condition on Φ, moreover it is not straight-
forward to implement it in a MPC framework.
For FIR models the general condition (9) on Φ may be easily related to the input u. It is
sufficient to notice how Φ is composed, that is a vector of the previous n inputs. Then, to
apply the RLS algorithm to (2) it is sufficient to define

Θk =


θ1
θ2
...
θn

 , Φk−1 =


uk−1
uk−2

...
uk−n

 . (10)
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3.2. Persistent excitation. Before deriving the Persistently Exciting (PE) constraint for
MPC, some definitions on excitation of input signals are given.

Definition 3.1. A scalar input signal u is strongly persistently exciting of order n if for
all k there exists an integer T such that

ρ1I >
k+T∑
i=k


ui+n

ui+n−1
...

ui+1




ui+n

ui+n−1
...

ui+1


′

> ρ0I (11)

where ρ1, ρ0 > 0.

Definition 3.2. A scalar input signal u is weakly persistently exciting of order n if

ρ1I ≥ lim
N→∞

1

N

N∑
i=1


ui+n

ui+n−1
...

ui+1




ui+n

ui+n−1
...

ui+1


′

≥ ρ0I (12)

where ρ1, ρ0 > 0. The last condition may be interpreted in the frequency domain, and it
is equivalent to the following one.

Definition 3.3. A stationary input u is weakly persistently exciting of order n if its two
sided spectrum is non zero at n points or more.

In Goodwin and Sin (1984) it is shown that for FIR models the RLS algorithm converges
provided that the system input is weakly persistently exciting of order n. In particular,
a stationary input whose spectral distribution is nonzero at n points or more provides
parameter convergence.
In the next section a PE constraint which is more appropriate for the implementation in
a MPC framework is derived.

4 PERSISTENTLY EXCITING MODEL PREDICTIVE CONTROL

4.1. PE constraint derivation. In this section, by using definition (3.1), a constraint
suitable for implementation with MPC is derived. The basic idea of the PE constraint im-
plementation is that, due to the receding horizon property, the PE constraint is dependent
only on the first manipulated variable. By defining k as the sample time step, m as the
backward looking input horizon, it is possible then to write (11) as

ρ1I > Ωk−1 =
m−1∑
j=0


uk−1−j
uk−2−j

...
uk−n−j



uk−1−j
uk−2−j

...
uk−n−j


′

> ρ0I. (13)

It is also possible to show that if u is bounded, as in (4c), there exist always a positive
scalar ρ1. Now, by shifting one step ahead in time such that uk, the first MPC manipulated
variable, appears in the equation (13), Ωk may be written as

Ωk =
m−1∑
j=0


uk−j
uk−1−j

...
uk−n−1−j




uk−j
uk−1−j

...
uk−n−1−j


′

> ρ0I, (14)
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or in a more compact form

Ωk =
m−1∑
j=0

Φk−jΦ
′
k−j > ρ0I. (15)

As mentioned in Bitmead (1984), it is necessary to have m ≥ n, for the summation in (15)
to yield a positive definite matrix. Moreover, for a given ρ0 a larger m implies a slower
parameter convergence rate.
By applying some simple arithmetics, it is possible to rewrite (15) as

Ωk =
m−1∑
j=0

Φk−jΦ
′
k−j (16a)

= ΦkΦ′k +
m−1∑
j=1

Φk−jΦ
′
k−j (16b)

= ΦkΦ′k +
m∑
j=1

Φk−jΦ
′
k−j − Φk−mΦ′k−m (16c)

= ΦkΦ′k + Ωk−1 − Φk−mΦ′k−m. (16d)

Notice the recursion, that is useful for MPC implementation. Assuming Ωk−1 > 0 (15) is
satisfied if

Ω̃k = ΦkΦ′k + Ωk−1 − Φk−mΦ′k−m − ρ0I > 0 (17)

where only Φk is dependent on the first manipulated variable uk, whereas the remaining
parts are all known at the time instant k.
For m = n = 1 (17) becomes

u2k > ρ0 (18)

which is a quadratic scalar inequality constraint on uk.
For m ≥ n > 1 (17) becomes a n× n dimensional symmetric matrix, partitioned as

Ω̃k =

[
Ω̃k,11 Ω̃k,12

Ω̃k,21 Ω̃k,22

]
> 0, (19)
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where Ω̃k,12 = Ω̃′k,21 and

Ω̃k,11 = u2k +
m−1∑
j=1

u2k−j − ρ0, (20)

Ω̃k,21 =


ukuk−1
ukuk−2

...
ukuk−n+1

+
m−1∑
j=1


uk−juk−j−1
uk−juk−j−2

...
uk−juk−j−n+1

 , (21)

Ω̃k,22 =


u2k−1 uk−1uk−2 . . . uk−1uk−n+1

uk−2uk−1 u2k−2 . . . uk−2uk−n+1
...

...
. . .

...
uk−n+1uk−1 uk−n+1uk−2 . . . u2k−n+1



+
m−1∑
j=1


u2k−j−1 uk−j−1uk−j−2 . . . uk−j−1uk−j−n+1

uk−j−2uk−j−1 u2k−j−2 . . . uk−j−2uk−j−n+1

...
...

. . .
...

uk−j−n+1uk−j−1 uk−j−n+1uk−j−2 . . . u2k−j−n+1

− ρ0I.
(22)

It can be noticed that only Ω̃11 and Ω̃k,12 = Ω̃′k,21 depend on uk. By applying Theorem A.2
to (19)

Ω̃k � 0 ⇔ Ω̃k,22 � 0 and Ω̃k/Ω̃k,22 � 0

⇔ Ω̃k,22 � 0 and Ω̃k,11 − Ω̃k,21Ω̃
−1
k,22Ω̃

′
k,21 > 0. (23)

Considering that Ω̃k,22 is equal to Ω̃k−1 without its last row and last column, it is easy to

see that Ω̃k,22 � 0 it is always satisfied. Thus, the candidate PE constraint for the MPC is

Ω̃k,11 − Ω̃k,21Ω̃
−1
k,22Ω̃

′
k,21 > 0. (24)

Due to the Schur complement transformation, the PE constraint (24) is still a quadratic
scalar inequality, for SISO systems, obviously. This is an important result, as it can be
seen on the next subsection, the PE-MPC optimization problem with FIR model it consists
on the solution of maximum two QP problems every time step.

4.2. Formulation. Combining (4) and (24) the following persistently exciting model pre-
dictive control formulation is obtained.

min
u
Jk =

1

2

Np−1∑
j=0

‖ zj+1 ‖2Q + ‖ uj ‖2R, (25a)

s.t. zj =
n∑

i=1

θiuj−i, j = 1, . . . , Np, (25b)

umin ≤ uj ≤ umax, j = 0, . . . , Np − 1, (25c)

Ω̃j,11 − Ω̃j,21Ω̃
−1
j,22Ω̃

′
j,21 > 0, j = 1. (25d)

Notice how the PE constraint is applied only to the first manipulated variable uk, (j = 1).
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4.3. Optimization: two QP problems. The standard FIR MPC problem is equivalent
to a convex QP problem. Constraint (25d) is non-convex, but it is possible to split it into
two linear scalar inequalities. Thus, it is shown that the PE-MPC solution is given by
choosing the best optimum between two convex QP problems.
For example, consider m = n = 2, then (25d) becomes

uk − ρ0 + u2k−1 −
(ukuk−1 + uk−1uk−2)

2

u2k−1 + u2k−2 − ρ0
> 0. (26)

The two solutions of the associated equation are

uk =
u2k−1

uk−2 −
√
ρ0

+
√
ρ0, uk =

u2k−1
uk−2 +

√
ρ0
−√ρ0, (27)

where there is always one solution that is not infinite. Depending on the sign of the
determinant of the associated equation, the two new linear PE constraints are, for instance

uk <
u2k−1

uk−2 +
√
ρ0
−√ρ0, uk >

u2k−1
uk−2 −

√
ρ0

+
√
ρ0. (28)

In a general case m ≥ n > 0 there will be always two inequalities

uk > γ1, uk < γ2 (29)

where γ1 and γ2 are functions of the previous inputs and ρ0. For instance, in the case
where γ1 > γ2, the set of inequality constraints (25c)-(25d) may be written as two separate
sets of constraints

umin ≤ uk < γ2, γ1 < uk ≤ umax (30)

yielding two FIR MPC problems of the form (4), which are solvable as QP problems. Every
time step k, the best solution vector between the two QP problems is chosen and, the first
element of the vector is applied to the plant.

5 AN EXAMPLE

In this section, an example is given to show how the PE-MPC in Section ?? produces a
persistently exciting input. A plant is regulated by a constrained FIR model based predic-
tive controller, a RLS algorithm is used to constantly estimated the Markov parameters of
the plant, however the corresponding FIR coefficient in the MPC model are updated with
a frequency of 50 time steps.
The plant is a discrete time stable system (1), with

A =

 0 1 −2
0 0 3
0 0 0

 , B =

 0
1

0.3

 , C =
[

0.7 0 0.1
]
, (31)

and Gaussian measurement noise with covariance σv = 0.0625. The sampling time is
T = 1 sec. Using (3), for n = 3 the corresponding Markov parameters are

Θ =

 0.03
0.28
0.63

 (32)

which are considered to be the ‘true’ system parameters. Notice that A is a nilpotent
matrix such that Ap = 0 for p ≥ n. This is just a simple strategy taken to avoid the
introduction of a steady state bias estimator.

7



International Conference

CYBERNETICS AND INFORMATICS

February 10 - 13, 2010
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The controller has a prediction horizon Np = 10, input constraints −2 ≤ u ≤ 2, cost
function output weight Q = 5, and input weight R = 0.3. The model in the controller is
initialized with the following FIR coefficients

Θ0 =

 0.13
0

1.26

 . (33)

Regarding the persistently excitation constraint, the looking backward horizon is m = 6
and the design parameter ρ0 = 2.5.
Finally, for the RLS algorithm (7) the forgetting factor is λ = 1, and the initial conditions
are

Θ̂0 =

 0
0
0

 , P0 =

 1000 0 0
0 1000 0
0 0 1000

 . (34)

5.1. Simulation result. The simulation is run in MATLAB 7.9 and the solver e04nf
from NAG library is used to efficiently and reliably solve the two QP problems every time
step. In the first n + m − 1 time steps the standard FIR MPC is used such that all the
needed vectors, for the PE constraint formulation, are properly initialized. Figure 1 shows

0 50 100 150 200 250 300 350 400 450 500
2

1

0

1

2
Plant Input and Output signals

u(
t)

0 50 100 150 200 250 300 350 400 450 500
2

1

0

1

2

y(
t)

Time [s], Sampling Time: 1

Figure 1. Input and output to the plant.

the plant input and output. Input constraints are not hit, and the apparently noisy signal
is needed for having a correct parameter estimation. In Figure 2 the FIR coefficients are
shown, the dashed lines represent the real parameter values (32), the solid lines are the
RLS estimates, and the stars are the old values used in the MPC model. For example,
the stars at time step 50 are the FIR coefficients (33), they are used in the controller for
the first 50 steps, then the estimate from RLS is used to update the MPC model, which is
again kept constant until the next update occurs (50 steps later).
Finally, Figure 3 shows the plant input in time domain, and more importantly the mag-
nitude of its Fourier transform. The three peaks confirm that the input is persistently
exciting of order three, which is the minimum order needed to estimate three parameters.
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Figure 2. FIR parameters: RLS estimates (solid line), ‘real’ values (dashed
line), MPC model parameter (stars).

0 50 100 150 200 250 300 350 400 450 500
1

0.5

0

0.5

1

Plant Input

Time [s], Sampling Time: 1

u(
t)

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4
Amplitude spectrum of u(t)

Frequency [Hz]

|F
T(

f)|

Figure 3. Persistently exciting input and its spectrum. Third order of excitation.

6 CONCLUSIONS

A persistently exciting model predictive control formulation is given, and its effectiveness
is shown. Using a FIR model for prediction, and implementing a persistently exciting
constraint, it is possible to correctly estimate and update the MPC model parameters.
Moreover, due to the structure of the PE constraint, the PE-MPC problem is expressed
as two QP problems. Every time step, its optimal solution is given by the best solution
between the QPs. Ongoing research is likely to extend the result to state space model and
ARMAX based MPC.
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APPENDIX

Schur complement for positive definite matrices. Given a matrix

M =

[
P Q
R S

]
, (35)

the Schur complement is defided as

M/P = S −RP−1Q (36)

where the nonsingular matrix P is the leading submatrix of M . The notation M/P indicates the
Schur complement of P in M . Analogously, the Schur complement of S in M is:

M/S = P −QS−1R. (37)

Definition A.1. Hermitian Matrix
A matrix H is a Hermitian matrix if H∗ = H, where the superscript ∗ denotes the conjugate
transpose if H ∈ C m×n, or just the transpose for real matrices H ∈ R m×n.

Definition A.2. Inertia of Hermitian Matrices
The inertia of an n× n Hermitian matrix H is the ordered triple

In(H) := (p(H), q(H), z(H)) (38)

where p(H), q(H), and z(H) are the numbers of positive, negative, and zero eigenvalues of H
including multiplicity, respectively. The rank is rank(H) = p(H) + q(H).

Theorem A.1. Let H be a Hermitian matrix, S a nonsingular principal submatrix of H. Then

In(H) = In(S) + In(H/S). (39)

Proof. See Zhang (2005) �

Definition A.3. Positive semidefinite matrices
A Hermitian matrix N is positive definite (N � 0) if and only if all its eigenvalues are positive.

Theorem A.2. Let H be a Hermitian matrix partitioned as

H =

[
H11 H12

H∗12 H22

]
(40)

where H22 is square and nonsingular. Thus

• H � 0 if and only if both H22 � 0 and H/H22 � 0.

Proof. Proof as consequence of Theorem A.1. �
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